×
17.06.2023
223.018.7e89

Результат интеллектуальной деятельности: Высокотемпературный плотный композитный материал ядерного топлива и способ его получения

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к материалу ядерного топлива и представляет собой высокотемпературный плотный композитный материал ядерного топлива и способ его получения. Высокотемпературный плотный композитный материал ядерного топлива содержит керамическую, инертную к облучению матрицу, в которой распределены частицы ядерного топлива. Матрица выполнена из порошка материала на основе карбида кремния. Частицами ядерного топлива являются частицы бескислородного ядерного топлива. Способ получения высокотемпературного плотного композитного материала ядерного топлива включает в себя приготовление смеси из частиц ядерного топлива и порошка керамической, инертной к облучению матрицы, формование смеси прессованием и спекание отформованной смеси. Спекают отформованную смесь методом горячего прессования. Группа изобретений позволяет получить высокотемпературный плотный композитный материал ядерного топлива, убыль массы которого после отжига в вакууме при 0,63Т в течение 10 часов не превышала 2%. 2 н. и 9 з.п. ф-лы, 3 ил.

Группа изобретений относится к материалу ядерного топлива, характеризующемуся, в частности, высокими сопротивлением коррозионному растрескиванию и структурно-фазовой стабильностью под действием высокотемпературного облучения и повышенной способностью удержания летучих продуктов деления, а также к способу получения указанного высокотемпературного плотного композитного материала ядерного топлива.

Обеспечение термопрочности ядерного топлива в условиях облучения является одной из ключевых задач при проектировании и эксплуатации ядерных установок. Распухание ядерного топлива под действием облучения, выделение продуктов деления, кислорода и других твердых и газообразных продуктов химического взаимодействия приводят к появлению локальных напряжений и изменению структурно-фазового состояния твэла в штатных и аварийных режимах работы, что приводит к ухудшению механических свойств и, как следствие, к растрескиванию ядерного топлива и разрыву оболочки твэла.

Известен способ получения композитного материала ядерного топлива (патент GB 1116663, МПК C01G 43/025, С04В 35/51, G21C 3/62, опубл. 12.06.1968), содержащий керамическую, инертную к облучению матрицу, в которой распределены частицы ядерного топлива, включающий в себя приготовление смеси из частиц вещества-предшественника ядерного топлива и порошка материала, предназначенного для изготовления керамической, инертной к облучению матрицы, формование смеси прессованием и спекание отформованной смеси в восстановительной атмосфере. Однако полученным таким способом композитный материал не решает задачу распухания ядерного топлива под действием облучения и выделения летучих продуктов деления, приводящих к локальным напряжениям внутри материала.

Известен способ изготовления топливной композиции для ядерного реактора (патент RU 2295165 С1, МПК(2006.01) G21C 3/02, G21C 3/30, G21C 21/02, опубл. 10.03.2007), заключающийся в том, что в оболочку заданного размера и формы засыпают мелкодисперсное топливо, дополнительно заполняют оболочку веществом, образующим твердую матрицу при температуре, равной или выше температуры плавления топлива, нагревают оболочку с мелкодисперсным топливом и веществом, образующим твердую матрицу, до температуры, равной или выше температуры плавления топлива, и охлаждают. В изобретении показана работоспособность и целостность этой топливной композиции при циклическом изменении температуры от 20 до 1200°С (100 циклов). Однако использование металлического ядерного топлива и предкерамических полимеров в процессе изготовления топливной композиции ограничивает ее работоспособность при более высоких температурах.

Наиболее близким по технической сущности к заявляемому высокотемпературному плотному композитному материалу ядерного топлива и способу его получения является композитный материал ядерного топлива и способ его получения (патент RU 2175791 С2, МПК (2000.01) G21C 3/64, С04В 35/51, опубл. 10.11.2001), заключающийся в приготовлении смеси из частиц вещества-предшественника ядерного топлива и порошка материала, формовании смеси прессованием и спекании отформованной смеси в восстановительной атмосфере. Материал содержит керамическую, инертную к облучению матрицу, в которой распределены частицы ядерного топлива. Величина зазора между матрицей и частицами составляет 1-10 мкм. Коэффициент теплового расширения матрицы меньше коэффициента теплового расширения частиц ядерного топлива. Матрица может быть выполнена из шпинели, окиси магния или окиси иттрия. Частицами ядерного топлива являются частицы UO2 или смеси окисла на основе UO2. Однако высокотемпературное облучение полученного таким способом композитного материала будет сопровождаться активной кислородной коррозией внутри материала и накоплению внутренних напряжений, связанных с изменением структурно-фазового состояния материала матрицы в процессе работы.

