×
16.06.2023
223.018.7c2a

Результат интеллектуальной деятельности: ЛЮМИНЕСЦИРУЮЩЕЕ СТЕКЛО

Вид РИД

Изобретение

№ охранного документа
0002744539
Дата охранного документа
11.03.2021
Аннотация: Люминесцирующее стекло относится к материалам квантовой электроники, оптики и может быть использовано в устройствах для отображения информации, электронно-лучевых приборах, индикаторной технике, светодиодах белого свечения, сцинтилляторах, катодо- и рентгенолюминофорах, визуализаторов альфа и бета излучения. Люминесцирующее стекло включает BiO, BO, SiO, AlO, BaO; SrO; ZnO и EuO и AgO при следующем соотношении компонентов, мас. %: BiO 30-35; BO 20-23; SiO 15-18; EuO 7-17; AlO 3-6; BaO 4-6; SrO 4-6; ZnO 4-7 и AgO 0,001-0,1. Люминесцирующее стекло характеризуется стабильной и высокой интенсивностью люминесценции ионов Eu на длине волны электронного перехода D→F. 1 табл. 3 пр.

Изобретение относится к материалам квантовой электроники, оптики и может быть использовано в устройствах для отображения информации, в электронно-лучевых приборах, индикаторной технике, светодиодах белого свечения, сцинтилляторах, катодо- и рентгенолюминофорах, визуализаторов альфа- и бета-излучения.

Известно люминесцирующее стекло (см. патент RU 2574223, МПК С03С 4/12, опубликован 10.02.2016), содержащее в мол. %: SiO2 35,0-42,0; PbO 15,0-20,0; PbF2 27,5-32,0; CdF2 8,0-15,0; Eu2O3 0,5-1,5 и YbF3 1,0-2,5.

Известное люминесцирующее стекло характеризуется интенсивной ап-конверсионной люминесценцией, обусловленной переходом 5D07F2 иона Eu3+, и обладает свойством преобразовывать инфракрасное лазерное излучение в видимое насыщенное оранжево-красное в области длины волны λ-612 нм.

Недостатком известного люминесцирующего стекла является низкая стабильность люминесценции Ей вследствие содержания фторидов. Кроме того, стекла содержат токсичные соединения свинца PbO и PbF2 и кадмия CdF2.

Известно люминесцирующее стекло (см. патент RU 2703039, МПК С03С 4/12, опубликован 15.10.2019), содержащее (мас. %): Bi2O3 36-х; B2O3 20; CaF2 10; SiO2 8; Eu2O3 х; ZnO - остальное (3≤х≤7).

Недостатком стекла является невысокая интенсивность люминесценции Eu3+, так как содержит малое количество сооактиваторов, что снижает растворимость Eu3. Кроме того стекло включает в себя соединение CaF2, что уменьшает радиационную стойкость материала.

Известно люминесцирующее стекло (см. заявка US 2005181927, МПК С03С 8/24, опубликована 18.08.2005), совпадающее с настоящим решением по наибольшему числу существенных признаков и принятое за прототип. Стекло - прототип содержит (мас. %): Bi2O3 55-90; ZnO 4-22; B2O3 3-15; SiO2 0,5-14; Al2O3 0-4; ВаО 0-12; SrO 0-12 и Eu2O3 0,1-10.

Недостатком известного материала является невысокая интенсивность люминесценции ионов Eu3+ на длине волны 612 нм, соответствующая электронному переходу 5D07F2. Большое содержание висмута в стекле (более 55 мас. %) приводит к сильному поглощению материала в видимом диапазоне спектра и уменьшает интенсивность люминесценции Eu. Кроме того, стекла могут дополнительно содержать оксиды щелочных металлов (Li2O, Na2O и K2O), что приводит к тушению люминесценции активатора при возбуждении высокоэнергетическим излучением (альфа или бета излучение).

Задачей настоящего технического решения является создание люминесцирующего стекла, характеризующегося стабильной и высокой интенсивностью люминесценции ионов Eu3+ на длине волны 615 нм электронного перехода 5D07F2.

Поставленная задача достигается тем, что люминесцирующее стекло включает Bi2O3, B2O3, SiO2, Al2O3, BaO, SrO, ZnO; Eu2O3 и дополнительно содержит Ag2O при следующем соотношении компонентов в мас. %: Bi2O3 30-35; B2O3 20-23; SiO2 15-18; Eu2O3 7-17; Al2O3 3-6; BaO 4-6; SrO 4-6; ZnO 4-7 и Ag2O 0,001-0,1.

