×
16.06.2023
223.018.7d2f

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ БОЛЬШИХ ОБЪЕМОВ НИЗКОТЕМПЕРАТУРНОЙ ЗАМАГНИЧЕННОЙ ПЛАЗМЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области физики плазмы, газового разряда, сильноточной электроники и т.д. и может быть использовано для генерации магнитоактивной низкотемпературной плазмы в больших объемах, в том числе в целях проведения научно-исследовательской деятельности. Технический результат - повышение стабильности параметров формируемой плазмы за счет совершенствования способа стабилизации тока газового разряда и тока полеобразующего соленоида. Способ включает следующие этапы: внутри объема вакуумной камеры вдоль ее оси размещают плоский сплошной термокатод и плоский сетчатый анод, обеспечивают разреженный газовый промежуток между термокатодом и анодом, посредством внешнего соленоида формируют в вакуумной камере осевое квазипостоянное сильное магнитное поле, к вышеуказанным электродам подводят достаточное для зажигания газового разряда напряжение в виде пакета прямоугольных импульсов, во время «нулевых» фаз которых обеспечивают непрерывность тока в газоразрядном промежутке, а пульсации тока в газоразрядном промежутке, возникающие при подаче на электроды импульсов напряжения, сглаживают. Во внешнем соленоиде формируют стабилизированный квазипостоянный ток, а напряжение на электроды подают в виде пакета прямоугольных импульсов с изменяющимися относительно друг друга длительностями «нулевых» и положительных фаз. 2 ил.

Изобретение относится к области физики плазмы, газового разряда, сильноточной электроники и т.д., и может быть использовано для генерации магнитоактивной низкотемпературной плазмы в больших объемах, в том числе в целях проведения научно-исследовательской деятельности.

Из предшествующего уровня техники известны способы генерации плотной объемной импульсной плазмы [1, 2, 3], включающие установку полого самокалящего сетчатого катода и сетчатого анода внутри рабочей камеры вдоль ее оси, напуск газа в разрядный промежуток, подвод напряжения к электродам, достаточного для зажигания газового разряда. Посредством таких способов получают токи разряда до 100 А и, соответственно, объемную низкотемпературную газоразрядную плазму с высокой концентрацией.

Основными недостатками этих способов являются необходимость поддержания высокого давления рабочего газа в полом катоде (~10 Па), что приводит к высокой скорости рекомбинации образованной плазмы и, как следствие, к резкому спаду ее концентрации вдоль оси разрядного промежутка, а также ограничение тока пучка электронов величиной ~100 А, обусловленное переходом тлеющего разряда в дугу с катодным пятном.

Также известен способ формирования больших объемов низкотемпературной замагниченной плазмы, используемый на лабораторных стендах LAPD [4] и LVPD [5]. Этот способ заключается в размещении термокатода и сетчатого анода внутри вакуумной камеры вдоль ее оси на расстоянии друг от друга ~0,5 м, создании внутри вакуумной камеры разреженного газового пространства с давлением ~10-5 Торр, формировании в вакуумной камере с помощью внешнего соленоида и источника постоянного тока квазипостоянного сильного магнитного поля, и подводке к электродам одиночного импульса напряжения. В результате этого в газоразрядном промежутке формируется объемный газовый разряд с током ~100 А и образуется низкотемпературная замагниченная плазма, которая сквозь сетчатый анод проникает в рабочий объем вакуумной камеры ~10 м3.

В процессе горения газового разряда амплитуда импульса напряжения, приложенного между термокатодом и сетчатым анодом, заметно «проседает», поэтому на различных участках импульса разрядного тока его значения заметно различаются. Это приводит к нестабильному горению разряда и, как следствие, к непостоянству параметров образованной плазмы.

Наиболее близким к заявляемому способу является способ формирования больших объемов низкотемпературной замагниченной плазмы, отображенный в [6]. Этот способ включает в себя установку плоского сплошного термокатода и плоского сетчатого анода с большой прозрачностью внутри вакуумной камеры вдоль ее оси и создание внутри вакуумной камеры разреженного пространства с давлением ~10-5 Торр, заполненного гелием (Не). Затем посредством внешнего соленоида внутри вакуумной камеры формируют квазипостоянное сильное магнитное поле. После этого к предварительно нагретому до рабочей температуры термокатоду и сетчатому аноду прикладывают пакеты импульсов напряжения с амплитудой ~100 В с фиксированной периодичностью и в межэлектродном пространстве загорается объемный газовый разряд с током ~100 А длительностью ~10 мс. При этом в периоды «нулевых» фаз импульсов напряжения ток в газоразрядном промежутке сохраняется за счет того, что токовый контур, проходящий через межэлектродное пространство, замыкается через шунтирующий диод, подключенный параллельно сглаживающему пульсации разрядного тока дросселю и разрядному промежутку, а также за счет того, что разрядный промежуток запитывается энергией дросселя, который накапливает ее во время положительных фаз импульсов напряжения.

