×
17.06.2023
223.018.800c

Результат интеллектуальной деятельности: СПОСОБ ВЫДЕЛЕНИЯ ПАЛЛАДИЯ ИЗ ПОРОШКОВОЙ СИСТЕМЫ, СОДЕРЖАЩЕЙ ПАЛЛАДИЙ, ДРУГИЕ МЕТАЛЛЫ И ИХ СОЕДИНЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии цветных металлов, в частности к извлечению палладия при переработке порошковых систем, содержащих неблагородные металлы и неметаллы. Способ выделения палладия из порошковой системы, содержащей палладий, другие металлы и их соединения, заключается в добавлении к порошковой системе концентрированной азотной кислоты для растворения палладия, с последующей нейтрализацией полученного раствора водным раствором аммиака. Образующиеся после нейтрализации осадки гидроксидов неблагородных металлов формируют замораживанием при температуре не выше минус 20°С, после оттаивания осадки отделяют фильтрованием и восстанавливают палладий из фильтрата. Полученный порошок палладия промывают и сушат. Обеспечивается улучшение полноты извлечения и химической чистоты получаемого порошка палладия, сокращение трудоемкости операции отделения раствора с палладием и отсутствие дополнительного химического загрязнения палладия. 2 ил., 4 табл.

Изобретение относится к области металлургии цветных металлов, в частности к извлечению палладия при переработке порошковых систем, содержащих неблагородные металлы и неметаллы (например, титан, алюминий, железо, никель, бор и пр.), способные при взаимодействии с используемыми реагентами образовывать гелеобразные осадки гидроксидов.

Известен способ переработки гидроксидных осадков аффинажа палладия (патент РФ №2207390; МПК С22В 11/00; С22В 3/10; опубликован 27.06.2003). Способ включает прокаливание осадков и последующую их обработку для извлечения благородных металлов. Прокаливание осадков проводят на стальном противне при температуре 830-870°С, а обработку осадков ведут вскрытием путем жидкофазного хлорирования с переводом благородных металлов в раствор.

Недостатком этого способа является использование хлорсодержащих реагентов для перевода палладия в раствор, так как от хлора в извлеченном палладии достаточно трудно избавиться химическими методами.

Задача предлагаемого способа заключается в полном и легком отделении раствора, содержащего ионы палладия, от аморфных осадков гидроксидов металлов.

Технический результат, достигаемый при использовании настоящего способа, заключается в следующем:

- сокращается трудоемкость операции отделения раствора с палладием от осадка;

- достигается более высокая химическая чистота получаемого впоследствии порошка палладия.

Для решения указанной задачи и достижения технического результата заявляется способ выделения палладия из порошковой системы, содержащей палладий, другие металлы и их соединения. Способ заключается в добавлении к порошковой смеси концентрированной азотной кислоты для растворения палладия, с последующей нейтрализацией полученного раствора. Образующиеся после растворения в кислоте, а затем нейтрализации раствором аммиака, осадки гидроксидов неблагородных металлов формируют замораживанием при температуре не выше минус 20°С, после оттаивания раствор палладия отфильтровывают и восстанавливают из него палладий. Полученный порошок промывают и сушат.

Технический результат достигается за счет того, что при добавлении к порошкообразной смеси азотной кислоты происходит образование нитрата палладия и других металлов, содержащихся в исходном материале. При нейтрализации азотнокислого раствора палладия водным раствором аммиака из смеси с другими металлами и неметаллами образуются осадки гидроксидов металлов, имеющие аморфный характер, и описываемые в общем виде формулой МехОу×n(H2O). Данные соединения гидрофильны, представляют собой гелеобразную массу, которая практически не поддается фильтрованию под вакуумом и центрифугированию. При замораживании такой массы происходит разрушение структуры гидроксидных оболочек веществ, а после оттаивания отстоявшийся осадок приобретает зернистую структуру и легко поддается фильтрованию, что позволяет выделить палладий достаточно полно.

Без проведения замораживания отделение осадка занимало достаточно много времени, использовалась центрифуга, проводилось многократное промывание осадка и отделение его методом центрифугирования.

