×
17.06.2023
223.018.7f2d

Результат интеллектуальной деятельности: Способ изготовления микромодуля

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии микроэлектронных приборов, состоящих из нескольких полупроводниковых компонентов на твердом теле, и может быть использовано при производстве аппаратуры с высокоплотным монтажом. Cпособ изготовления микромодуля включает формирование на коммутационной плате коммутационных слоев, сквозных металлизированных отверстий, монтаж бескорпусного кристалла, создание электрических соединений между бескорпусным кристаллом и платой микросваркой, формирование пакета коммутационных плат путем создания электрических соединений между коммутационными платами с применением токопроводящих микрошариков, заливку компаундом пространства, образованного между коммутационными платами и корпусирование. Согласно изобретению бескорпусной кристалл монтируют в предварительно профилированную коммутационную плату после создания коммутационных слоев со стороны, не занятой коммутационными слоями путем последовательного формирования глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого «сухим» травлением последовательно в Бош-процессе для коммутации платы с бескорпусным кристаллом через предварительно сформированную спреевым методом фоторезистивную маску. Изобретение обеспечивает возможность изготовления микромодуля с уменьшенными массогабаритными характеристиками и повышенной степенью интеграции. 5 з.п. ф-лы, 3 ил.

Изобретение относится к технологии микроэлектронных приборов, состоящих из нескольких полупроводниковых компонентов на твердом теле (активных кристаллов) или конструктивных элементов (пассивных чип-компонентов), сформированных внутри одной несущей подложки и сгруппированных по блокам в единую сборку и может быть использовано при производстве аппаратуры с высокоплотным монтажом.

Из уровня техники известно техническое решение (RU 2 651 543. Опубл. 20.04.2018. Бюл. № 11. [1]), относящееся к способу изготовления микроэлектронного узла. Бескорпусные кристаллы устанавливают лицевой стороной на технологическую подложку со слоем клея, совмещая их контактные площадки с реперными знаками. На технологическую подложку устанавливают технологическую рамку, совмещая окно рамки с реперными знаками на технологической подложке. Герметизируют бескорпусные кристаллы, заполняют зазор между кристаллами и рамкой клеем, шлифуют обратную сторону кристаллов и рамки, приклеивают кристаллодержатель. Снимают технологическую подложку, затем многоуровневую коммутацию контактных площадок кристаллов и внешних контактных площадок изготавливаемого микроэлектронного узла, на которых в защитном слое формируют выступающие выводы, и вырезают изготавливаемый микроэлектронный узел из кристаллодержателя.

К недостаткам известного технического решения относится низкие технологичность, эффективность и степень интеграции из-за размещения кристаллов на одном уровне.

Наиболее близким по технической сущности и достигаемому эффекту является техническое решение известное из (RU 2 705 229. Опубл. 06.11.2019. Бюл. № 31. [2]). Согласно известному техническому решению способ трехмерного многокристального корпусирования интегральных микросхем памяти предусматривает следующую последовательность операций:

- обеспечение пластины с кристаллами памяти и подложки, имеющей контактные площадки с двух сторон;

- ламинирование лицевой стороны поверхности пластины;

- утонение пластины шлифовкой и полировкой ее обратной поверхности;

- монтаж утоненной пластины обратной поверхностью на пленочный носитель с клеевым пленочным слоем, закрепленный на рамке;

- резка утоненной пластины на отдельные кристаллы;

- разогрев подложки и монтаж кристаллов с клеевым пленочным слоем на подложку с лицевой стороны в стек со смещением, оставляющим открытыми контактные площадки кристаллов;

- обработка в сушильной печи подложки с установленными кристаллами для полимеризации клеевого пленочного слоя;

- очистка контактных площадок кристаллов и подложки с лицевой стороны;

- создание электрических соединений между контактными площадками кристалла и контактными площадками подложки с лицевой стороны;

- очистка подложки с установленными кристаллами;

- герметизация компаундом подложки с установленными кристаллами;

- отчистка контактных площадок подложки с обратной стороны;

- установка паяльных шариков на контактные площадки подложки с обратной стороны и их оплавление в печи;

- разделение подложки дисковыми пилами на отдельные интегральные микросхемы памяти.

