×
06.06.2023
223.018.791e

Результат интеллектуальной деятельности: ОСЦИЛЛЯТОР ДЛЯ ГЕНЕРАТОРА ТЕРАГЕРЦОВОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к прикладной физике и может быть использовано в измерительной технике для генерации и приема излучения в диапазоне частот 0.1-5 ТГц. Осциллятор для генератора терагерцового излучения включает гетероструктуру на основе слоев антиферромагнитного диэлектрика и платины, образованную на подложке, источник для пропускания постоянного тока по слою платины. Антиферромагнитный диэлектрик выбран из числа веществ, обладающих магнитоупругими свойствами, гетероструктура содержит средство для наведения и регулирования полей магнитной анизотропии в антиферромагнитном диэлектрике, выполненное в виде пьезоэлектрического элемента с двумя электродами для подключения к независимому источнику напряжения. Первый электрод размещен на внешней поверхности пьезоэлектрического элемента, а другим электродом является упомянутый слой платины, при этом трудная ось магнитной анизотропии антиферромагнитного диэлектрика лежит в плоскости гетероструктуры. Изобретение направлено на решение проблемы создания осциллятора для генератора терагерцового излучения, параметры которого могут регулироваться посредством двух независимых управляющих величин: электрического тока и упругой деформации посредством пьезоэлемента, управляемого электрическим потенциалом. 2 з.п. ф-лы, 6 ил.

Изобретение относится к прикладной физике и может быть использовано в измерительной технике для генерации и приема излучения в диапазоне частот 0.1-5 ТГц.

Известно, что терагерцовое излучение характеризуется частотным диапазоном длин волн 1-0,1 см и соответствующим диапазоном частот 0,3-3 ТГц. Данное излучение имеет широкое практическое применение в медицине и устройствах безопасности, а также для спектроскопии веществ и в астрономии.

Известны различные источники терагерцового излучения, использующие эффекты в ферромагнитных средах.

Описан твердотельный источник электромагнитного излучения (RU 2344528 С1, ИРЭ РАН, 20.01.2009) для генерации терагерцевого излучения за счет переходов носителей заряда между спиновыми энергетическими подзонами в ферромагнитных проводящих материалах. Он выполнен в виде многослойной структуры, содержащей три слоя из ферромагнитных проводящих материалов. Первый слой, являющийся инжектором спин-поляризованных электронов, второй слой - рабочий, где возникает излучение благодаря излучательным переходам носителей зарядов между спиновыми энергетическими подзонами, третий слой для приема отработавших электронов из второго слоя. Недостаток такого устройства заключается в том, что частота генерируемого сигнала определяется материальными и геометрическими параметрами структуры и внешним магнитным полем, в связи с чем перестройка частоты представляется затруднительной в случае, когда присутствие внешнего магнитного поля нежелательно.

Известен твердотельный источник электромагнитного излучения (RU 2464683 С1, ИРЭ РАН, 20.10.2012), содержащий источник питания, рабочий слой, выполненный в виде пленки из проводящего ферромагнитного материала, расположенной на подложке из диэлектрика или полупроводника, прозрачного для излучения рабочего диапазона длин волн, цилиндрический стержень с заостренным концом из проводящего ферромагнитного материала, соединенный с одним из полюсов источника питания, пластину из проводящего материала со сквозным отверстием, причем контактирующую с рабочим слоем и соединенную с другим полюсом источника питания, диаметр отверстия превышает диаметр стержня, а сам стержень входит в это отверстие так, что его заостренный конец находится в контакте с рабочим слоем. Недостатком устройства, также как и в предыдущем изобретении RU 2344528 С1, является сложность в перестройке частоты генерируемого сигнала.

Из заявки WO 2018017018 (A1), NAT UNIV SINGAPORE, 25.01.2018 известен источник ТГц излучения на основе двуслойной структуры из слоя ферромагнитного металла и слоя немагнитного металла, например, платины или вольфрама, нанометровых толщин. С помощью лазера на ферромагнитный слой перпендикулярно ему посылается импульс излучения, вызывающий возбуждение спин-поляризованных электронов. Данное возбуждение приводит к возникновению спинового тока на пикосекундных масштабах времени, который преобразуется в электрический ток в силу обратного спин-орбитального взаимодействия, обусловленного обратным спиновым эффектом Холла и/или обратными спин-орбитальными моментами. Возникший переменный электрический ток вызывает электромагнитную волну терагерцовой частоты.