Ни один из указанных в аналогах материалов одновременно не решает проблем, связанных с распуханием ядерного топлива и с сохранением структурно-фазового состояния твэла в условиях высокотемпературного облучения.

Настоящее изобретение ставит своей целью получить новый топливный материал, позволяющий разрешить названные выше проблемы и создать способ приготовления такого ядерного топлива. Достигается это путем использования жаростойкого бескислородного топлива, практически по всем теплофизическим параметрам превосходящего традиционное диоксидное, в сочетании с плотной карбидокремниевой матрицей, чей материал имеет высокую жаропрочность, высокую температуру диссоциации, высокую термостойкость в различных средах, не распухает и мало подвержен влиянию под облучением, низкое сечение захвата тепловых нейтронов, что подтверждается полувековым опытом использования его в качестве силового слоя в конструкции микротвэлов высокотемпературных газоохлаждаемых реакторов. Низкая химическая активность и высокотемпературная стойкость плотного карбидокремниевого материала обеспечивают газонепроницаемость и стабильный теплообмен твэла с теплоносителем даже в условиях высокотемпературного режима работы до 0,63Тплавл.

Техническим результатом, на который направлено изобретение, является получение высокотемпературного плотного композитного материала ядерного топлива, убыль массы которого после отжига в вакууме при 0,63Тплавл в течение 10 часов не превышала 2%.

Для достижения указанного результата предложен высокотемпературный плотный композитный материал ядерного топлива, содержащий керамическую, инертную к облучению матрицу, в которой распределены частицы ядерного топлива, при том, что матрица выполнена из порошка материала на основе карбида кремния, а частицами ядерного топлива являются частицы бескислородного ядерного топлива.

Используют порошок материала на основе карбида кремния субмикронной дисперсности.

В качестве порошка материала на основе карбида кремния используют порошок карборундового материала на основе Si-C-Al.

Распределенными частицами бескислородного ядерного топлива являются частицы нитридного или карбидного, или уран-циркониевого карбонитридного топлива.

Соотношение и геометрические размеры распределенных в керамической матрице частиц ядерного топлива определяются нейтронно-физическими характеристиками активных зон ядерных установок.

На высокотемпературный плотный композитный материал ядерного топлива дополнительно нанесен слой плотного карбидокремниевого покрытия, удерживающий продукты деления.

Толщина нанесенного слоя плотного карбидокремниевого покрытия составляет 50-100 мкм.

Форма и геометрические размеры плотного композитного материала ядерного топлива определяются нейтронно-физическими характеристиками активных зон ядерных установок.

Предложен способ получения высокотемпературного плотного композитного материала ядерного топлива, включающий в себя приготовление смеси из частиц ядерного топлива и порошка керамической, инертной к облучению матрицы, формование смеси прессованием и спекание отформованной смеси, при том, что спекают отформованную смесь методом горячего прессования, матрица выполнена из порошка материала на основе карбида кремния, а частицами ядерного топлива являются частицы бескислородного ядерного топлива.

Отформованную смесь спекают методом горячего прессования при температуре (0,70-0,85)Тплавл и давлении не менее 100 МПа.

На высокотемпературный плотный композитный материал ядерного топлива наносят слой плотного карбидокремниевого покрытия, удерживающий продукты деления.

Использование в композитном материале бескислородного ядерного топлива в сочетании с плотной карбидокремниевой матрицей позволит избежать возникновения кислородной коррозии внутри материала, снизить скорость распухания ядерного топлива и, следовательно, позволит сохранить теплофизические свойства и значительно снизить внутренние напряжения, связанные с изменением структурно-фазового состояния материала матрицы в процессе работы.

Осуществление изобретения.