При осуществлении способа из RU 2 705 229 для корпусирования многокристальной интегральной микросхемы памяти подбирают материалы ядра подложки и компаунда с коэффициентами температурного расширения не более 5⋅10-6 К-1, причем разница между коэффициентами температурного расширения материалов ядра подложки и компаунда не более 2⋅10-6 К-1. Выдерживают разницу между температурами подложки при монтаже кристаллов и при заливке компаундом не более 70°С. Толщину кристалла на этапе утонения пластины подбирают таким образом, чтобы суммарная толщина стека кристаллов с учетом клеевых пленочных слоев примерно равнялась разнице между толщиной интегральной микросхемы памяти и удвоенной толщиной подложки.

К недостаткам известного технического решения относится низкие технологичность, эффективность и степень интеграции из-за необходимости размещения кристаллов один над другим в стек (пирамидкой) с последовательным уменьшением их геометрических размеров от основания.

Заявляемый в качестве изобретения способ изготовления микромодуля направлен на повышение технологичности конструкции, степени интеграции и, как следствие, уменьшение массогабаритных характеристик.

Указанный результат достигается тем, что предложен способ изготовления микромодуля, включающий формирование на коммутационной плате коммутационных слоев, сквозных металлизированных отверстий, монтаж бескорпусного кристалла, создание электрических соединений между бескорпусным кристаллом и платой микросваркой, формирование пакета коммутационных плат путем создания электрических соединений между коммутационными платами с применением токопроводящих микрошариков, заливку компаундом пространства, образованного между коммутационными платами и корпусирование. Бескорпусной кристалл монтируют в предварительно профилированную коммутационную плату после создания коммутационных слоев со стороны, не занятой коммутационными слоями, путем последовательного формирования глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом.

Также, в качестве материала коммутационной платы используют монокристаллический кремний.

Формирование глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия для коммутации платы с бескорпусным кристаллом осуществляют «сухим» травлением последовательно в Бош-процессе через предварительно сформированную маску.

Последовательное формирование глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом осуществляют со стороны, не занятой коммутационными слоями через предварительно сформированную спреевым методом фоторезистивную маску.

Перед формированием пакета коммутационных плат путем создания электрических соединений между коммутационными платами с применением токопроводящих микрошариков коммутационные платы подвергают шлифовке со стороны, не занятой коммутационными слоями на величину h, определяемую из соотношений:

h≤(Нкр+lадг)/3, Нкр>>lадг, где

Нкр - толщина бескорпусного кристалла, мкм,

lадг - толщина слоя адгезива после монтажа бескорпусного кристалла, мкм.

После шлифовки со стороны, не занятой коммутационными слоями, методами микрообработки формируют дополнительные коммутационные слои.

Сущность заявляемого способа поясняется графическими материалами (фиг. 1, 2 и 3):

фиг. 1 - блок-схема технологического процесса изготовления микромодуля в виде последовательности изображений разрезов;

фиг. 2 - составные части микромодуля перед их сборкой и собранная конструкция;

фиг. 3 - блок-схема технологического процесса последовательного формирования глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом.

На фиг. 1 и фиг. 2 обозначены:

поз. а - исходная подложка коммутационной платы на основе монокристаллического кремния;

поз. б - подложка коммутационной платы после формирования коммутационного слоя;

поз. в - подложка коммутационной платы после формирования диэлектрического слоя;

поз. г - формирование сквозных отверстий;

поз. д - металлизация сквозных отверстий;

поз. е - формирование коммутационного слоя;

поз. з - формирование глухого отверстия;

поз. и - формирование сквозного отверстия для монтажа бескорпусного кристалла;

поз. к - формирование адгезива для монтажа бескорпусного кристалла;

поз. л - монтаж бескорпусного кристалла;

поз. м - шлифовка со стороны, не занятой коммутационными слоями;

поз. н - разварка бескорпусного кристалла;

поз. о - коммутационная плата с установленными шариками;

поз. п - коммутационная плата с установленными шариками;

поз. р - микромодуль после сборки и заливки компаундом.

На фиг. 3 обозначены:

поз. с - подложка коммутационной платы с сформированными коммутационными слоями;

поз. т - нанесенный с двух сторон подложки спреевым методом фоторезистивный слой;

поз. у - сформированная со стороны, не занятой коммутационными слоями, фоторезистивная маска для травления глухого отверстия;

поз. ф - сформированное «сухим» травлением в Бош-процессе глухое отверстие для монтажа бескорпусного кристалла;

поз. х - сформированная со стороны, не занятой коммутационными слоями, фоторезистивная маска для травления сквозного отверстия;

поз. ц - формирование «сухим» травлением в Бош-процессе сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом;

поз. ч - сформированное «сухим» травлением в Бош-процессе сквозное отверстие внутри глухого для коммутации платы с бескорпусным кристаллом.