В процессе горения этого разряда образуется низкотемпературная замагниченная плазма, которая через сетчатый анод инжектируется в рабочее пространство вакуумной камеры. Однако при формировании внешнего квазипостоянного сильного магнитного поля, сопровождающегося длительным прохождением тока большой величины, происходит разогрев полеобразующего соленоида и заметное увеличение его сопротивления, что влечет за собой неконтролируемое снижение тока через соленоид и формируемого им магнитного поля и, как следствие, неконтролируемое изменение степени замагниченности плазмы в рабочем объеме вакуумной камеры.

Также во время горения разряда эмиссионная способность термокатода, влияющая на величину разрядного тока, варьируется произвольным образом в довольно широких пределах. В связи с этим в разных импульсах одного пакета для достижения верхней и нижней границ заданного диапазона стабилизации тока требуются разные длительности положительной и «нулевой» фазы импульсов напряжения. Подача на электроды фиксированных периодических импульсов не позволяет подстраиваться под изменения эмиссионной способности термокатода, что негативно сказывается на стабильности параметров плазмы, формируемой посредством вышеуказанного способа.

Задачей, па решение которой направлено заявляемое изобретение, является создание способа формирования больших объемов низкотемпературной замагниченной плазмы с более стабильными параметрами.

Техническим результатом предложенного изобретения является повышение стабильности параметров формируемой плазмы за счет совершенствования способа стабилизации тока газового разряда и тока полеобразующего соленоида.

Технический результат достигается тем, что по сравнению с известным способом формирования больших объемов низкотемпературной замагниченной плазмы, включающим следующие этапы: внутри объема вакуумной камеры вдоль ее оси размещают плоский сплошной термокатод и плоский сетчатый анод, обеспечивают разреженный газовый промежуток между термокатодом и анодом, посредством внешнего соленоида формируют в вакуумной камере осевое квазипостоянное сильное магнитное поле, к вышеуказанным электродам подводят достаточное для зажигания газового разряда напряжение в виде пакета прямоугольных импульсов, во время «нулевых» фаз которых обеспечивают непрерывность тока в газоразрядном промежутке, а пульсации тока в газоразрядном промежутке, возникающие при подаче на электроды импульсов напряжения, сглаживают, новым является то, что во внешнем соленоиде формируют стабилизированный квазипостоянный ток, а напряжение на электроды подают в виде пакета прямоугольных импульсов с изменяющимися относительно друг друга длительностями «нулевых» и положительных фаз.

Во внешнем соленоиде формируют стабилизированный квазипостоянный ток для того, чтобы получить в рабочем объеме вакуумной камеры квазипостоянное магнитное поле, позволяющее равномерно замагнитить все заряженные частицы, образованные в результате газового разряда, что положительно сказывается на стабильности параметров формируемой плазмы.

Подачей на электроды пакета прямоугольных импульсов напряжения с изменяющимися длительностями «нулевых» и положительных фаз обеспечивается возможность осуществления режима импульсной стабилизации тока, позволяющего подстраиваться под изменения эмиссионной способности термокатода, и, как следствие, возможность формирования в газоразрядном промежутке потока заряженных частиц с постоянными во времени характеристиками, что положительно влияет на стабильность параметров формируемой плазмы.

На Фиг. 1 представлена схема устройства, позволяющая реализовать заявляемый способ, где 1 - источник постоянного напряжения, 2 - ключ, 3 - дроссель, 4 - газоразрядный промежуток с термокатодом (к) и сетчатым анодом (а), 5 - внешний соленоид, 6 - диод.

На Фиг. 2 приведены типовые осциллограммы выходного напряжения источника 1 и соответствующего стабилизированного тока, протекающего через термокатод 4к.