Недостатком изобретения является необходимость использования лазера пикосекундной длительности для индукции спиновой динамики, что ограничивает возможности миниатюризации устройства.

Источник ТГц излучения (CN 109256656 A, UNIV SHANDONG, 22.01.2019) описывает наномасштабный осциллятор спинового момента. Он состоит из искусственной антиферромагнитной структуры, немагнитного разделительного слоя и фиксированного магнитного слоя. Фиксированный магнитный слой принимает электрический ток без выделенной спиновой поляризации и преобразует его в спин-поляризованный электрический ток. Искусственная антиферромагнитная структура принимает спин-поляризованный электрический ток, переданный фиксированным магнитным слоем, в результате чего через механизм передачи спинового момента в антиферромагнитной структуре возникает прецессия намагниченности; в результате данной прецессии возникает выходной переменный сигнал. Немагнитный разделительный слой лежит между фиксированным магнитным слоем и искусственной антиферромагнитной структурой для подавления магнитного связывания между ними. Генератор сигналов терагерцовой частоты на основе осциллятора не зависит от приложенного внешнего магнитного поля и может быть управляемым с помощью электрического тока. Недостатком является необходимость пропускания электрического тока через многослойную структуру, что накладывает ограничения на геометрические и материальные параметры структуры.

Наиболее близким к патентуемому является осциллятор ТГц частоты, описанный в ст. Khymyn, R. et al. Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current. Sci. Rep. 7, 43705; doi: 10.1038/srep43705 (2017). Он включает структуру, состоящую из пленки платины и слоя антиферромагнетика. Пленка платины подключена к регулируемому источнику постоянного тока и параллельно к выходному контуру для съема ТГц излучения. Слой антиферромагнетика выполнен из антиферромагнитного материала с трудной осью анизотропии и слабой анизотропией в легкой плоскости. При пропускании тока порядка 107-109 А/см2 через пленку платины электроны разделяются в пространстве по спину в силу спинового эффекта Холла. Компонента тока с одинаковым направлением спинов на границе со слоем антиферромагнетика вызывает перенос спинового момента в слой антиферромагнетика. В слое антиферромагнетика данный спиновый момент взаимодействует с намагниченностью, вызывая ее движение. В свою очередь данное движение намагниченности вызывает переменный спиновый ток в пленке платины в силу спиновой накачки. Спиновый ток преобразуется в переменный электрический ток в пленке платины в силу обратного спинового эффекта Холла, который и определяет выходной сигнал терагерцовой частоты. Недостатком данного устройства является наличие порогового электрического тока для начала генерации, величина которого определяется параметрами магнитной анизотропии слоя антиферромагнетика и неизменно в представленном устройстве.

Настоящее изобретение направлено на решение проблемы создания осциллятора для генератора терагерцового излучения, параметры которого могут регулироваться посредством двух независимых управляющих величин: электрического тока и упругой деформации посредством пьезоэлемента, управляемого электрическим потенциалом.

Патентуемый осциллятор для генератора терагерцового излучения включает гетероструктуру на основе слоев антиферромагнитного диэлектрика и платины, образованную на подложке, источник для пропускания постоянного тока по слою платины.

Антиферромагнитный диэлектрик выбран из числа веществ, обладающих магнитоупругими свойствами, при этом гетероструктура содержит средство для наведения и регулирования полей магнитной анизотропии в антиферромагнитном диэлектрике, выполненное в виде пьезоэлектрического элемента с двумя электродами для подключения к независимому источнику напряжения, при этом первый электрод размещен на внешней поверхности пьезоэлектрического элемента, а другим электродом является упомянутый слой платины, при этом трудная ось магнитной анизотропии антиферромагнитного диэлектрика лежит в плоскости гетероструктуры. Антиферромагнитный диэлектрик представляет собой NiO или alpha-Fe2O3. В качестве подложки может быть использован пьезоэлектрический элемент, при этом гетероструктура образована на его стороне, обращенной к слою антиферромагнитного диэлектрика.

