×
06.06.2023
223.018.78f5

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРОННО-ЛУЧЕВОЙ СВАРКИ ВЫСОКОПРОЧНЫХ ТИТАНОВЫХ СПЛАВОВ ДЛЯ ИЗГОТОВЛЕНИЯ КРУПНОГАБАРИТНЫХ КОНСТРУКЦИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу электронно-лучевой сварки высокопрочных псевдо-β-титановых сплавов и может быть использовано для изготовления крупногабаритных конструкций судостроительной, авиационной и космической техники, а также энергетических установок. Способ включает: наплавку на кромки свариваемого соединения металла с меньшим содержанием β-стабилизирующих элементов, чем в основном металле, и термическую обработку сварных заготовок до процесса сварки. Выполнение предварительной наплавки и термообработка сварных заготовок до процесса сварки способствуют выравниванию структуры, а именно в зоне термического влияния происходит более интенсивный и равномерный распад β-фазы, в результате чего повышаются прочностные и пластические характеристики сварных соединений. Кроме того, способ сварки позволяет использовать его для изготовления сварных соединений крупногабаритных конструкций. 1 ил., 2 табл., 1 пр.

Изобретение относится к способу электронно-лучевой сварки высокопрочных псевдо-β-титановых сплавов, и может быть использовано для изготовления крупногабаритных конструкций судостроительной, авиационной и космической техники, а также энергетических установок.

Одной из трудностей сварки титановых сплавов является высокая активность титана к газам атмосферы при повышенных температурах. Для защиты используют инертные газы аргон и гелий или сварку выполняют в вакууме.

Электронно-лучевая сварка нашла широкое применение для получения соединений титановых сплавов. Такой вид сварки позволяет получать соединения больших толщин за один проход с минимальной зоной термического влияния, а также эффективно защищать свариваемый металл от воздействия атмосферных газов.

В процессе сварки металл зоны термического влияния (ЗТВ) подвергается воздействию высокой, быстро изменяющейся температуры, поэтому фазовый состав и механические свойства металла в этой зоне резко отличаются от свойств и состава основного металла. При высоких скоростях охлаждения в зоне термического влияния псевдо-β-сплавов титана, β-фаза не распадается, такая структура является термически нестабильной, что приводит к снижению механических свойств. Поэтому титановые сплавы данного класса после сварки требуют обязательной термической обработки. Однако для крупногабаритных конструкций не всегда есть возможность проведения термической обработки после сварки.

Сварные соединения двухфазных титановых сплавов, выполненные электронно-лучевой сваркой без введения присадочных материалов, имеют низкие показатели пластичности и ударной вязкости металла шва [С.В. Ахонин, С.Г. Григоренко, В.Ю.Белоус, Т.Г. Таранова, Р.В.Селин Электронно-лучевая сварка ложнолегированного высокопрочного титанового сплава// Автоматическая сварка №5-6, 2016].

Также использование электронно-лучевой сварки для псевдо-β-сплавов титана, например сплав ВТ-19, не позволяет получить сварные соединения с необходимым уровнем механических свойств без дополнительной термообработки [С.В. Ахонин, В.Ю. Белоус, Р.В. Селин, Э.Л. Вржижевский, И.К. Петриченко Электронно-лучевая сварка и термообработка сварных соединений высокопрочного псевдо-β-титанового сплава ВТ-19// Автоматическая сварка №7, 2018].

Известен зарубежный патент JP 6557781 A (1982 г.), в котором для электронно-лучевой сварки титановых сплавов используются вставки из титана с добавлением алюминия.

Использование в процессе электронно-лучевой сварки присадочной проволоки не позволяет получить равнопрочное сварное соединение и высокие показатели ударной вязкости зоны термического влияния без дополнительной термической обработки после сварки. Такой способ сварки не позволяет применять его к крупногабаритным конструкциям.

Известен способ электронно-лучевой сварки с промежуточными вставками для сплава ВТ-23 [А.В. Федосов, Е.В. Карпович Перспективные аспекты использования электронно-лучевой технологии сварки для высокопрочных титановых сплавов//Авиационно-космическая техника и технология, №1, 2015].

Недостатком известного способа является необходимость проведения термической обработки после сварки для получения необходимых прочностных и пластических характеристик металла шва, что не всегда является возможным в процессе изготовления крупногабаритных сварных конструкций в условиях промышленного производства.

Наиболее близким способом сварки по техническому исполнению является способ сварки по патенту SU 904937, заключающийся в том, что в зону стыка свариваемых материалов помещают присадочный материал в виде вставки из титана с содержанием алюминия 0,1-5,0% и циркония 0,1-5,0%.

Необходимость термической обработки для получения необходимого уровня механических свойств после сварки не позволяет использовать данный способ для изготовления сварных соединений крупногабаритных конструкций из титановых псевдо-β-сплавов. Помимо этого наблюдается снижение значений ударной вязкости зоны термического влияния по сравнению с основным металлом.