Заявляемый способ формирования больших объемов низкотемпературной замагниченной плазмы осуществляется в примере устройства, приведенном на фиг. 1, следующим образом. Сначала внутри вакуумной камеры с объемом 6 м3 вдоль ее оси устанавливают сплошной плоский ВаО-термокатод 4к и плоский сетчатый анод 4а, имеющий прозрачность для электронов 95%, на расстоянии ≈0,4 м друг от друга. Затем производят полную откачку атмосферного воздуха из вакуумной камеры, напускают в нее рабочий газ, в частности, гелий (Не) и снова производят откачку до рабочего давления ~10-5 Торр. Тем самым обеспечивают разреженный газовый промежуток 4 между термокатодом 4к и анодом 4а. После разогревают термокатод 4к до рабочей температуры ≈900°С. Далее с помощью внешнего соленоида 5. окольцовывающего вакуумную камеру, посредством пропускания через него квазипостоянного стабилизированного тока величиной ~200 А в рабочем объеме камеры формируют квазипостоянное осевое магнитное поле с индукцией ~100 мТл и стабильными во времени параметрами. Стабилизированный ток получают с помощью внешнего мощного источника постоянного тока с напряжением 800 В, выполненного на основе сборки из 64 стартерных аккумуляторных батарей и работающего в режиме импульсной стабилизации тока в индуктивной нагрузке, т.е. в соленоиде 5. Затем посредством замыкания ключа 2, выполненного на основе сильноточного полупроводникового транзистора, к термокатоду 4к и аноду 4а подключают мощный источник постоянного напряжения 1, выполненный из восьми стартерных аккумуляторных батарей, и тем самым подводят к вышеуказанным электродам прямоугольный импульс с напряжением 100 В. За время этого импульса в газоразрядном промежутке 4 загорается разряд и ток разряда постепенно возрастает до величины ≈200 А. При этом формируется низкотемпературная гелиевая плазма с концентрацией ~1012 см-3, которая через сетчатый анод 4а инжектируется в рабочий объем вакуумной камеры.

По достижению током в газоразрядном промежутке 4 заданного верхнего предела (202 А) ключ 2, управляемый контроллером, размыкается, и импульс напряжения, подводимый к термокатоду 4к и аноду 4а, переходит из положительной фазы в «нулевую» фазу. При «нулевой» фазе энергию, необходимую для поддержания процесса горения газового разряда, отдает дроссель 3, накапливавший ее в течение положительной фазы импульса напряжения. В это время разрядный ток лишь плавно спадает, разряд продолжает равномерно гореть, а плазма формироваться, тем самым обеспечивают непрерывность тока в газоразрядном промежутке 4 в период «нулевой» фазы импульса напряжения. При этом контур разрядного тока, проходящий через дроссель 3 и газоразрядный промежуток 4, замыкается через шунтирующий сильноточный полупроводниковый диод 6. Также с помощью дросселя 3 сглаживаются пульсации тока в газоразрядном промежутке 4, возникающие при подаче на электроды пакета импульсов напряжения, и тем самым обеспечивается плавность как нарастания, так и спада разрядного тока.

По достижению током в газоразрядном промежутке 4 заданного нижнего предела (198 А) ключ 2 замыкается, к терм о катоду 4к и аноду 4а вновь подводится напряжение источника 1, и разрядный ток плавно возрастает до верхнего предела (202 А), после достижения которого ключ 2 снова размыкается. Дальнейший процесс генерации разрядного тока камеры повторяется и таким образом получается, что напряжение на электроды подают в виде пакета прямоугольных импульсов. В результате этого формируется стабилизированный разрядный ток и, соответственно, замагниченная низкотемпературная плазма со стабильными параметрами. При этом длительности положительной и «нулевой» фазы импульсов напряжения в пакете отличаются друг от друга на несколько процентов, поскольку эмиссионная способность термокатода от импульса к импульсу неконтролируемо изменяется как в большую, так и меньшую сторону в пределах 1-10%.

В примере конкретного исполнения на предприятии при проведении научно-исследовательской деятельности посредством заявляемого способа многократно формировался столб низкотемпературной магнитоактивной гелиевой плазмы. Типичные для этих экспериментов осциллограммы выходного напряжения источника 1 и соответствующего стабилизированного тока, протекающего через термокатод 4к, приведены на Фиг. 2. На осциллограмме тока видно, что ширина диапазона стабилизации составляла ≈2% от величины тока, сформированного в газоразрядном промежутке 4. При этом происходило несколько десятков переключений ключа 2.

Источники информации:

[1] Форрестер А.Т. Интенсивные ионные пучки.

[2] Москалев Б.И. Разряд с полым катодом. М.: Энергия, 1969, с. 164-169.