Технический результат - расширение функциональных возможностей регулирования параметров осциллятора посредством двух независимых управляющих величин: электрического тока и упругой деформации посредством пьезоэлемента, управляемого электрическим потенциалом.

Существо изобретения представлено на чертежах, где:

Фиг. 1 - структура осциллятора.

Фиг. 2 - структура осциллятора на пьезоэлектрической подложке.

Фиг. 3 - зависимость величины поля анизотропии в легкой плоскости и величины порогового тока от электрического поля в слое пьезоэлектрика.

Фиг. 4 - зависимость частоты антиферромагнитного резонанса в докритическом режиме колебаний и частоты автоколебаний в сверхкритическом режиме колебаний от плотности электрического тока в слое платины, вычисленная при двух разных значениях электрического поля в слое пьезоэлектрика.

Фиг. 5 - зависимость частоты антиферромагнитного резонанса в докритическом режиме колебаний от величины электрического поля в слое пьезоэлектрика, вычисленная при двух разных значениях плотности электрического тока в слое платины.

Фиг. 6 - зависимость амплитуды выходного сигнала в сверхкритическом режиме колебаний от плотности электрического тока в слое платины, вычисленная при трех разных значениях электрического поля в слое пьезоэлектрика.

На фиг. 1 представлена структура устройства, которое содержит многослойную гетероструктуру 1, содержащую размещенные на подложке 10 последовательно расположенные слой 20 платины, слой 30 антиферромагнетика, слой 40 пьезоэлектрика и электрод 50. Токоподводы 61, 62 соединяют слой 20 платины и электрод 50 с источником 60 постоянного напряжения. Слой 20 платины так же подключен к источнику постоянного тока 70.

Слой 30 антиферромагнетика должен быть выполнен из антиферромагнитного диэлектрика с магнитоупругими свойствами, предпочтительно с трудной осью и слабой анизотропией в легкой плоскости, например, NiO, но подойдет также и MnO2 или alpha-Fe2O3. В качестве материала для слоя 40 пьезоэлектрика может быть использован пьезоэлектрический диэлектрик без магнитных свойств.

На фиг. 2 представлена структура устройства, в котором слой 40 пьезоэлектрика выполняет функции подложки 10 для слоя 30 антиферромагнетика.

Патентуемое устройство может быть реализовано на основе известных материалов и технологий нано- и микроэлектроники.

Подложка 10 может быть реализована из немагнитного диэлектрика, например: SiO2, MgO, Al2O3, SrTiO3, LaAlO3 или других материалов, используемых в технологии микроэлектроники. Толщина подложки варьируется в диапазоне от 100 нм до 10 мм, в расчетах данная величина не участвует. Латеральные размеры неограниченны, но подложка 10 должна быть больше размеров слоя 20 платины и слоя 30 антиферромагнетика.

Слой 20 платины может быть реализован толщиной от 1 нм до 50 нм. Латеральные размеры ограничены характерной длиной волны терагерцовой частоты порядка 100 мкм.

Слой 30 антиферромагнетика может быть реализован из антиферромагнитного диэлектрика, предпочтительно с трудной осью анизотропии и слабой анизотропией в легкой плоскости, например, NiO, alpha-Fe2O3 и другие. Толщина слоя варьируется от 1 нм до 50 нм. Латеральные размеры ограничены характерной длиной волны терагерцовой частоты порядка 100 мкм.

Слой 40 пьезоэлектрика может быть реализован из пьезоэлектрического диэлектрика без магнитных свойств, например, кристаллического кварца, ниобата или танталата лития, цирконата-титаната свинца и других. Толщина слоя варьируется от 100 нм до 10 мм, но как минимум в 10 раз больше толщины слоя 20 платины и слоя 30 антиферромагнетика для минимизации их воздействия на упругие свойства слоя 40 пьезоэлектрика. Латеральные размеры не ограничены, но должны превышать размеры слоя 10 платины и слоя 20 антиферромагнетика.