Технической задачей предложенного изобретения является создание сварных соединений высокопрочных псевдо-β-сплавов титана для изготовления крупногабаритных конструкций с высоким уровнем временного удельного сопротивления (около 1035 МПа) и ударной вязкости зоны термического влияния (около 35 Дж/см2)без последующей термической обработки.

Техническим результатом предложенного изобретения является способ изготовления сварных соединений с высокими прочностными и пластическими характеристиками для крупногабаритных конструкций из псевдо-β-сплавов титана.

Технический результат достигается тем, что способ электронно-лучевой сварки высокопрочных псевдо-β-титановых сплавов включает: наплавку металла с меньшим содержанием β-стабилизирующих элементов, чем в основном металле, на кромки свариваемого соединения, термическую обработку сварных заготовок до процесса сварки (нагрев до температуры отжига 700°С, выдержку при этой температуре 1 час и охлаждение на воздухе).

Высокое содержание β-стабилизирующих элементов в основном металле приводит после электронно-лучевой сварки к образованию в структуре металла шва и зоны термического влияния метастабильных фаз, снижающих механические характеристики сварного соединения.

Уменьшение количества β-стабилизаторов в металле шва осуществляют путем создания в зоне сварочной ванны менее легированного сплава.

По сравнению со способом-прототипом предварительная наплавка на кромки свариваемых заготовок и термическая обработка заготовок до процесса сварки позволяет улучшить пластические характеристики зоны термического влияния (ударная вязкость), не снижая агрегатной прочности сварного соединения в целом.

После сварки титановых сплавов данного класса в структуре зоны термического влияния преобладает метастабильная β-фаза с неравномерно расположенными по телу зерна выделениями низкотемпературной α-фазы. Такая структура понижает пластические характеристики сварного соединения. В предлагаемом способе при выполнении наплавок также образуется зона термического влияния с низкими характеристиками пластичности.

Наиболее распространенным режимом термической обработки сварных конструкций титановых сплавов является отжиг в среднем температурном интервале (α+β)-области. Нагрев до температуры 700°С практически не изменяет количественное соотношение фаз в основном металле. В процессе выдержки металла при температуре отжига происходит перераспределение легирующих элементов, β-фаза становится термодинамически стабильной и при охлаждении не выделяется низкотемпературная α-фаза, что приводит к выравниванию структуры сварного соединения во всех зонах, и к повышению характеристик пластичности.

Помимо этого зона термического влияния после электронно-лучевой сварки располагается на предварительной наплавке из металла менее легированного β-стабилизирующими элементами, что позволяет получить равнопрочное сварное соединение.

Предварительная наплавка и термическая обработка сварных заготовок до процесса сварки делает возможным использовать данный способ для изготовления сварных соединений крупногабаритных конструкций.

Предлагаемый и известный способы проверяли на сварных соединениях толщиной 24 мм из титанового сплава марки ПТ-48 после упрочняющей термической обработки.

На фиг. 1 изображено сечение сварного соединения до и после сварки, а также чертеж сварных заготовок с указанием размера наплавки (обозначения: 1-наплавка, 2-сварной шов).

Пример выполнения по известному способу:

Электронно-лучевой сваркой изготавливали сварные соединения без применения присадочных материалов и последующей термической обработки.

Пример выполнения по предлагаемому способу:

По предлагаемому способу предварительно перед сваркой на кромки заготовок проводилась наплавка сварочной проволоки. Содержание химических элементов проволоки указано в таблице 1.

Далее сварные заготовки подвергались термической обработке, которая включала в себя нагрев до температуры отжига 700°С, выдержку в течении 1 часа и последующее охлаждение на воздухе. Затем осуществлялась электронно-лучевая сварка.

Оценку временного сопротивления при одноосном статическом растяжении полученных сварных соединений проводили на крупногабаритных образцах с рабочим сечением 20×60 мм по ГОСТ 6996. Испытания на ударную вязкость проводились на образцах типа VI по ГОСТ 6996. Результаты испытаний представлены в таблице 2.

Как видно из таблицы 2 использование предлагаемого способа сварки позволяет повысить значения ударной вязкости (KCU) зоны термического влияния сварных соединений до 35 Дж/см2 и временного сопротивления сварных соединений до 1037 МПа.

Помимо этого данный способ позволяет изготавливать сварные соединения для крупногабаритных конструкций.

Предлагаемый способ электронно-лучевой сварки может быть использован для сварных соединений высокопрочных псевдо-β-титановых сплавов применительно к крупногабаритным конструкциям судостроительного авиационного, космического и энергетического назначения.