Осуществление изобретения можно пояснить следующим образом.

Как и было указано выше, предложенный способ изготовления микромодуля характеризуется следующими отличительными признаками:

- бескорпусной кристалл монтируют в предварительно профилированную коммутационную плату после создания коммутационных слоев со стороны, не занятой коммутационными слоями путем последовательного формирования глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом;

- в качестве материала коммутационной платы используют монокристаллический кремний;

- формирование глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом осуществляют «сухим» травлением последовательно в Бош-процессе через предварительно сформированную маску;

- последовательное формирование глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом осуществляют со стороны, не занятой коммутационными слоями через предварительно сформированную спреевым методом фоторезистивную маску;

- перед формированием пакета коммутационных плат путем создания электрических соединений между коммутационными платами с применением токопроводящих микрошариков коммутационные платы подвергают шлифовке со стороны, не занятой коммутационными слоями на величину h, определяемую из соотношений:

h≤(Нкр+lадг)/3, Нкр>>lадг, где

Нкр - толщина бескорпусного кристалла, мкм,

lадг - толщина слоя адгезива после монтажа бескорпусного кристалла, мкм;

- после шлифовки коммутационной платы со смонтированным бескорпусным кристаллом со стороны, не занятой коммутационными слоями, методами микрообработки формируют дополнительные коммутационные слои.

Монтаж бескорпусного кристалла осуществляют на предварительно профилированную коммутационную плату после создания коммутационных слоев со стороны, не занятой коммутационными слоями путем последовательного формирования глухого отверстия для монтажа бескорпусного кристалла и сквозного отверстия внутри глухого для коммутации платы с бескорпусным кристаллом, что обеспечивает технологичность конструкции за счет возможности проведения литографии после монтажа кристалла. Использование в качестве материала коммутационной платы монокристаллического кремния позволяет сформировать глухое и сквозное отверстия «сухим» травлением в Бош-процесса с высокой точностью, что невозможно выполнить другими методами и что также обеспечивает технологичность. Использование спреевого нанесения для формирования фоторезистивной маски позволяет осуществлять последовательно глухое и сквозное отверстия «сухим» травлением в Бош-процессе со стороны, не занятой коммутационными слоями.

Перед формированием пакета коммутационных плат путем создания электрических соединений между коммутационными платами с применением токопроводящих микрошариков коммутационные платы подвергают шлифовке со стороны, не занятой коммутационными слоями, что приводит к уменьшению массогабаритных характеристик устройства и повышению степени интеграции. Величина h, определяемая из соотношений h≤(Нкр+lадг)/3, Нкр>>lадг где Нкр - толщина бескорпусного кристалла, мкм, lадг - толщина слоя адгезива после монтажа бескорпусного кристалла, мкм, выбрана из соображений прочности конструкции. Формирование дополнительных коммутационных слоев после шлифовки со стороны, не занятой коммутационными слоями обеспечивает при необходимости снижение массогабаритных характеристик и увеличение степени интеграции.

Таким образом, предложен технологичный способ изготовления микромодуля, обеспечивающий изготовление с уменьшенными массогабаритными характеристиками и повышенной степенью интеграции.

Источники информации

1. Низов В.Н. Способ изготовления микроэлектронного узла. RU 2 651 543. Патентообладатель: Акционерное общество «Авиаавтоматика» имени В.В. Тарасова». Заявка: 2016148054, 07.12.2016. Опубл. 20.04.2018. Бюл. № 11.

2. Путролайнен В.В., Беляев М.А., Перминов В.В. Способ трехмерного многокристального корпусирования интегральных микросхем памяти. RU 2 705 229. Патентообладатель: Федеральное государственное бюджетное образовательное учреждение высшего образования «Петрозаводский государственный университет» Заявка: 2019106268, 05.03.2019. Опубл. 06.11.2019. Бюл. № 31.