Электрод 50 может быть реализован из металла высокой проводимости, например, меди, или платины. Толщина электрода варьируется от 1 нм до 1 мкм, и должна быть много меньше толщины слоя 40 пьезоэлектрика для минимизации воздействия электрода на упругие свойства слоя 40 пьезоэлектрика. Латеральные размеры совпадают с размерами слоя 40 пьезоэлектрика.

Токопроводы 61 и 62 могут быть реализованы из металла высокой проводимости, например, меди, или платины. Предпочтительно, чтобы материалы токопроводов 61, 62, слоя 20 платины и электрода 50 совпадали.

Принцип функционирования осциллятора состоит в следующем. При пропускании постоянного тока от источника 70 тока через слой 20 платины поток электронов разделяется в пространстве по спину в силу спинового эффекта Холла. Компонента спин-поляризованного тока вблизи контакта между слоем 20 платины и слоем 30 антиферромагнетика вызывает перенос спинового момента в слой 30 антиферромагнетика, где данный спиновый момент взаимодействует с магнитной подсистемой антиферромагнетика, вызывая колебания намагниченности.

В зависимости от плотности электрического тока j в слое 20 платины реализуются разные типы колебаний намагниченности. При токах j меньше критических реализуются малые затухающие колебания намагниченности вблизи частоты антиферромагнитного резонанса (АФМР). При токах j больше критических - реализуются автоколебания намагниченности с частотой, пропорциональной величине плотности электрического тока j. Величина критического тока j определяется эффективностью передачи спинового момента через границу между слоем 20 платины и слоем 30 антиферромагнетика, а также величиной магнитной анизотропии в легкой плоскости в слое 30 антиферромагнетика.

Частоты данных колебаний и их зависимость от плотности электрического тока j показаны на фиг. 3. Магнитные колебания в слое 30 антиферромагнетика вызывают спиновый ток в слое 20 платины через механизм спиновой накачки, после чего спиновый ток преобразуется в переменный электрический ток в силу обратного спинового эффекта Холла. Данный электрический ток вызывает электромагнитные колебания терагерцовой частоты.

В то же время, при приложении к гетероструктуре управляющего электрического потенциала от источника 60, деформации, возникающие в слое 40 пьезоэлектрика, передаются в слой 30 антиферромагнетика. В антиферромагнетике данные деформации влияют на магнитную подсистему через магнитоупругое взаимодействие, индуцируя поля магнитной анизотропии. Изменение поля магнитной анизотропии, показанное на фиг. 3, приводит к изменению величины критического тока, частоты затухающих колебаний в докритическом режиме колебаний, как видно на фиг. 5, и изменению амплитуды выходного сигнала, как показано на фиг. 6.

Таким образом, из приведенных данных следует, что параметры осциллятора для генератора ТГц излучения могут регулироваться как посредством пропускания электрического тока через слой 20 платины от источника 70 тока, так и управляющего электрического потенциала, прилагаемого к слою пьезоэлектрика 40 от источника 60 напряжения и, тем самым, расширяются функциональные возможности осциллятора.

Источник поступления информации: Роспатент

Showing 31-40 of 91 items.
25.08.2017
№217.015.992e

Способ измерения переходной тепловой характеристики светоизлучающего диода

Изобретение относится к оптоэлектронной измерительной технике и может быть использовано для измерения тепловых параметров полупроводниковых светоизлучающих диодов на различных этапах их разработки и производства, на входном контроле предприятий-производителей светотехнических изделий с...
Тип: Изобретение
Номер охранного документа: 0002609815
Дата охранного документа: 06.02.2017
25.08.2017
№217.015.9f31

Акустокалориметрический сенсор для сигнализации изменений газового состава замкнутых помещений

Использование: для создания сенсора изменения состава атмосферы в замкнутых объемах. Сущность изобретения заключается в том, что газовый сенсор содержит температуропроводную подложку из кристаллического материала с плоскопараллельными поверхностями, на рабочей поверхности которой размещен...
Тип: Изобретение
Номер охранного документа: 0002606347
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b07a