Таким образом, при введении стадии замораживания, было достигнуто достаточно полное извлечение раствора, содержащего ионы палладия, сокращена трудоемкость операций отделения растворенного палладия от сложных осадков, и при последующем восстановлении палладия достигалась удовлетворительная химическая чистота палладия.

На фиг. 1. представлена принципиальная схема процесса регенерации палладия из порошковых систем и продуктов высокотемпературного воздействия.

На фиг. 2 представлены фотографические изображения, иллюстрирующие отделение осадков, содержащих гидроксиды металлов, после размораживания раствора, где:

а) - нейтрализованный раствор после II-й стадии: ионы Pd[NH3]4+2 и осадок гидроксидов металлов;

б) - замороженный раствор с осадком после III-й стадии;

в) - оттаявший раствор после III-й стадии.

Для регенерации палладия из смеси с другими компонентами использовали метод селективного растворения палладия в концентрированной азотной кислоте и дальнейшего восстановления муравьиной кислотой палладия из раствора азотно-аммиачного комплекса:

Pd + 4HNO3 → Pd(NO3)2 + 2NO2↑+2H2O

Pd(NO3)2 + 4(NH3⋅H2O) → [Pd(NH3)4](NO3)2 + 4H2O

[Pd(NH3)4]2+ + HCOOH → Pd↓ + 4NH3↑ + CO2↑ + H2

Исходным материалом для извлечения палладия являлись многокомпонентные смеси в виде порошка, спрессованных заготовок, а также образцов после высокотемпературного воздействия.

Рассмотрим стадии, показанные на фиг. 1:

I стадия - растворение палладия из многокомпонентных смесей. Растворение палладия проводится в концентрированной азотной кислоте при нагревании раствора до температуры кипения, добавление соляной кислоты при растворении минимально и необходимо для активации процесса растворения. На данной стадии процесса получают раствор нитрата палладия красновато-коричневого цвета с черным осадком нерастворенных компонентов порошковой системы.

II стадия - нейтрализация раствора и перевод нитрата палладия в азотнокислый аммиачный комплекс. Для этого в охлажденный продукт, полученный после первой стадии, добавляется раствор аммиака с концентрацией 25 масс. %. Нейтрализация проводится при контроле рН, значение данного показателя должно находиться в интервале от 6,5 до 7,5.

III стадия - формирование осадка. На данной стадии процесса проводится замораживание раствора с осадком при температуре не выше минус 20°С (температура определяется возможностью полного замораживания раствора с осадком, чем выше концентрация солей в жидкой фазе, тем ниже должна быть температура) с последующим оттаиванием. Приведенные экспериментальные данные получены после замораживания при температуре минус 40°С.

IV стадия - фильтрование и промывание осадка. Фильтрование и промывание осадка проводится под вакуумом с использованием мембранного химического насоса и двойных фильтров «синяя лента».

V стадия - осаждение палладия. Процесс осаждения палладия проводится при температуре плюс 70°С и перемешивании раствора со скоростью 1250 об./мин. Восстановителем палладия является муравьиная кислота.

VI стадия - фильтрование и промывание порошка палладия. Фильтрование осажденного порошка палладия проводится под вакуумом, аналогично IV стадии процесса. Порошок промывается большим количеством дистиллированной воды и просушивается в сушильном шкафу при температуре 110°С в течение не менее 6 часов.

На фиг. 2 представлены изображения, иллюстрирующие отделение гидроксидных осадков после размораживания раствора.

Суть процессов, происходящих на стадии «замораживание - оттаивание» состоит в том, что гидратные оболочки гидроксидов металлов, образующих трудно фильтруемые осадки, при замораживании разрушаются, и после оттаивания осадок приобретает зернистую структуру. Фильтрование осадков с использованием мембранного химического насоса протекает быстро, осадок легко промывается, его объем по сравнению с осадком, отделенным методом центрифугирования без стадии замораживания, уменьшается приблизительно в десять раз.

Полнота извлечения палладия является одной из основных характеристик разработанной технологии регенерации палладия.

