×
17.06.2023
223.018.7e1a

Результат интеллектуальной деятельности: СПОСОБ МОДЕЛИРОВАНИЯ ПРОЦЕССА ТЕПЛО- И МАССООБМЕНА ПРИ ИСПАРЕНИИ ЖИДКОСТИ ИЗ ПРОЗРАЧНОЙ ЕМКОСТИ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретения относятся к технологическим процессам, связанным с осушкой различных изделий. Предлагается способ моделирования процесса тепло- и массообмена при испарении модельной жидкости (МЖ) из экспериментального образца (ЭО), основанный на энергетическом воздействии с заданными параметрами на ЭО с МЖ, проведении измерений температуры в различных точках ЭО, в качестве энергетического воздействия на МЖ, размещённую в ЭО, используют лазерное излучение (ЛИ) в заданном диапазоне длин волн, первоначально определяют температуры МЖ в плоскости индикатора, перпендикулярной оси ЛИ в направлении от центра луча ЛИ до стенки ЭО, одним датчиком измерения температуры, определяют распределение величин температуры в зависимости от удаленности от центра ЛИ, определяют количество датчиков измерения температуры в радиальном направлении из условия разности температур МЖ, которая должна превышать величину двойного отклонения используемого датчика измерения температуры, и в процессе ЛИ измеряют параметры воздействия ЛИ, используя прозрачную ёмкость, в том числе диаметр луча ЛИ путём определения диаметров прожигаемых отверстий от воздействия проекции луча на поверхность тонкой плёнки, изготовленной из материала с минимальной теплоёмкостью, на различных расстояниях от головки лазерного излучателя как при наличии МЖ, так и без МЖ, результаты механического воздействия ЛИ на свободную поверхность МЖ, в том числе разрушение зеркала свободной поверхности МЖ, количество пузырьков внутри МЖ, скорость и направление их движения в МЖ, определяют путём проведения скоростной съёмки, мощность ЛИ, мощность энергетического воздействия ЛИ, начальное расстояние от поверхности излучателя ЛИ до начальной поверхности МЖ определяют из условия минимальной массы выброса МЖ в процессе эксперимента, осуществляют воздействие ЛИ на МЖ в импульсном режиме, с различными по величине длительности импульсами и интервалом времени между ними, и непрерывном режиме, при этом количество суммарной энергии воздействия ЛИ и начальная масса МЖ одинаковы, длительность импульса и время между импульсами определяют из условия минимального нагрева МЖ в объёме ЭО. Также заявлено устройство для реализации способа. Технический результат - снижение энергетических затрат, упрощение экспериментальных исследований испарения модельной жидкости с использованием лазерного излучения. 2 н.п. ф-лы, 4 ил.

Изобретения относятся к технологическим процессам, связанным с осушкой различных изделий, в частности, к отработке технологий использования лазерного излучения (ЛИ) для испарения модельных жидкостей (МЖ) из экспериментальных образцов (ЭО).

Известны методы осушки, основанные на длительном конвективном тепловом воздействии, вакуумировании, соответственно, известны и методы их моделирования, например, кн. 1 (Прусова О.Л. Методы испарения жидкости на основе акустико-вакуумного и теплового воздействий (обзор)/ Омский научный вестник. Серия Авиационно-ракетное и энергетическое машиностроение. 2020. Т. 4. № 1. С. 60-73, кн. 2 (ОСТ 92-0019-78. Методы и режимы сушки изделий перед испытаниями на герметичность. Введ. 1979 - 10 - 01).

Наиболее близким по технической сущности к предлагаемому техническому решению является «Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющейся части ступени ракеты-носителя и устройство для его реализации» по патенту РФ № 2474816 G01N 29/02, B64G 7/00, основанный на введении в экспериментальную установку теплоносителя (ТН) с заданными параметрами, обеспечении заданных условий взаимодействия в зоне контакта ТН с поверхностью жидкого газифицируемого компонента ракетного топлива, проведении измерений температуры и давления в различных точках экспериментальной установки, жидкий газифицируемый компонент ракетного топлива подвергают ультразвуковому воздействию, при этом параметры ТН и генерируемых ультразвуковых колебаний выбирают из условия минимизации критериев процесса газификации: времени процесса газификации, энергомассовых затрат и количества поданной в бак теплоты.