Способ создания в исследуемых объектах локальных электрических и магнитных полей

Изобретение относится к электромагнетизму и может быть использовано для одновременного исследования магнитного, электронного и кристаллического микросостояния объектов. Способ создания в исследуемых объектах локальных электрических и магнитных полей содержит этапы, на которых осуществляют...
Тип: Изобретение
Номер охранного документа: 0002613332
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b08e

Способ измерения вертикального распределения скорости звука в воде

Изобретение относится к гидроакустической метрологии, в частности к способам измерения вертикального распределения скорости звука в воде. Способ предполагает излучение широкополосного импульса, прием отраженных сигналов на приемопередающую антенну с узкой характеристикой направленности,...
Тип: Изобретение
Номер охранного документа: 0002613485
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b7d2

Генератор свч шумовых колебаний

Изобретение относится к радиотехнике и может быть использовано при разработке аппаратуры миллиметрового диапазона волн различного назначения. Технический результат - повышение средней частоты спектра генерации шумовых колебаний в миллиметровом диапазоне волн. Генератор СВЧ шумовых колебаний...
Тип: Изобретение
Номер охранного документа: 0002614925
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b800

Оптическая система электропитания электронных устройств

Изобретение относится к системам питания электронных устройств с помощью оптического излучения и может найти применение в измерительных устройствах с гальванической развязкой области измерений и области отображения информации, например в высоковольтных или взрывоопасных устройствах. Оптическая...
Тип: Изобретение
Номер охранного документа: 0002615017
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.bf73

Функциональный элемент на магнитостатических спиновых волнах

Изобретение относится к устройствам СВЧ-электроники и может быть использовано при конструировании нано- и микроэлектронных элементов для обработки сигналов. Элемент на магнитостатических спиновых волнах (МСВ) имеет две пары микрополосковых преобразователей, которые образуют два параллельных...
Тип: Изобретение
Номер охранного документа: 0002617143
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c2ad

Твердотельный источник электромагнитного излучения

Заявляемое устройство предназначено для генерации когерентного и некогерентного электромагнитного излучения. Твердотельный источник электромагнитного излучения содержит рабочий слой, выполненный в виде пленки из проводящего ферромагнитного материала. Рабочий слой твердотельного источника...
Тип: Изобретение
Номер охранного документа: 0002617732
Дата охранного документа: 26.04.2017
26.08.2017
№217.015.d9f3

Трехканальный направленный ответвитель свч сигнала на магнитостатических волнах

Использование: для создания частотно-избирательного ответвителя мощности. Сущность изобретения заключается в том, что направленный ответвитель на магнитостатических волнах содержит размещенную на подложке из галлий-гадолиниевого граната микроволноводную структуру из пленки железо-иттриевого...
Тип: Изобретение
Номер охранного документа: 0002623666
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.dc0d

Способ определения добротности механической колебательной системы

Изобретение относится к метрологии, в частности, к способам измерения добротности механической колебательной системы. Способ определения добротности механической колебательной системы, снабженной датчиком положения, заключается в том, что экспериментально определяют частоту собственных...
Тип: Изобретение
Номер охранного документа: 0002624411
Дата охранного документа: 03.07.2017
Showing 31-40 of 54 items.
29.03.2019
№219.016.f57d

Модулятор свч на поверхностных магнитостатических волнах

Изобретение направлено на обеспечение управления уровнем режекции СВЧ-сигнала в полосе частот без необходимости обеспечения протекания управляющего постоянного тока по металлической пленке. Технический результат - возможность управления уровнем режекции СВЧ-сигнала в полосе частот без...
Тип: Изобретение
Номер охранного документа: 0002454788
Дата охранного документа: 27.06.2012
10.04.2019
№219.017.06c7

Способ получения биогумуса посредством переработки куриного помета гибридом красного калифорнийского дождевого червя

Изобретение относиться к сельскохозяйственным биотехнологиям переработки органических отходов сельского хозяйства и может быть использовано при ускоренном производстве микробиологического удобрения - биогумус с использованием гибрида красного калифорнийского дождевого червя. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002422414
Дата охранного документа: 27.06.2011
01.05.2019
№219.017.482a