Пример 1:

Изготавливали высокотемпературный плотный композитный материал ядерного топлива путем смешивания частиц уран-циркониевого карбонитридного топлива в количестве 2 г и порошка карбидокремниевого материала в количестве 25 г, предназначенного для изготовления керамической, инертной к облучению матрицы, формовали смесь прессованием и спекали отформованную смесь в вакууме методом горячего прессования при температуре 0,80ТПЛавл и давлении 400 МПа.

На фиг.1 представлена структура материала после термических испытаний изготовленного высокотемпературного плотного композитного материала ядерного топлива, показавших, что убыль массы материала после отжига в вакууме при 0,63Тплавл в течение 10 часов составила 0,3%.

Пример 2:

Изготавливали высокотемпературный плотный композитный материал ядерного топлива путем смешивания частиц нитридного ядерного топлива в количестве 3 г и порошка карбидокремниевого материала в количестве 50 г, предназначенного для изготовления керамической, инертной к облучению матрицы, формовали смесь прессованием и спекали отформованную смесь в вакууме методом горячего прессования при температуре 0,75Тплавл и давлении 300 МПа.

На фиг.2 представлена структура материала после термических испытаний изготовленного высокотемпературного плотного композитного материала ядерного топлива, показавших, что убыль массы материала после отжига в вакууме при 0,63Тплавл в течение 10 часов составила 1,7%.

Пример 3:

Изготавливали высокотемпературный плотный композитный материал ядерного топлива путем смешивания карбидного ядерного топлива в количестве 1,5 г и порошка карбидокремниевого материала в количестве 20 г, предназначенного для изготовления керамической, инертной к облучению матрицы, формовали смесь прессованием и спекали отформованную смесь в вакууме методом горячего прессования при температуре 0,85Тплавл и давлении 500 МПа.

На фиг.3 представлена структура материала после термических испытаний изготовленного высокотемпературного плотного композитного материала ядерного топлива, показавших, что убыль массы материала после отжига в вакууме при 0,63Тплавл в течение 10 часов составила 1,1%.

Таким образом, предложен высокотемпературный плотный композитный материал ядерного топлива, содержащий керамическую, инертную к облучению матрицу, в которой распределены частицы ядерного топлива, при том, что матрица выполнена из порошка материала на основе карбида кремния, а частицами ядерного топлива являются частицы бескислородного ядерного топлива, также предложен способ получения такого материала.

Термические испытания изготовленного высокотемпературного плотного композитного материала ядерного топлива показали, что убыль массы материала после отжига в вакууме при 0,63Тплавл в течение 10 часов не превышает 2%. Высокотемпературная стойкость и структурно-фазовая стабильность этого материала продемонстрирована при температурах испытания, в полтора раза превышающих температуры аналогичных экспериментов в прототипе и аналогах, при которых отмечалось взаимодействие керамической матрицы с частицами ядерного топлива.

Источник поступления информации: Роспатент

Showing 41-48 of 48 items.
17.06.2023
№223.018.7dbf

Ампульное облучательное устройство для реакторных исследований

Изобретение относится к ампульному облучательному устройству, которое может использоваться для реакторных исследований свойств тепловыделяющих элементов, а именно - микросферического капсулированного ядерного топлива (микротвэлов) для высокотемпературных газоохлаждаемых реакторов. Устройство...
Тип: Изобретение
Номер охранного документа: 0002781552
Дата охранного документа: 13.10.2022
17.06.2023
№223.018.7e71

Устройство для сжигания аммиака

Изобретение относится к области химического машиностроения, а именно к устройству для сжигания аммиака, которое может быть использовано в теплотехнических устройствах для получения тепла и в устройствах разложения аммиака на азотоводородную смесь. Устройство для сжигания аммиака содержит...
Тип: Изобретение
Номер охранного документа: 0002779686
Дата охранного документа: 12.09.2022
17.06.2023
№223.018.7ea3

Устройство для измерения прогиба протяжённого, вертикально направленного канала

Изобретение относится к измерительной технике, а именно к оборудованию для измерения прогиба протяженных, вертикально направленных каналов, в том числе технологических каналов ядерного реактора типа РБМК. Техническим результатом является упрощение изготовления устройства при одновременном...
Тип: Изобретение
Номер охранного документа: 0002775863
Дата охранного документа: 11.07.2022
17.06.2023
№223.018.7eaa