[3] А.с. №2632927, опубл. 10.11.2017, Гаврилов Н.В., Каменецких А.С., Меньшаков А.И., Способ генерации плотной объемной импульсной плазмы.

[4] Gekelman W., Pfister Н., Lucky Z., Bamber J., Leneman D., Maggs J. Rev. Sci. Instrum. 3991,62 (12), p.2875.

[5] S.K. Mattoo, V.P. Anitha, L.M. Awasthi, G. Ravi J. Rev. Sci. Instrum. 2001, 72 (10), p.3864.

[6] Патент RU №2711180, приор. 16.04.2019, Буянов А.Б., Воеводин С.В., Корчиков B.C., Лимонов А.В., Нечайкин Р.В., Перминов А.В., Тренькин А.А., Цицилин П.А., Устройство формирования низкотемпературной магнитоактивной плазмы в больших объемах, опубл. 15.01.2020.

Способ формирования больших объемов низкотемпературной замагниченной плазмы, заключающийся в том, что внутри объема вакуумной камеры вдоль ее оси размещают плоский сплошной термокатод и плоский сетчатый анод, обеспечивают разреженный газовый промежуток между термокатодом и анодом, посредством внешнего соленоида формируют в вакуумной камере осевое квазипостоянное сильное магнитное поле, к вышеуказанным электродам подводят достаточное для зажигания газового разряда напряжение в виде пакета прямоугольных импульсов, во время «нулевых» фаз которых обеспечивают непрерывность тока в газоразрядном промежутке, а пульсации тока в газоразрядном промежутке, возникающие при подаче на электроды импульсов напряжения, сглаживают, отличающийся тем, что во внешнем соленоиде формируют стабилизированный квазипостоянный ток, а напряжение на электроды подают в виде пакета прямоугольных импульсов с изменяющимися относительно друг друга длительностями «нулевых» и положительных фаз.
Источник поступления информации: Роспатент

Showing 571-580 of 686 items.
01.05.2020
№220.018.1a8d

Способ комбинированного бесконтактного регистрирования движения тела в сплошной среде

Изобретение относится к области экспериментального исследования высокоскоростного процесса движения тела в сплошной среде, в частности к области определения контактных сил и ускорений, возникающих при взаимодействии ударника с мишенью. Способ комбинированного бесконтактного регистрирования...
Тип: Изобретение
Номер охранного документа: 0002720258
Дата охранного документа: 28.04.2020
04.05.2020
№220.018.1ac0

Вакуумный рентгеновский диод для регистрации мягкого рентгеновского излучения

Изобретение относится к области измерительной техники и может быть использовано для регистрации мягкого рентгеновского излучения (МРИ) в лабораторных и полигонных экспериментах. Технический результат - повышение надежности работы вакуумного рентгеновского диода и технологичности обслуживания...
Тип: Изобретение
Номер охранного документа: 0002720214
Дата охранного документа: 28.04.2020
04.05.2020
№220.018.1ac1

Способ загрузки программного обеспечения

Изобретение относится к вычислительной технике и может быть использовано в микропроцессорных вычислительно-управляющих системах и комплексах для санкционированной загрузки программного обеспечения. Техническим результатом является повышение защищенности от несанкционированных действий. Способ...
Тип: Изобретение
Номер охранного документа: 0002720220
Дата охранного документа: 28.04.2020
29.05.2020
№220.018.21a7

Генератор высоковольтных импульсов

Изобретение относится к высоковольтной импульсной технике и предназначено для генерирования импульсов высокого напряжения с коротким фронтом. Техническим результатом является повышение стабильности работы генератора высоковольтных импульсов и уменьшение массогабаритных характеристик генератора...
Тип: Изобретение
Номер охранного документа: 0002722114
Дата охранного документа: 26.05.2020
29.05.2020
№220.018.21c9

Система регулирования многокомпонентной кислородсодержащей газовой среды в герметичном контейнере и способ задействования системы

Изобретение относится к технологии регулирования состава многокомпонентной газовой среды (ГС) и систем безопасного хранения химически активных или агрессивных материалов и может быть использовано для мониторинга взрыво- и пожароопасных систем. Система регулирования многокомпонентной...
Тип: Изобретение
Номер охранного документа: 0002722135
Дата охранного документа: 26.05.2020
30.05.2020
№220.018.223c