Источник поступления информации: Роспатент

Showing 31-40 of 99 items.
29.05.2018
№218.016.55ba

Способ интеграции систем и/или средств обеспечения навигационной и мониторинговой информацией и аппаратно-программный комплекс - центр компетенций

Группа изобретений относится к системам получения и обработки информации космических аппаратов навигационного и мониторингового назначения. Способ интеграции систем и/или средств обеспечения навигационной и мониторинговой информацией предусматривает формирование облачной среды вычислений,...
Тип: Изобретение
Номер охранного документа: 0002654237
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5c91

Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов

Изобретение относится к области технологии дискретных полупроводниковых приборов и может быть использовано при изготовлении бескорпусных диодов для солнечных батарей космических аппаратов. Способ изготовления бескорпусного диода для солнечных батарей космических аппаратов согласно изобретению...
Тип: Изобретение
Номер охранного документа: 0002656126
Дата охранного документа: 31.05.2018
09.06.2018
№218.016.5d06

Способ изготовления чувствительного элемента акселерометра

Изобретение может быть использовано при создании и изготовлении микромеханических устройств, содержащих упругие гибкие деформируемые исполнительные элементы методом химического травления с использованием масок. Способ изготовления чувствительного элемента акселерометра основан на формировании...
Тип: Изобретение
Номер охранного документа: 0002656109
Дата охранного документа: 31.05.2018
20.06.2018
№218.016.64f0

Установка для поглощения электромагнитного излучения

Изобретение относится к области вспомогательных средств радиоэлектронного оборудования и, дополнительно, может быть использовано в качестве низкопотенциального источника тепловой энергии. Заявлена установка для поглощения рассеиваемого электромагнитного излучения, которая содержит средства...
Тип: Изобретение
Номер охранного документа: 0002658145
Дата охранного документа: 19.06.2018
20.06.2018
№218.016.64f6

Способ контроля микрорельефа увлажнённого грунта

Изобретение относится к средствам дистанционного зондирования. Способ контроля рельефа увлажненной поверхности предусматривает съемку поверхности в первом и втором диапазонах электромагнитного излучения, одним из которых является инфракрасный диапазон, идентификацию диагностируемых особенностей...
Тип: Изобретение
Номер охранного документа: 0002658143
Дата охранного документа: 19.06.2018
28.06.2018
№218.016.6826

Способ зональной регистрации абонентского терминала сети персональной спутниковой связи

Изобретение относится к регистрации абонентского терминала сети персональной спутниковой связи. Технический результат - сокращение энергетических потерь при регистрации терминала сети персональной спутниковой связи и экономия ресурсов служебного канала бортового ретрансляционного комплекса...
Тип: Изобретение
Номер охранного документа: 0002658879
Дата охранного документа: 25.06.2018
01.07.2018
№218.016.692b

Модернизированная спутниковая навигационная система глонасс

Предлагаемое изобретение относится к области спутниковых навигационных систем и направлено на совершенствование существующей спутниковой навигационной системы ГЛОНАСС. В модернизированной спутниковой навигационной системе ГЛОНАСС, состоящей из существующей группировки N1 базовых навигационных...
Тип: Изобретение
Номер охранного документа: 0002659351
Дата охранного документа: 29.06.2018
06.07.2018
№218.016.6ccb

Способ выбора низкоорбитального спутника-ретранслятора для регистрации абонентским терминалом в системе персональной спутниковой связи

Изобретение относится к космической технике, конкретно к области создания и функционирования систем персональной спутниковой связи с применением низкоорбитальных спутников-ретрансляторов. Технический результат состоит в снижении количества жестких эстафетных передач и уменьшении количества...
Тип: Изобретение
Номер охранного документа: 0002660114
Дата охранного документа: 05.07.2018
06.07.2018
№218.016.6ccf

Способ прецизионного монтажа многокристальных сборок интегральных схем

Изобретение относится к способам, предназначенным для позиционирования, размещения и монтажа частей интегральной схемы в корпусе, а именно прецизионного монтажа многокристальных сборок интегральных схем (ИС) с установкой кристалла на кристалл, и может быть использовано в ракетно-космическом и...
Тип: Изобретение
Номер охранного документа: 0002660121
Дата охранного документа: 05.07.2018
06.07.2018
№218.016.6ce1

Способ формирования группового навигационного сигнала глонасс

Изобретение относится к системам формирования сигнала спутниковой радионавигационной системы ГЛОНАСС, а именно к средствам управления передачей и её коррекцией. Техническим результатом является уменьшение погрешностей формирования сигнала посредством цифрового формирования групповых...
Тип: Изобретение
Номер охранного документа: 0002660126
Дата охранного документа: 05.07.2018
Showing 31-40 of 41 items.
01.05.2019
№219.017.47ea

Свч фильтр на основе интегрированного в подложку волновода и способ его изготовления