Соотношение настоящих составов обусловлено областью фазовой однородности люминесцентного материала, образующегося в системе SiO2 - B2O3 - Bi2O3 - Al2O3 - BaO - SrO - ZnO - Eu2O3 - Ag2O. Уменьшение содержания SiO2 ниже 14 мас. % и B2O3 ниже 20 мас. % приводит к уменьшению однородности люминесцентного материала и ухудшает его оптическое качество. Уменьшение Bi2O3, и ZnO ниже соответственно 30 и 4 нецелесообразно из-за увеличения температуры синтеза и уменьшения плотности стекла. Увеличение концентрации Bi2O3 выше 35 уменьшает прозрачность стекла в видимом спектральном диапазоне. Концентрация ZnO выше заявленных нецелесообразна, так как приведет к снижению остальных компонентов шихты. Уменьшение содержания Al2O3 ниже заявляемого приводит к уменьшению химической стойкости. Увеличение содержания Al2O3 выше заявляемого приводит к увеличению температуры спекания шихты. Указанное содержание SrO и ВаО обусловлено улучшением оптических свойств и растворимости Eu в стекле.

Увеличение концентрации Ag2O, выше заявляемого, приводит к сегрегации серебра и уменьшению молекулярных кластеров серебра, что приводит к уменьшению интенсивности люминесценции активатора. Уменьшение концентрации Ag2O ниже заявляемого нецелесообразно, т.к. это также приводит к уменьшению молекулярных кластеров серебра. Содержание Eu2O3 определяется оптимальным содержанием ионов Eu3+ в стекле, при котором не происходит концентрационного тушения и данные стекла обладают максимальным выходом люминесценции.

Введение Ag2O в стекло в указанных концентрациях, не только позволяет увеличить плотность материала, но и увеличить интенсивность люминесценции на длине волны электронного перехода 5D07F2 иона европия, за счет передачи возбуждения (сенсибилизации) молекулярными кластерами серебра ионам европия.

Настоящее люминесцирующее стекло поясняется чертежом, где в таблице приведены результаты измерения интенсивности люминесценции люминесцирующего стекла на длине волны электронного перехода 5D07F2.

Пример 1. Шихту состава в мас. %: Bi2O3 34; B2O3 23; SiO2 17; Al2O3 6; ВаО 6; SrO 6; ZnO 5; Eu2O3 7; Ag2O 0,01 (где - Eu2O3 и Ag2O добавляли сверх шихты), тщательно перемешивали и перетирали в фарфоровой ступке. В дальнейшем производили высушивание со ступенчатым нагревом (150°С, 250°С, 500°C с выдержкой 20 мин) и промежуточным перемешиванием в ступке. Скорость нагрева составляла от 6 до 7 град/мин. Варку шихты производили в корундовом тигле в окислительных условиях в муфельной электрической печи с нагревом до 1200°C с выдержкой в течение 40 минут. Полученный расплав оставляли остывать в печи до комнатной температуры. Стекла с видимыми внутренними напряжениями подвергали отжигу при 350°С для снятия напряжений. Затем стекла освобождали от тигля, отбирали оптически однородные фрагменты. Из них изготавливали плоскопараллельные образцы размером ~(5×5) мм2 и толщиной (2,5-4) мм, поверхности которых шлифовали и полировали. При исследовании люминесценции стекла в качестве источника возбуждения применяли электронный пучок катодолюминесцентной установки. Спектры были получены при диаметре электронного пучка 4 микрона, ускоряющем напряжении электронов 20 кэВ и поглощенном токе 3 нА. Плотность мощности облучения составляла ~300 Ватт/см2. Измерение интенсивности люминесценции проводили на длине волны 615 нм электронного перехода 5D07F2 иона европия. Полученное люминесцирующее стекло имело интенсивность на длине электронного перехода 5D07F2 иона европия в 1,3 раза выше, чем стекло-прототип, что показано на чертеже в таблице.

Пример 2. Шихту состава в масс %: Bi2O3 34; B2O3 23; SiO2 17; Al2O3 6; ВаО 6; SrO 6; ZnO 5; Eu2O3 10; - Ag2O 0,01 (где - Eu2O3 и Ag2O добавляли сверх шихты), готовили по технологии, описанной в примере 1. Полученное люминесцирующее стекло имеет интенсивность люминесценции на длине волны электронного перехода 5D07F2 иона европия в 1,4 раз выше, чем прототип. Спектры были получены при диаметре электронного пучка 4 микрона, ускоряющем напряжении электронов 20 кэВ и поглощенном токе 3 нА. Плотность мощности облучения составляла ~300 Ватт/см2. Результаты измерений интенсивности люминесценции Eu3+ приведены на чертеже в таблице.

Пример 3. Шихту состава в мас. %: Bi2O3 34; B2O3 23; SiO2 17; Al2O3 6; ВаО 6; SrO 6; ZnO 5; Eu2O3 10; Ag2O 0,01 (где - Eu2O3 и Ag2O добавляли сверх шихты), готовили по технологии, описанной в примере 1. Полученное люминесцирующее стекло имеет интенсивность люминесценции на длине волны электронного перехода 5D07F2 иона европия в 1,2 раз выше, чем прототип. Спектры были получены при диаметре электронного пучка 4 микрона, ускоряющем напряжении электронов 20 кэВ и поглощенном токе 3 нА. Плотность мощности облучения составляла ~300 Ватт/см2. Результаты измерений интенсивности люминесценции Eu3+ приведены на чертеже в таблице.

