×
06.06.2023
223.018.78f5

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРОННО-ЛУЧЕВОЙ СВАРКИ ВЫСОКОПРОЧНЫХ ТИТАНОВЫХ СПЛАВОВ ДЛЯ ИЗГОТОВЛЕНИЯ КРУПНОГАБАРИТНЫХ КОНСТРУКЦИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу электронно-лучевой сварки высокопрочных псевдо-β-титановых сплавов и может быть использовано для изготовления крупногабаритных конструкций судостроительной, авиационной и космической техники, а также энергетических установок. Способ включает: наплавку на кромки свариваемого соединения металла с меньшим содержанием β-стабилизирующих элементов, чем в основном металле, и термическую обработку сварных заготовок до процесса сварки. Выполнение предварительной наплавки и термообработка сварных заготовок до процесса сварки способствуют выравниванию структуры, а именно в зоне термического влияния происходит более интенсивный и равномерный распад β-фазы, в результате чего повышаются прочностные и пластические характеристики сварных соединений. Кроме того, способ сварки позволяет использовать его для изготовления сварных соединений крупногабаритных конструкций. 1 ил., 2 табл., 1 пр.

Изобретение относится к способу электронно-лучевой сварки высокопрочных псевдо-β-титановых сплавов, и может быть использовано для изготовления крупногабаритных конструкций судостроительной, авиационной и космической техники, а также энергетических установок.

Одной из трудностей сварки титановых сплавов является высокая активность титана к газам атмосферы при повышенных температурах. Для защиты используют инертные газы аргон и гелий или сварку выполняют в вакууме.

Электронно-лучевая сварка нашла широкое применение для получения соединений титановых сплавов. Такой вид сварки позволяет получать соединения больших толщин за один проход с минимальной зоной термического влияния, а также эффективно защищать свариваемый металл от воздействия атмосферных газов.

В процессе сварки металл зоны термического влияния (ЗТВ) подвергается воздействию высокой, быстро изменяющейся температуры, поэтому фазовый состав и механические свойства металла в этой зоне резко отличаются от свойств и состава основного металла. При высоких скоростях охлаждения в зоне термического влияния псевдо-β-сплавов титана, β-фаза не распадается, такая структура является термически нестабильной, что приводит к снижению механических свойств. Поэтому титановые сплавы данного класса после сварки требуют обязательной термической обработки. Однако для крупногабаритных конструкций не всегда есть возможность проведения термической обработки после сварки.

Сварные соединения двухфазных титановых сплавов, выполненные электронно-лучевой сваркой без введения присадочных материалов, имеют низкие показатели пластичности и ударной вязкости металла шва [С.В. Ахонин, С.Г. Григоренко, В.Ю.Белоус, Т.Г. Таранова, Р.В.Селин Электронно-лучевая сварка ложнолегированного высокопрочного титанового сплава// Автоматическая сварка №5-6, 2016].

Также использование электронно-лучевой сварки для псевдо-β-сплавов титана, например сплав ВТ-19, не позволяет получить сварные соединения с необходимым уровнем механических свойств без дополнительной термообработки [С.В. Ахонин, В.Ю. Белоус, Р.В. Селин, Э.Л. Вржижевский, И.К. Петриченко Электронно-лучевая сварка и термообработка сварных соединений высокопрочного псевдо-β-титанового сплава ВТ-19// Автоматическая сварка №7, 2018].

Известен зарубежный патент JP 6557781 A (1982 г.), в котором для электронно-лучевой сварки титановых сплавов используются вставки из титана с добавлением алюминия.

Использование в процессе электронно-лучевой сварки присадочной проволоки не позволяет получить равнопрочное сварное соединение и высокие показатели ударной вязкости зоны термического влияния без дополнительной термической обработки после сварки. Такой способ сварки не позволяет применять его к крупногабаритным конструкциям.

Известен способ электронно-лучевой сварки с промежуточными вставками для сплава ВТ-23 [А.В. Федосов, Е.В. Карпович Перспективные аспекты использования электронно-лучевой технологии сварки для высокопрочных титановых сплавов//Авиационно-космическая техника и технология, №1, 2015].

Недостатком известного способа является необходимость проведения термической обработки после сварки для получения необходимых прочностных и пластических характеристик металла шва, что не всегда является возможным в процессе изготовления крупногабаритных сварных конструкций в условиях промышленного производства.

Наиболее близким способом сварки по техническому исполнению является способ сварки по патенту SU 904937, заключающийся в том, что в зону стыка свариваемых материалов помещают присадочный материал в виде вставки из титана с содержанием алюминия 0,1-5,0% и циркония 0,1-5,0%.

Необходимость термической обработки для получения необходимого уровня механических свойств после сварки не позволяет использовать данный способ для изготовления сварных соединений крупногабаритных конструкций из титановых псевдо-β-сплавов. Помимо этого наблюдается снижение значений ударной вязкости зоны термического влияния по сравнению с основным металлом.

Технической задачей предложенного изобретения является создание сварных соединений высокопрочных псевдо-β-сплавов титана для изготовления крупногабаритных конструкций с высоким уровнем временного удельного сопротивления (около 1035 МПа) и ударной вязкости зоны термического влияния (около 35 Дж/см2)без последующей термической обработки.