К недостаткам этого технического решения при приложении к отработке технологии использования ЛИ для испарения жидкости являются:

- использование конвективного способа подачи энергии (подача теплоносителя в виде горячего газа) как на испаряемую жидкость, так и на конструкцию, содержащую жидкость, соответственно, осуществляется «паразитный» нагрев конструкции ЭО;

- наличие ультразвуковых колебаний;

- отсутствие измерения текущей массы жидкости.

Техническим результатом предлагаемого решения является снижение энергетических затрат, упрощение экспериментальных исследований испарения модельной жидкости с использованием лазерного излучения.

Указанный технический результат достигается за счет того, что в известном способе моделирования, основанном на энергетическом воздействии с заданными параметрами на ЭО с МЖ, при обеспечении заданных условий взаимодействия в зоне контакта с поверхностью МЖ, проведении измерений температуры в различных точках ЭО, выбора из условия минимизации параметров подаваемого энергетического воздействия, предлагается ввести следующие действия:

1) в качестве энергетического воздействия на МЖ, размещённую в ЭО, используют ЛИ с заданной длинной волны,

2) воздействуют на индикатор, погружённый в МЖ на заданных глубинах, измеряющий параметры воздействия ЛИ (диаметр прожигаемого отверстия и температуры) в точках, расположенных на оси луча ЛИ и на заданных расстояниях от оси ЛИ в плоскости индикатора, перпендикулярной оси ЛИ,

3) результаты механического воздействия ЛИ на свободную поверхность МЖ, в том числе разрушение зеркала свободной поверхности МЖ и выброс массы МЖ из ЭО определяют путём непрерывного взвешивания,

4) мощность энергетического воздействия ЛИ, начальное расстояние головки излучателя ЛИ до начальной поверхности МЖ определяют из условия минимальной массы выброса МЖ в процессе эксперимента,

5) осуществляют воздействие ЛИ на МЖ в импульсном режиме, с различными по величине длительности импульсов и интервалов времени между ними, и непрерывном режиме, при этом количество суммарной энергии воздействия ЛИ и начальная масса МЖ одинаковы,

6) длительность импульса и время между импульсами определяют из условия минимального нагрева МЖ в объёме ЭО.

Для пояснения действий способа приведены следующие иллюстрации.

На фиг. 1 приведена схема экспериментального образца в виде прозрачной емкости с МЖ, штативом на которой закреплены индикатор и датчики измерения температур: 1 - ЭО; 2 - МЖ; 3 - штатив; 4 - кабель, для соединения датчиков измерения температуры с измерителем температуры; 5 - индикатор; 6 - датчики измерения температуры; 7 - луч ЛИ.

На фиг. 2 приведена схема экспериментального стенда: 1 - ЭО; 2 - МЖ; 3 - штатив; 4 - кабель, для соединения датчиков измерения температуры 6 с измерителем температуры 8; 5 - индикатор; 6 - датчики измерения температуры; 7 - луч ЛИ; 8 - измеритель температуры; 9 - энергетическая установка с лазерным излучателем; 10 - головка лазерного излучателя; 11 - лабораторные весы; 12 - скоростная видеокамера.

На фиг. 3 приведен вид сверху схемы расположения датчиков измерения температуры МЖ: 1 - ЭО; 2 - МЖ; 3 - штатив; 4 - кабель, для соединения датчиков измерения температуры с измерителем температуры; 5 - индикатор; 6 - датчики измерения температуры; 7 - луч ЛИ.

На фиг. 4 изображен график изменения температуры МЖ в плоскости индикатора от луча ЛИ до стенки ЭО: T - температура МЖ в плоскости индикатора; δ - двойное отклонение показаний используемого датчика измерения температуры; R - радиальное расстояние от центра луча ЛИ; T0, T1, T2, T3, T4, T5 - датчики температуры.