Многофункциональный робототехнический комплекс предупредительного мониторинга, обнаружения возгораний и управления пожаротушением производственных объектов

Изобретение относится к устройствам пожарной защиты и пожаротушения, а именно к роботизированным установкам пожаротушения, и может быть использовано для предотвращения и предупреждения пожароопасных ситуаций любых производственных помещений, а также на внутренних площадях сооружений АЭС, в том...
Тип: Изобретение
Номер охранного документа: 0002775482
Дата охранного документа: 01.07.2022
17.06.2023
№223.018.7eae

Блок детектирования для регистрации гамма-квантового излучения

Изобретение относится к контрольно-измерительной технике в атомной энергетике. Блок детектирования для регистрации гамма-квантового излучения состоит из цилиндрического корпуса, сцинтилляционного кристалла, фотоэлектронного умножителя, делителя напряжения и высоковольтного кабеля. В...
Тип: Изобретение
Номер охранного документа: 0002775811
Дата охранного документа: 11.07.2022
17.06.2023
№223.018.7ed2

Способ измерения прогиба протяженного вертикально направленного канала

Изобретение относится к способу измерения прогиба протяженных вертикально направленных каналов. Способ включает размещение внутри канала закрепленного на конце гибкой полой несущей штанги, по крайней мере, одного волоконно-оптического датчика, подачу светового сигнала по подключенным к датчику...
Тип: Изобретение
Номер охранного документа: 0002774260
Дата охранного документа: 16.06.2022
17.06.2023
№223.018.7fb9

Способ измерения прогиба технологического канала ядерного реактора

Предлагаемое изобретение относится к способу измерения прогиба технологического канала ядерного реактора. Способ включает размещение внутри центральной трубки тепловыделяющей сборки закрепленного на конце гибкой полой несущей штанги, по крайней мере, одного волоконно-оптического датчика, подачу...
Тип: Изобретение
Номер охранного документа: 0002768260
Дата охранного документа: 23.03.2022
17.06.2023
№223.018.8188

Способ удаления локальных отложений на теплообменных трубках парогенераторов атомной электростанции

Изобретение относится к области теплотехники и может быть использовано для очистки отложений поверхности труб парогенератора. В способе удаления локальных отложений на теплообменных трубках парогенераторов атомной электростанции, заключающемся в том, что соединенный с подъемником манипулятор...
Тип: Изобретение
Номер охранного документа: 0002756824
Дата охранного документа: 06.10.2021
Showing 11-14 of 14 items.
26.08.2017
№217.015.e1db

Способ получения тетрафторида урана

Изобретение относится к атомной промышленности и химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ заключается в том, что смешивают диоксид урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002625871
Дата охранного документа: 19.07.2017
10.05.2018
№218.016.40ee

Способ подготовки поверхности изделий из циркония или сплавов на его основе перед гальваническим никелированием

Изобретение относится к гальваностегии, в частности к нанесению защитных никелевых покрытий на изделия из циркония и сплавов на его основе, и может найти применение в области атомной энергии при производстве уран-циркониевых твэлов при подготовке поверхности перед гальваническим никелированием....
Тип: Изобретение
Номер охранного документа: 0002649112
Дата охранного документа: 29.03.2018
01.09.2018
№218.016.8216

Способ получения наночастиц оксида алюминия

Изобретение относится к неорганической химии и нанотехнологиям и может быть использовано для формирования нанорельефа в микроканале, в качестве гидрофильного покрытия, подложки для катализаторов. Для получения ультрадисперсного порошка оксида алюминия растворяют соль алюминия в дистиллированной...
Тип: Изобретение
Номер охранного документа: 0002665524
Дата охранного документа: 30.08.2018
24.07.2020
№220.018.3735

Способ формирования пористого покрытия из наночастиц

Способ относится к области нанотехнологии и может быть использован при изготовлении изделий, содержащих теплообменные поверхности с микро- и нанорельефом с целью интенсификации теплообмена, уменьшения гидравлического сопротивления и улучшения капиллярных свойств поверхности. Способ формирования...
Тип: Изобретение
Номер охранного документа: 0002727406
Дата охранного документа: 21.07.2020
+ добавить свой РИД