На начальном этапе работ в процессе регенерации отсутствовала третья стадия - стадия формирования осадка при замораживании. Полученный на второй стадии раствор с осадком разделяли с помощью центрифугирования, а затем фильтровали с применением вакуумного насоса. Однако структура осадков была такова, что значительное количество палладия оставалось в отходах. После высыхания осадков на их поверхности выкристаллизовывалась соль лимонно-желтого цвета [Pd(NH3)4](NO3)2. В таблицах 1 и 2 представлены результаты нескольких опытов по извлечению палладия как без замораживания растворов с осадком, так и со стадией замораживания.

Введение в процесс регенерации стадии формирования осадка позволило значительно повысить степень извлечения палладия. После высыхания поверхность осадков остается чистой, без кристаллов соли нитрата палладия.

Изменение состава отходов подтверждено результатами спектрального анализа на лазерном анализаторе LEA-S500. Так, проведение оценки содержания палладия в отходах до и после введения стадии с замораживанием, показало, что после введения стадии формирования осадка посредством его замораживания с последующим оттаиванием, содержание палладия в отходах уменьшилось в 5-6 раз.

Контроль чистоты получаемого порошка палладия проводили по следующим показателям:

1) Анализ металлических примесей (Ag, Al, Au, Са, Со, Cr, Cu, Fe, Ir, Mg, Mn, Ni, Pb, Pt, Rh, Ru, Sb, Si, Sn, Ti, Zn).

Анализ проводили методом атомно-эмиссионного спектрального анализа (АЭСА) с возбуждением проб в аргоновой индукционной высокочастотной плазме на приборе Activa M. Анализ содержания углерода проводили методом ИК-спектрометрии после сжигания пробы палладия в токе кислорода на анализаторе ELTRA CS-2000.

2) Анализ газообразующих примесей O2, N2, Н2.

Анализ проводили на анализаторе ELTRA ONH-2000: содержание кислорода определяли методом ИК-спектрометрии; содержание азота и водорода - с помощью детектора по теплопроводности после плавления образцов в высокочастотной индукционной печи.

3) Исследование поглотительной способности водорода получаемым порошком палладия.

Измерение количества поглощаемого водорода получаемым материалом проводили волюмометрическим методом.

В таблице 3 представлены результаты определения примесей, металлических и газообразующих, в порошках палладия нескольких партий, полученных из материала после регенерации по вышеизложенной технологии, а также палладия промышленного производства (исходного).

Результаты проведенных исследований показывают незначительное увеличение содержания отдельных металлических примесей, кремния и газообразующих примесей (кислорода, азота и водорода) в материалах, полученных по лабораторной технологии, по сравнению с образцом порошка палладия, полученным на заводе-изготовителе в промышленных масштабах.

Увеличение содержания газообразующих примесей и углерода связано с технологическими особенностями разработанной технологии регенерации порошка палладия. Известно, что адсорбированная влага на поверхности платиновых металлов, и палладия в частности, способствует поглощению значительного количества газов. При осаждении палладия из водных растворов на поверхности частиц остаются адсорбированные газы, но, как видно из данных таблицы 3, в незначительном количестве.

В таблице 4 представлены экспериментальные значения поглотительной способности, как исходного палладия (его заводской партии), так и порошков палладия, полученных предлагаемым способом. Измерения проводились в одинаковых условиях (давление водорода, объем, температура). Каждое приведенное в таблице значение является средним по результатам двух параллельных измерений.

Как видно из данных таблицы 4, величина поглотительной способности не зависит от способа изготовления порошка палладия. Образцы промышленного изготовления (содержание палладия 99,96%), так же как и образцы порошка палладия, полученные после регенерации по предложенной технологии (содержание основного вещества не менее 99,5%), имеют близкие значения поглотительной способности по водороду (расхождения результатов не превышают погрешности измерения).