Описание реализация способа

1) В качестве энергетического воздействия на МЖ, размещённой в ЭО, используют ЛИ с заданной длинной волны, в процессе ЛИ измеряют параметры воздействия ЛИ, используя прозрачную ёмкость, в том числе диаметр луча ЛИ путём определения диаметров прожигаемых отверстий от воздействия проекции луча на поверхность индикатора в виде тонкой, изготовленной из материала с минимальной теплоёмкостью, на различных расстояниях от головки лазерного излучателя, как при наличии МЖ, так и без МЖ, результаты механического воздействия ЛИ на свободную поверхность МЖ, в том числе разрушение зеркала свободной поверхности МЖ, количество пузырьков внутри МЖ, скорость и направление их движения в МЖ, определяют путём проведения съёмки скоростной видеокамерой, температуру МЖ в точках, расположенных на оси луча ЛИ и на заданных расстояниях от оси ЛИ в плоскости, перпендикулярной оси ЛИ.

В соответствии с кн. 3 (Взаимодействие лазерного излучения с веществом: учебное пособие. - M.: МИИГАиК, 2014. - 108 с.) ЛИ связано с локальным нагревом, т.е. с передачей энергии от электромагнитной волны в нагреваемое вещество. В этой связи выдвигается гипотеза, что испарение МЖ с применением воздействия ЛИ (далее и исследования с использованием сверхвысокочастотным излучением) будет более эффективно, чем другие методы, например, конвективное, акустико-конвективное, акустико-вакуумное осуществляющие воздействия на всю систему МЖ + ЭО (см. кн.1, кн. 2).

2) Мощность ЛИ, начальное расстояние от головки излучателя ЛИ до начальной поверхности МЖ определяют из условия минимальных затрат энергии ЛИ при испарении заданной массы МЖ и отсутствия расплескивания МЖ в процессе эксперимента.

3) Осуществляют воздействие ЛИ на МЖ в импульсном режиме, с различными по величине длительностью импульсов и интервалом времени между ними, и непрерывном режиме, при этом количество суммарной энергии воздействия ЛИ, начальные массы МЖ одинаковы.

4) Расположение и количество датчиков измерения температуры МЖ определяется из условия разности температур МЖ, которая должна превышать величину двойного отклонения показаний используемого датчика измерения температуры, например, на фиг. 4 изображен график изменения температуры МЖ в плоскости индикатора от луча ЛИ до стенки ЭО. Указанное условие выполняется для датчиков T0, T1, T2, T5, при этом использовать датчики T3, T4 не целесообразно, поскольку двойное отклонение показаний этих датчиков превышает значение разности температур МЖ.

Устройство для реализации способа

Предлагаемый способ реализован устройством по изобретению «Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющейся части ступени ракеты-носителя и устройство для его реализации» по патенту РФ № 2474816 G01N 29/02, B64G 7/00:

Устройство для моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отделяющейся части ступени ракеты-носителя, включающее в свой состав экспериментальную установку в виде модельного бака, содержащего поддон для жидкого компонента ракетного топлива, датчики температуры, давления, входной и выходной патрубки, содержит два дополнительных входных патрубка, причем в один из входных патрубков экспериментальной установки установлен газоструйный излучатель, съемный поддон механически связан с пьезоэлектрическим излучателем.

К недостаткам этого технического решения при проведении экспериментальных исследований процесса испарения МЖ относятся:

- «паразитный» нагрев конструкции ЭО за счёт используемых видов воздействия;

- отсутствие измерения текущей массы жидкости.

Техническим результатом предлагаемого решения является снижение энергетических затрат, упрощение экспериментальных исследований испарения МЖ с использованием ЛИ.