Генератор высокочастотных импульсов на основе разряда с полым катодом

Изобретение относится к области высокочастотной техники. Генератор высокочастотных импульсов на основе разряда с полым катодом содержит газоразрядную камеру, в которой предусмотрено два газоразрядных промежутка, каждый промежуток образован полым катодом и анодом, причем соответствующие...
Тип: Изобретение
Номер охранного документа: 0002722228
Дата охранного документа: 28.05.2020
30.05.2020
№220.018.229e

Взрывной формирователь импульса тока (варианты)

Изобретение относится к области экспериментальной физики, в частности к взрывомагнитным импульсным источникам энергии, формирующим импульсы тока мегаамперного уровня с возможностью регулирования выходного напряжения, и может быть использовано, например, для исследования свойств...
Тип: Изобретение
Номер охранного документа: 0002722221
Дата охранного документа: 28.05.2020
31.05.2020
№220.018.22de

Устройство для управления шаговым двигателем

Изобретение относится к области электротехники и может быть использовано в системах управления шаговыми двигателями, в частности в системах управления биполярными шаговыми двигателями. Технический результат заключается в расширении функциональных возможностей. Устройство для управления шаговым...
Тип: Изобретение
Номер охранного документа: 0002722417
Дата охранного документа: 29.05.2020
03.06.2020
№220.018.235f

Способ изготовления фокальной рамки в фотокамерах с зеркальной разверткой изображений

Изобретение относится к измерительной технике и может использоваться при изготовлении скоростных фотокамер с зеркальной разверткой оптического изображения для обеспечения равномерной скорости развертки с погрешностью не более ±0,033%, что ценно при исследовании этими фотокамерами...
Тип: Изобретение
Номер охранного документа: 0002722575
Дата охранного документа: 01.06.2020
03.06.2020
№220.018.23b7

Способ изготовления кварцевых чувствительных элементов датчиков

Изобретение относится к пьезоэлектронике и может быть использовано при изготовлении микроэлектронных устройств. Технический результат заключается в повышении выхода годных кварцевых чувствительных элементов (ЧЭ) датчиков и качества поверхности ЧЭ путем применения лазерного фрезерования...
Тип: Изобретение
Номер охранного документа: 0002722539
Дата охранного документа: 01.06.2020
Showing 1-5 of 5 items.
13.02.2018
№218.016.2587

Разрядная камера для проведения плазмохимических реакций

Разрядная камера для проведения плазмохимических реакций относится к плазмохимии, к синтезу озона и окислов азота из атмосферного воздуха, смеси кислорода с азотом с помощью барьерного разряда и может найти применение в научных исследованиях и медицине. Разрядная камера включает два...
Тип: Изобретение
Номер охранного документа: 0002642798
Дата охранного документа: 26.01.2018
20.03.2019
№219.016.e315

Генератор высоковольтных импульсов

Изобретение относится к высоковольтной импульсной технике. Технический результат заключается в упрощении управления временем коммутации разрядника за счет упрощения конструкции. Технический результат достигается за счет генератора импульсного напряжения, содержащего коаксиальную одинарную...
Тип: Изобретение
Номер охранного документа: 0002682305
Дата охранного документа: 18.03.2019
18.05.2019
№219.017.58a4

Импульсный генератор

Генератор относится к высоковольтной импульсной технике, к преобразовательной технике и может быть использован в частности для запитки геофизических диполей, соленоидов с высоким энергозапасом, для испытания силовых трансформаторов путем их нагружения килоамперными токами большой длительности и...
Тип: Изобретение
Номер охранного документа: 0002322755
Дата охранного документа: 20.04.2008
02.10.2019
№219.017.cfb5

Устройство для измерения параметров слабого магнитного поля в низкотемпературной магнитоактивной плазме

Изобретение относится к области физики плазмы, газового разряда, радиоэлектроники и т.д. и может быть использовано для измерения параметров слабых магнитных полей и МГД волн в низкотемпературной магнитоактивной плазме. Техническим результатом является уменьшение погрешности измерения...
Тип: Изобретение
Номер охранного документа: 0002700287
Дата охранного документа: 16.09.2019
17.01.2020
№220.017.f679

Устройство формирования низкотемпературной магнитоактивной плазмы в больших объемах

Изобретение относится к области физики плазмы, газового разряда, сильноточной электроники и т.д. и может быть использовано для генерации магнитоактивной низкотемпературной плазмы в больших объемах в целях проведения научно-исследовательской деятельности. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002711180
Дата охранного документа: 15.01.2020
+ добавить свой РИД