Использование: для создания СВЧ фильтров. Сущность изобретения заключается в том, что СВЧ фильтр на основе интегрированного в подложку волновода, образованный цепочкой связанных резонаторов, конструкция которого состоит из следующих составных частей: металлического основания, подложки на основе...
Тип: Изобретение
Номер охранного документа: 0002686486
Дата охранного документа: 29.04.2019
18.05.2019
№219.017.59fa

Блокирующий диод для солнечных батарей космических аппаратов

Изобретение относится к области дискретных полупроводниковых приборов, в частности к блокирующим диодам для солнечных батарей космических аппаратов. Техническим результатом заявленного изобретения является создание бескорпусного блокирующего диода для солнечных батарей космических аппаратов с...
Тип: Изобретение
Номер охранного документа: 0002457578
Дата охранного документа: 27.07.2012
15.06.2019
№219.017.8370

Способ формирования многофункциональных терморегулирующих покрытий на изделиях из алюминиевых сплавов

Изобретение относится к области гальванотехники и может быть использовано для формирования на изделиях прочно сцепленных с основой многофункциональных терморегулирующих оптических покрытий, обладающих повышенными теплозащитными функциями и применяемых для блоков бортовой аппаратуры и узлов...
Тип: Изобретение
Номер охранного документа: 0002691477
Дата охранного документа: 14.06.2019
22.06.2019
№219.017.8ec4

Способ изготовления сквозных микроотверстий в кремниевой подложке

Изобретение относится к области технологии микроэлектроники и может быть использовано при изготовлении 3D-устройств микросистемной техники, например микроинжекторов, микродвигателей, а именно при получении сквозных микроотверстий в кремниевой подложке. Способ изготовления сквозных...
Тип: Изобретение
Номер охранного документа: 0002692112
Дата охранного документа: 21.06.2019
26.06.2019
№219.017.92c4

Способ получения диэлектрического слоя на основе полимерного покрытия в изделиях микроэлектроники

Заявленное изобретение относится к области микроэлектроники, а именно к способам получения диэлектрического слоя межслойной изоляции определенной толщины в изделиях микроэлектроники на основе полимерного покрытия. Способ получения диэлектрического слоя на основе полимерного покрытия в изделиях...
Тип: Изобретение
Номер охранного документа: 0002692373
Дата охранного документа: 24.06.2019
23.07.2019
№219.017.b6fa

Миниатюрный измеритель параметров электризации космических аппаратов с микросистемным вибрационным модулятором электрического поля

Использование: для детектирования напряженности электрического поля на поверхности конструкции космического аппарата. Сущность изобретения заключается в том, что миниатюрный измеритель параметров электризации космических аппаратов включает: микросистемный вибрационный модулятор, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002695111
Дата охранного документа: 19.07.2019
05.09.2019
№219.017.c6e6

Шагающий инсектоморфный мобильный микроробот

Изобретение относится к микроробототехнике, а именно к шагающим мобильным микророботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса, невесомости, микрогравитации и выполнения задач напланетных миссий. Шагающий мобильный...
Тип: Изобретение
Номер охранного документа: 0002699209
Дата охранного документа: 03.09.2019
08.02.2020
№220.018.0022

Способ изготовления свч-гибридной интегральной микросхемы космического назначения с многоуровневой коммутацией

Использование: для изготовления СВЧ–гибридных интегральных микросхем космического назначения с многоуровневой коммутацией на основе органического диэлектрика. Сущность изобретения заключается в том, что способ изготовления СВЧ–гибридной интегральной микросхемы с многоуровневой коммутацией на...
Тип: Изобретение
Номер охранного документа: 0002713572
Дата охранного документа: 05.02.2020
02.03.2020
№220.018.0822

Многослойная коммутационная плата свч-гибридной интегральной микросхемы космического назначения и способ её получения (варианты)

Изобретение относится к электронной технике, а именно к области СВЧ микроэлектроники. Техническим результатом заявленного изобретения является повышение адгезионной прочности монтажных соединений в коммутационной плате и технологичности коммутационной СВЧ-платы. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002715412
Дата охранного документа: 28.02.2020
16.05.2023
№223.018.630e

Ползающий космический микроробот-инспектор

Изобретение относится к микроробототехнике, а именно к мобильным микророботам, и предназначено для осуществления инспекционных работ на солнечных батареях космических аппаратов и/или Международной космической станции, в экстремальных ситуациях, преимущественно для минимизации рисков человека в...
Тип: Изобретение
Номер охранного документа: 0002771501
Дата охранного документа: 06.05.2022
+ добавить свой РИД