Указанный технический результат в части устройства достигается за счет того, что в известное устройство, содержащее экспериментальную установку, ЭО, содержащего МЖ, датчик температуры, введены энергетическая установка с лазерным излучателем, весы, индикатор в виде тонкой пленки и штатив для закрепления индикатора и датчиков измерения температуры и их перемещения в МЖ в вертикальной плоскости для изменения расстояния от головки лазерного излучателя, а ЭО выполнен с прозрачными стенками и датчики измерения температуры МЖ расположены в плоскости индикатора и закреплены на определенном расстоянии от центра луча ЛИ.

Последовательность работы с устройством соответствует последовательности действий способа.

Предлагаемый способ и устройство позволяют отработать методы исследования испарения МЖ, направления увеличения эффективности испарения МЖ с использованием ЛИ.

Источник поступления информации: Роспатент

Showing 1-3 of 3 items.
21.05.2023
№223.018.69a5

Способ диагностики точности металлорежущего станка под нагрузкой

Изобретение относится к станкостроению и может быть использовано для оценки качества изготовления, сборки металлорежущих станков с числовым программным управлением, определения участков рабочего пространства с наименьшей жесткостью, а также текущего состояния несущей системы металлорежущих...
Тип: Изобретение
Номер охранного документа: 0002794584
Дата охранного документа: 21.04.2023
21.05.2023
№223.018.69a6

Способ диагностики точности металлорежущего станка под нагрузкой

Изобретение относится к станкостроению и может быть использовано для оценки качества изготовления, сборки металлорежущих станков с числовым программным управлением, определения участков рабочего пространства с наименьшей жесткостью, а также текущего состояния несущей системы металлорежущих...
Тип: Изобретение
Номер охранного документа: 0002794584
Дата охранного документа: 21.04.2023
27.05.2023
№223.018.71e3

Устройство для осуществления малоинвазивного хирургического вмешательства

Изобретение относится к медицинской технике, а именно к устройству для проведения малоинвазивного хирургического вмешательства при проведении операций с использованием лапароскопического инструмента. Устройство для малоинвазивного хирургического вмешательства с целью удаления пораженных тканей,...
Тип: Изобретение
Номер охранного документа: 0002796105
Дата охранного документа: 17.05.2023
Showing 71-74 of 74 items.
23.05.2023
№223.018.6f46

Способ спуска ускорителя ступени ракеты-носителя при аварийном выключении жрд и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ спуска ускорителя ступени (УС) ракеты-носителя (РН) при аварийном выключении жидкостного ракетного двигателя (АВД) в заданный район падения основан на стабилизации УС. Управление движением выполняется за счёт сброса продуктов...
Тип: Изобретение
Номер охранного документа: 0002746473
Дата охранного документа: 14.04.2021
27.05.2023
№223.018.70f0

Способ разработки полимерного композиционного материала с учётом его последующей утилизации и устройство для его реализации

Настоящее изобретение относится к области разработки полимерных композиционных материалов (ПКМ) с заданными характеристиками и возможностью последующей утилизации сжиганием. Способ разработки ПКМ с учётом его последующей утилизации основан на смешении высокопрочных углеродных волокон с...
Тип: Изобретение
Номер охранного документа: 0002776312
Дата охранного документа: 18.07.2022
27.05.2023
№223.018.721c

Способ моделирования процесса очистки поверхности и устройство для его реализации

Группа изобретений относится к области моделирования процессов очистки различных поверхностей изделий от загрязнений, возникающих в процессе производства и эксплуатации, с целью выбора оптимальных режимов и воздействующих факторов. Способ моделирования процесса очистки поверхности включает...
Тип: Изобретение
Номер охранного документа: 0002743936
Дата охранного документа: 01.03.2021
16.06.2023
№223.018.7d01

Устройство акустического ударно-волнового воздействия

Изобретение относится к медицинской технике. Предложено устройство акустического ударно-волнового воздействия, содержащее ультразвуковой генератор, состоящий из силового выпрямителя, фильтра и высокочастотного инвертора с выходным трансформатором, и пьезокерамический излучатель с волноводом...
Тип: Изобретение
Номер охранного документа: 0002741729
Дата охранного документа: 28.01.2021
+ добавить свой РИД