Способ электронно-лучевой сварки высокопрочных псевдо-β-титановых сплавов, включающий подготовку свариваемого соединения под сварку, сборку и сварку электронным лучом, отличающийся тем, что перед сваркой на кромки свариваемого соединения предварительно наплавляют металл, содержащий β-стабилизирующие элементы в количестве меньшем, чем количество β-стабилизирующих элементов в основном металле, и проводят термическую обработку свариваемого соединения.
Источник поступления информации: Роспатент

Showing 141-150 of 251 items.
27.02.2016
№216.014.bf1e

Способ получения полидисперсного порошка карбида бора

Изобретение относится к производству неорганических соединений, конкретно к карботермическому способу получения полидисперсных порошков карбида бора, предназначенных для получения на их основе абразивных порошков для шлифования и ударопрочной керамики. Способ включает смешивание борной кислоты...
Тип: Изобретение
Номер охранного документа: 0002576041
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.c12c

Способ термической обработки изделий из высокопрочных алюминиевых сплавов

Изобретение относится к области металлургии, в частности к технологии термической обработки изделий из высокопрочных алюминиевых сплавов для использования в судостроении и конструкциях, эксплуатирующихся в морских условиях, авиакосмической технике, транспортном машиностроении. Способ...
Тип: Изобретение
Номер охранного документа: 0002576283
Дата охранного документа: 27.02.2016
10.02.2016
№216.014.c22f

Аппарат на воздушной подушке

Изобретение относится к авиации и касается аппаратов на воздушной подушке (АВП) с системами демпфирования колебаний по высоте и автоматического управления по углам крена и тангажа. АВП содержит ограждение ВП, снабженное воздуховодом, расположенным вдоль периметра корпуса и разделенным на две...
Тип: Изобретение
Номер охранного документа: 0002574649
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c32e

Способ увеличения подъемной силы самолета и устройство для его реализации

Способ и устройство увеличения аэродинамической подъемной силы самолета с силовой установкой, имеющей сопло, расположенное у задней кромки крыла. Для увеличения подъемной силы самолета с силовой установкой, имеющей сопло в области задней кромки крыла, используют нижнюю внешнюю поверхность...
Тип: Изобретение
Номер охранного документа: 0002574676
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.044a

Состав эпоксибисмалеимидной смолы и способ ее получения

Изобретение относится к области получения полимерных композиционных материалов, применяемых в авиакосмической технике, в частности к составу эпоксибисмалеимидной смолы и способу получения состава. Состав эпоксибисмалеимидной смолы содержит в мас.%: 29,2-47,6...
Тип: Изобретение
Номер охранного документа: 0002587169
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2bd1

Способ определения термомеханических характеристик материалов, обладающих эффектом памяти формы

Изобретение относится к неразрушающему контролю материалов с памятью формы, а именно сплавов на основе никелида титана, и может быть использовано во всех областях народного хозяйства для определения и контроля радиальных напряжений термомеханического возврата, необходимых для обеспечения...
Тип: Изобретение
Номер охранного документа: 0002579174
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c3d

Способ повышения чувствительности электромагнитных датчиков пульсаций скорости преобразователей гидрофизических полей

Изобретение относится к измерительной технике и предназначено для измерения скорости потока электропроводящей жидкости, например морской воды. Способ повышения чувствительности электромагнитных датчиков пульсаций скорости преобразователей гидрофизических полей согласно изобретению включает...
Тип: Изобретение
Номер охранного документа: 0002579805
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.38e7

Пьезоакселерометр

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров ускорения в виброметрии, сейсмологии и акустики. Техническим результатом, получаемым от внедрения изобретения, является измерение трех компонент вектора ускорения с помощью...
Тип: Изобретение
Номер охранного документа: 0002582910
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3c71

Распылитель форсунки

Изобретение относится к двигателестроению, в частности к распылителям топливных форсунок двигателей внутреннего сгорания с воспламенением от сжатия. Предложен распылитель топливной форсунки, содержащий корпус 1 с топливоподающими каналами 2, кольцевой полостью 3 высокого давления, отверстиями...
Тип: Изобретение
Номер охранного документа: 0002583199
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.41b3

Электроизоляционный эпоксидный лак

Изобретение относится к эпоксидным электроизоляционным составам, в частности составам на основе эпоксидных или полиэфирных смол в органическом растворителе, и может быть использовано в производстве изделий радиотехники и электроники, к которым предъявляются высокие требования по электрической...
Тип: Изобретение
Номер охранного документа: 0002584734
Дата охранного документа: 20.05.2016
Showing 71-72 of 72 items.
15.05.2023
№223.018.5960

Способ погружного сжигания топлива и окислителя в плавильных печах барботажного типа

Изобретение относится к области энергетики и может применяться в аппаратах для плавления базальта с реализацией погружного горения. Способ погружного сжигания топлива и окислителя в плавильных печах барботажного типа заключается в раздельной подаче природного газа и окислителя в горелке,...
Тип: Изобретение
Номер охранного документа: 0002762608
Дата охранного документа: 21.12.2021
15.05.2023
№223.018.5961

Способ погружного сжигания топлива и окислителя в плавильных печах барботажного типа

Изобретение относится к области энергетики и может применяться в аппаратах для плавления базальта с реализацией погружного горения. Способ погружного сжигания топлива и окислителя в плавильных печах барботажного типа заключается в раздельной подаче природного газа и окислителя в горелке,...
Тип: Изобретение
Номер охранного документа: 0002762608
Дата охранного документа: 21.12.2021
+ добавить свой РИД