Техническим результатом предложенного изобретения является способ изготовления сварных соединений с высокими прочностными и пластическими характеристиками для крупногабаритных конструкций из псевдо-β-сплавов титана.

Технический результат достигается тем, что способ электронно-лучевой сварки высокопрочных псевдо-β-титановых сплавов включает: наплавку металла с меньшим содержанием β-стабилизирующих элементов, чем в основном металле, на кромки свариваемого соединения, термическую обработку сварных заготовок до процесса сварки (нагрев до температуры отжига 700°С, выдержку при этой температуре 1 час и охлаждение на воздухе).

Высокое содержание β-стабилизирующих элементов в основном металле приводит после электронно-лучевой сварки к образованию в структуре металла шва и зоны термического влияния метастабильных фаз, снижающих механические характеристики сварного соединения.

Уменьшение количества β-стабилизаторов в металле шва осуществляют путем создания в зоне сварочной ванны менее легированного сплава.

По сравнению со способом-прототипом предварительная наплавка на кромки свариваемых заготовок и термическая обработка заготовок до процесса сварки позволяет улучшить пластические характеристики зоны термического влияния (ударная вязкость), не снижая агрегатной прочности сварного соединения в целом.

После сварки титановых сплавов данного класса в структуре зоны термического влияния преобладает метастабильная β-фаза с неравномерно расположенными по телу зерна выделениями низкотемпературной α-фазы. Такая структура понижает пластические характеристики сварного соединения. В предлагаемом способе при выполнении наплавок также образуется зона термического влияния с низкими характеристиками пластичности.

Наиболее распространенным режимом термической обработки сварных конструкций титановых сплавов является отжиг в среднем температурном интервале (α+β)-области. Нагрев до температуры 700°С практически не изменяет количественное соотношение фаз в основном металле. В процессе выдержки металла при температуре отжига происходит перераспределение легирующих элементов, β-фаза становится термодинамически стабильной и при охлаждении не выделяется низкотемпературная α-фаза, что приводит к выравниванию структуры сварного соединения во всех зонах, и к повышению характеристик пластичности.

Помимо этого зона термического влияния после электронно-лучевой сварки располагается на предварительной наплавке из металла менее легированного β-стабилизирующими элементами, что позволяет получить равнопрочное сварное соединение.

Предварительная наплавка и термическая обработка сварных заготовок до процесса сварки делает возможным использовать данный способ для изготовления сварных соединений крупногабаритных конструкций.

Предлагаемый и известный способы проверяли на сварных соединениях толщиной 24 мм из титанового сплава марки ПТ-48 после упрочняющей термической обработки.

На фиг. 1 изображено сечение сварного соединения до и после сварки, а также чертеж сварных заготовок с указанием размера наплавки (обозначения: 1-наплавка, 2-сварной шов).

Пример выполнения по известному способу:

Электронно-лучевой сваркой изготавливали сварные соединения без применения присадочных материалов и последующей термической обработки.

Пример выполнения по предлагаемому способу:

По предлагаемому способу предварительно перед сваркой на кромки заготовок проводилась наплавка сварочной проволоки. Содержание химических элементов проволоки указано в таблице 1.

Далее сварные заготовки подвергались термической обработке, которая включала в себя нагрев до температуры отжига 700°С, выдержку в течении 1 часа и последующее охлаждение на воздухе. Затем осуществлялась электронно-лучевая сварка.

Оценку временного сопротивления при одноосном статическом растяжении полученных сварных соединений проводили на крупногабаритных образцах с рабочим сечением 20×60 мм по ГОСТ 6996. Испытания на ударную вязкость проводились на образцах типа VI по ГОСТ 6996. Результаты испытаний представлены в таблице 2.

Как видно из таблицы 2 использование предлагаемого способа сварки позволяет повысить значения ударной вязкости (KCU) зоны термического влияния сварных соединений до 35 Дж/см2 и временного сопротивления сварных соединений до 1037 МПа.

Помимо этого данный способ позволяет изготавливать сварные соединения для крупногабаритных конструкций.

Предлагаемый способ электронно-лучевой сварки может быть использован для сварных соединений высокопрочных псевдо-β-титановых сплавов применительно к крупногабаритным конструкциям судостроительного авиационного, космического и энергетического назначения.