Способ выделения палладия из порошковой системы, содержащей палладий, другие металлы и их соединения, заключающийся в добавлении концентрированной азотной кислоты к порошковой системе для растворения палладия, с последующей нейтрализацией полученного раствора водным раствором аммиака, образующиеся после нейтрализации осадки гидроксидов неблагородных металлов формируют замораживанием при температуре не выше минус 20°С, после оттаивания осадки отделяют фильтрованием, восстанавливают палладий из фильтрата, полученный порошок палладия промывают и сушат.
Источник поступления информации: Роспатент

Showing 141-150 of 678 items.
25.08.2017
№217.015.af67

Система автоматизированного управления пропуском транспорта

Изобретение относится к системам контроля и управления доступом и охранной сигнализации, предназначено для защиты охраняемых объектов от несанкционированного доступа транспортных средств, организации пропуска транспорта через автотранспортные контрольно-пропускные пункты (АКПП). Техническим...
Тип: Изобретение
Номер охранного документа: 0002610925
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.b348

Способ метания из ствольной пороховой баллистической установки

Изобретение относится к газодинамическим устройствам и касается наземных отработок новых образцов боеприпасов с использованием ствольных пороховых баллистических установок (ПБУ). Пороховой заряд размещают в зарядной камере. Вводят в установку метаемый объект и инициируют заряд. При этом...
Тип: Изобретение
Номер охранного документа: 0002613639
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b46a

Квантрон твердотельного лазера с диодной накачкой

Изобретение относится к лазерной технике. Квантрон содержит активный элемент в виде стержня, источники оптической накачки, расположенные на держателях вокруг активного элемента, систему охлаждения активного элемента и источников оптической накачки, фланцы и элемент, соединяющий фланцы....
Тип: Изобретение
Номер охранного документа: 0002614081
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b483

Квантрон с диодной накачкой

Изобретение относится к лазерной технике. Квантрон с диодной накачкой содержит размещенные в корпусе активный элемент в виде стержня, источники оптической накачки, расположенные на держателях равномерно относительно активного элемента, и систему охлаждения, которая содержит трубку, охватывающую...
Тип: Изобретение
Номер охранного документа: 0002614079
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b4b9

Твердотельный лазер с термостабилизацией диодной накачки и электрооптической модуляцией добротности и устройство его управления

Группа изобретений относится к лазерной технике. Твердотельный лазер с термостабилизацией диодной накачки и электрооптической модуляцией добротности содержит формирователь импульсов и излучатель с электрооптическим затвором, снабженным драйвером, снабжен управляющим микроконтроллером,...
Тип: Изобретение
Номер охранного документа: 0002614084
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b583

Устройство для хранения и выдачи предметов

Изобретение относится к устройствам, используемым в охранных системах для хранения и выдачи предметов, подлежащих особой сохранности, например ключей, носителей информации, драгоценностей, и может быть использовано в охранных системах объектов с повышенными требованиями к безопасности....
Тип: Изобретение
Номер охранного документа: 0002614198
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b72d

Способ воспламенения порохового заряда в баллистической установке и установка для его осуществления

Группа изобретений относится к испытательной технике. Способ воспламенения порохового заряда включает размещение модулей порохового заряда, его воспламенение. Пороховой заряд выполняют состоящим из двух разнесенных модулей. Первый модуль устанавливают вплотную к отверстию, предназначенному для...
Тип: Изобретение
Номер охранного документа: 0002614440
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b825

Сверхширокополосный генератор электромагнитных импульсов

Изобретение относится к технике генерации мощных сверхширокополосных (СШП) электромагнитных импульсов (ЭМИ) субнаносекундного диапазона длительностей и может быть использовано при разработке соответствующих генераторов для средств связи, радиолокации, навигации и радиоэлектронной борьбы. В...
Тип: Изобретение
Номер охранного документа: 0002614986
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.bc18

Способ получения сорбента на основе полимерного гидрогеля

Изобретение относится к способу получения гидрогелей, которые могут использоваться в качестве сорбентов для связывания катионов металлов, в частности в процессах утилизации жидких радиоактивных отходов. Способ получения сорбента на основе полимерного гидрогеля заключается в сшивке макромолекул...
Тип: Изобретение
Номер охранного документа: 0002616064
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bc1b

Детонационный триод

Изобретение относится к устройствам для инициирования детонации, а именно к детонирующим логическим устройствам, предназначенным для управляемой передачи детонации и инициирования взрывных зарядов от одного или более инициаторов. Технический результат - повышение надежности и безопасности...
Тип: Изобретение
Номер охранного документа: 0002616044
Дата охранного документа: 12.04.2017
+ добавить свой РИД