Управляемый ответвитель свч сигнала на магнитостатических волнах

Изобретение относится к радиотехнике. Ответвитель СВЧ сигнала на магнитостатических волнах содержит подложку из галлий-гадолиниевого граната с размещенными на ней с зазором двумя микроволноводами в форме параллельных удлиненных полосок равной ширины из пленок железо-иттриевого граната (ЖИГ)....
Тип: Изобретение
Номер охранного документа: 0002686584
Дата охранного документа: 29.04.2019
01.06.2019
№219.017.7288

Логическое устройство на основе фазовращателя свч сигнала на магнитостатических волнах

Изобретение относится к радиотехнике СВЧ, в частности к приборам на магнитостатических волнах, и может быть использовано в качестве фазовращателя. Устройство содержит, размещенный на подложке микроволновод из пленки железоиттриевого граната (ЖИГ), имеющий раздвоенную среднюю часть, размещенные...
Тип: Изобретение
Номер охранного документа: 0002690020
Дата охранного документа: 30.05.2019
04.06.2019
№219.017.72f9

Спинтронное устройство генерирования сверхвысокочастотных колебаний

Изобретение относится к устройствам генерирования и формирования СВЧ радиосигналов. Технический результат - увеличение мощности и стабильности выходных колебаний. Для этого в устройство генерирования СВЧ колебаний, содержащее спин-трансферный генератор 1, состоящий из последовательно...
Тип: Изобретение
Номер охранного документа: 0002690217
Дата охранного документа: 31.05.2019
20.06.2019
№219.017.8dbd

Демультиплексор на магнитостатических волнах

Изобретение относится к радиотехнике, в частности к приборам СВЧ на магнитостатических волнах, и может быть использовано в качестве демультиплексора. Демультиплексор содержит подложку, с размещенными на ней первым и вторым протяженными микроволноводами из железоиттриевого граната, входную...
Тип: Изобретение
Номер охранного документа: 0002691981
Дата охранного документа: 19.06.2019
10.07.2019
№219.017.a9ad

Логический элемент инвертор-повторитель на магнитостатических волнах

Изобретение относится к логическим элементам на магнитостатических волнах. Технический результат - создание логического устройства типа инвертор/повторитель на поверхностных магнитостатических волнах с возможностью управления режимами работы. Для этого предложен логический элемент, который...
Тип: Изобретение
Номер охранного документа: 0002694020
Дата охранного документа: 08.07.2019
21.08.2019
№219.017.c1be

Функциональный элемент магноники

Изобретение относится к СВЧ технике и может быть использовано при конструировании приборов на магнитостатических волнах в гигагерцовом диапазоне частот. Функциональный элемент магноники содержит немагнитную подложку, размещенную на ней ферромагнитную пленку из железоиттриевого граната (ЖИГ),...
Тип: Изобретение
Номер охранного документа: 0002697724
Дата охранного документа: 19.08.2019
17.10.2019
№219.017.d660

Функциональный компонент магноники на многослойной ферромагнитной структуре

Использование: для конструирования приборов на магнитостатических волнах. Сущность изобретения заключается в том, что функциональный компонент магноники содержит подложку из немагнитного диэлектрика, ферромагнитные слои железоиттриевого граната (ЖИГ), микрополосковые преобразователи для...
Тип: Изобретение
Номер охранного документа: 0002702915
Дата охранного документа: 14.10.2019
17.10.2019
№219.017.d66d

Устройство на магнитостатических волнах для пространственного разделения свч-сигналов разного уровня мощности

Использование: для пространственного разделения СВЧ-сигналов разного уровня мощности. Сущность изобретения заключается в том, что устройство на магнитостатических волнах включает микроволноводную структуру, содержащую слой железо-иттриевого граната (ЖИГ) на подложке из галлий-гадолиниевого...
Тип: Изобретение
Номер охранного документа: 0002702916
Дата охранного документа: 14.10.2019
+ добавить свой РИД