Способ электронно-лучевой сварки высокопрочных псевдо-β-титановых сплавов, включающий подготовку свариваемого соединения под сварку, сборку и сварку электронным лучом, отличающийся тем, что перед сваркой на кромки свариваемого соединения предварительно наплавляют металл, содержащий β-стабилизирующие элементы в количестве меньшем, чем количество β-стабилизирующих элементов в основном металле, и проводят термическую обработку свариваемого соединения.
Источник поступления информации: Роспатент

Showing 161-170 of 251 items.
25.08.2017
№217.015.ae1e

Устройство для прекращения неуправляемого движения модели летательного аппарата при ее динамических испытаниях на устойчивость и управляемость

Изобретение относится к области экспериментальных исследований летательных аппаратов в аэродинамических трубах и может быть использовано при динамических испытаниях моделей летательных аппаратов в аэродинамических трубах. Устройство состоит из модели, установленной на стойке в потоке АДТ при...
Тип: Изобретение
Номер охранного документа: 0002612848
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.ba2c

Самолет с адаптивным цельноповоротным стабилизатором

Изобретение относится к области аэродинамики маневренных самолетов. Адаптивный стабилизатор самолета установлен на продольной хвостовой балке, которая позволяет одновременно изменять в полете углы отклонения стабилизатора в двух взаимно перпендикулярных направлениях: относительно оси,...
Тип: Изобретение
Номер охранного документа: 0002615605
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.cc3f

Комбинированный ножевой вал устройства для мерной резки углеродного и стеклянного волокна

Комбинированный ножевой вал содержат расположенный на оси вращения с подшипниками цилиндр и пластинчатые ножи. Он выполнен двухслойным с внутренним металлическим слоем с кольцевой проточкой на его внешней поверхности шириной 30-40 мм и глубиной 12-15 мм и наружным кольцевым слоем из полиуретана...
Тип: Изобретение
Номер охранного документа: 0002620525
Дата охранного документа: 26.05.2017
26.08.2017
№217.015.dd35

Устройство для контроля герметичности топливного бака самолета

Изобретение относится к испытательной технике и может быть использовано при контроле герметичности самолетных топливных баков сложной конфигурации. Контроль герметичности осуществляется с использованием рабочей газовой смеси воздуха с контрольным газом (элегазом или гелием). За пределами...
Тип: Изобретение
Номер охранного документа: 0002624618
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e424

Способ изготовления пропитанных смолой деталей из композиционного материала

Изобретение относится к способу изготовления пропитанных смолой деталей из композиционного материала и может применяться в различных областях (авиационной, космической, судостроительной, автомобильной и других). Согласно способу изготовления пропитанных смолой деталей из композиционного...
Тип: Изобретение
Номер охранного документа: 0002626413
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e66b

Способ контроля герметичности топливного бака самолета

Изобретение относится к области контроля герметичности полых изделий и может быть использовано для контроля герметичности самолетных топливных баков преимущественно сложной конфигурации. Сущность: контроль герметичности осуществляют с использованием рабочей газовой смеси воздуха с контрольным...
Тип: Изобретение
Номер охранного документа: 0002626976
Дата охранного документа: 02.08.2017
19.01.2018
№218.016.051c

Способ снижения лобового сопротивления аппаратов на статической воздушной подушке

Изобретение относится к способам снижения лобового сопротивления аппаратов на статической воздушной подушке и касается транспортных средств с малым отношением длины к ширине. Для снижения скорости и изменения направления набегающего воздуха из отверстий в носовой части корпуса аппарата...
Тип: Изобретение
Номер охранного документа: 0002630875
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.05dd

Устройство для мерной резки углеродного волокна

Изобретение относится к области машиностроения, а именно к устройству для мерной резки углеродного волокна, и может быть использовано при производстве углеродного волокна и изделий из полимерных композиционных материалов, упрочненных углеродным волокном. Задачей изобретения является разработка...
Тип: Изобретение
Номер охранного документа: 0002631037
Дата охранного документа: 15.09.2017
20.01.2018
№218.016.1183

Образец для испытаний сотового заполнителя

Изобретение относится к исследованию прочностных свойств материалов и может применяться при аттестации сотовых структур при изготовлении трехслойных конструкций кораблестроения, авиастроения и космической техники. Образец включает два одинаковых блока сотового заполнителя с приклеенными к их...
Тип: Изобретение
Номер охранного документа: 0002634020
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1530

Направляющая насадка воздушного винта

Изобретение относится к движителям транспортных средств, преимущественно амфибийных судов на воздушной подушке и глиссеров. Направляющая насадка воздушного винта содержит предвинтовую и винтовую насадки, которые установлены коаксиально с образованием кольцевого канала. Предвинтовая насадка в...
Тип: Изобретение
Номер охранного документа: 0002634856
Дата охранного документа: 07.11.2017
Showing 71-72 of 72 items.
15.05.2023
№223.018.5960

Способ погружного сжигания топлива и окислителя в плавильных печах барботажного типа

Изобретение относится к области энергетики и может применяться в аппаратах для плавления базальта с реализацией погружного горения. Способ погружного сжигания топлива и окислителя в плавильных печах барботажного типа заключается в раздельной подаче природного газа и окислителя в горелке,...
Тип: Изобретение
Номер охранного документа: 0002762608
Дата охранного документа: 21.12.2021
15.05.2023
№223.018.5961

Способ погружного сжигания топлива и окислителя в плавильных печах барботажного типа

Изобретение относится к области энергетики и может применяться в аппаратах для плавления базальта с реализацией погружного горения. Способ погружного сжигания топлива и окислителя в плавильных печах барботажного типа заключается в раздельной подаче природного газа и окислителя в горелке,...
Тип: Изобретение
Номер охранного документа: 0002762608
Дата охранного документа: 21.12.2021
+ добавить свой РИД