Как следует из полученных, данных техническим результатом изобретения является повышение интенсивности люминесценции ионов европия на длине волны электронного перехода 5D07F2. В интервале 7-17 мас. % Eu3+ интенсивность свечения люминесцирующего стекла состава в мас. %: Bi2O3 30-35; B2O3 20-23; SiO2 15-18; Eu2O3 7-17; Al2O3 3-5; ВаО 4-6; SrO 4-6; ZnO 4-7 и Ag2O 0,01 превышает интенсивность прототипа.

Источник поступления информации: Роспатент

Showing 1-10 of 114 items.
20.04.2013
№216.012.3815

Автономная система электроснабжения на основе солнечной фотоэлектрической установки

Изобретение относится к области солнечной энергетики, в частности к непрерывно следящим за Солнцем солнечным установкам как с концентраторами солнечного излучения, так и с плоскими кремниевыми модулями, предназначенным для питания потребителей, например, в районах ненадежного и...
Тип: Изобретение
Номер охранного документа: 0002479910
Дата охранного документа: 20.04.2013
27.05.2013
№216.012.454b

Способ оптического детектирования магнитного резонанса и устройство для его осуществления

Изобретение относится к технике спектроскопии магнитного резонанса, а именно оптического детектирования магнитного резонанса (ОДМР), включающего оптическое детектирование электронного парамагнитного резонанса (ЭПР), и может найти применение при исследованиях конденсированных материалов и...
Тип: Изобретение
Номер охранного документа: 0002483316
Дата охранного документа: 27.05.2013
27.05.2013
№216.012.4592

Способ предэпитаксиальной обработки поверхности германиевой подложки

Изобретение относится к области полупроводниковой опто- и микроэлектроники. Способ предэпитаксиальной обработки поверхности подложки из германия включает удаление с поверхности подложки оксидного слоя, очистку поверхности германия от неорганических загрязнений и пассивацию поверхности подложки....
Тип: Изобретение
Номер охранного документа: 0002483387
Дата охранного документа: 27.05.2013
20.06.2013
№216.012.4e4d

Способ изготовления фотовольтаического преобразователя

Способ изготовления фотовольтаического преобразователя включает нанесение на периферийную область подложки из n-GaSb диэлектрической маски, формирование на открытых участках фронтальной поверхности подложки высоколегированного слоя р-типа проводимости диффузией цинка из газовой фазы, удаление...
Тип: Изобретение
Номер охранного документа: 0002485627
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4e4e

Способ изготовления чипов наногетероструктуры и травитель

Изобретение относится к созданию высокоэффективных солнечных элементов на основе полупроводниковых многослойных наногетероструктур для прямого преобразования энергии солнечного излучения в электрическую энергию с использованием солнечных батарей. Способ изготовления чипов наногетероструктуры,...
Тип: Изобретение
Номер охранного документа: 0002485628
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.554f

Способ активации мембранно-электродного блока

Активацию мембранно-электродного блока осуществляют подачей увлажненного водорода к первому электроду и увлажненного кислорода ко второму электроду, по меньшей мере одним циклическим изменением напряжения на мембранно-электродном блоке в диапазоне от величины холостого хода до 0 В при комнатной...
Тип: Изобретение
Номер охранного документа: 0002487442
Дата охранного документа: 10.07.2013
27.07.2013
№216.012.5aff

Полупроводниковый приемник инфракрасного излучения

Полупроводниковый приемник инфракрасного излучения включает полупроводниковую подложку (1) AIIIBV с активной областью (2) в форме диска с отверстием в центре на основе гетероструктуры, выполненной из твердых растворов AIIIBV, первый омический контакт (4) и второй омический контакт (7). Первый...
Тип: Изобретение
Номер охранного документа: 0002488916
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.691c

Способ изготовления чипов многослойных фотоэлементов

Способ изготовления чипов многослойных фотоэлементов включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное создание на поверхности фоточувствительной многослойной структуры пассивирующего слоя и контактного слоя. Способ также...
Тип: Изобретение
Номер охранного документа: 0002492555
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6d4f

Способ изготовления чипов каскадных фотоэлементов

Способ изготовления чипов каскадных фотоэлементов относится к солнечной энергетике. Способ включает выращивание фоточувствительной многослойной полупроводниковой структуры на германиевой подложке, последовательное выращивание на поверхности фоточувствительной многослойной структуры...
Тип: Изобретение
Номер охранного документа: 0002493634
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.7739

Фотоэлектрический концентраторный субмодуль

Изобретение относится к области солнечной энергетики. Фотоэлектрический концентраторный субмодуль содержит фронтальный стеклянный лист (1), на тыльной стороне которого расположен первичный оптический концентратор в виде линзы (2) квадратной формы с длиной стороны квадрата, равной W, и фокусным...
Тип: Изобретение
Номер охранного документа: 0002496181
Дата охранного документа: 20.10.2013
+ добавить свой РИД