×
06.06.2023
223.018.788f

Результат интеллектуальной деятельности: Преобразователь постоянного напряжения в квазисинусоидальное трёхфазное напряжение повышенной мощности

Вид РИД

Изобретение

№ охранного документа
0002762829
Дата охранного документа
23.12.2021
Аннотация: Изобретение относится к области силовой преобразовательной техники и может быть использовано в системах электроснабжения и электропривода промышленных установок и транспортных средств. Технический результат заключается в повышении КПД и расширении области его применения при повышенных значениях напряжения питания. Технический результат заявленного изобретения достигается тем, что преобразователь, содержащий М число каналов, каждый в виде трехфазного инвертора напряжения (ТИН) со своей парой шин питания и с управлением по алгоритму ШИМ, и три М стержневых трансформатора (далее трансфильтра) с обмоткой на каждом стержне (ТФ-М), причем одни концы этих магнитно связанных М стержневым магнитопроводом обмоток каждого из трех ТФ-М подключены к одноименным по фазе выходным выводам М ТИН, а также блок управления, обеспечивающий фазовый сдвиг выходных напряжений МТИН на несущей (далее тактовой) частоте ШИМ на угол 2π/М, снабжен М числом конденсаторов, каждый из которых подключен между парой шин питания одного из М ТИН. М пар шин М ТИН соединены между собой согласно последовательно, а другие концы обмоток ТФ-М, расположенных на разных магнитопроводах и принадлежащие разным фазам М ТИН, образуют М трехфазных выходных выводов, выполненных с возможностью подключения к ним М гальванически развязанных трехфазных нагрузок (например, в виде М числа электрических тяговых двигателей). При этом при М=2 к одноименным по фазе выходным выводам каждого из двух ТИН подключены концы обмоток разной полярности одного из трех ТФ-2, а при М≥3 к одноименным по фазе выходным выводам каждого из М ТИН подключены концы обмоток одной полярности каждого из трех (m2=3) ТФ-М. М стержневые магнитопроводы трансфильтров выполнены по пространственно-магнитно-симметричной конструкции. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области силовой преобразовательной техники и может быть использовано в тех его применениях, когда требуется повышенная мощность преобразования параметров электроэнергии при повышенном значении напряжения питания, включая случаи, когда значение напряжения питания преобразователя превышает возможности (по рабочему напряжению) реально располагаемых ключевых элементов, например, транзисторов. Такая потребность возникает, например, в системах электроснабжения и электропривода промышленных установок и транспортных средств, например, на железнодорожном транспорте для электропитания тягового электропривода от сети постоянного тока 3÷12 кВ и более. Известно при этом также, что повышение напряжения питания преобразующих устройств обеспечивает повышение их КПД и снижение материалоемкости.

Традиционным способом решения задачи повышения рабочего напряжения на ключевых элементах (КЭ) преобразователей является последовательное их соединение. Однако, для равномерного распределения на них напряжения приходится использовать выравнивающие резистивные (R) и резистивно-емкостные (RC) цепочки, которые ухудшают энергетику устройства. Это является одним из недостатков такого решения данной задачи.

Известен трехфазный инвертор напряжения (ТИН) с трехуровневым выходным напряжением в транзисторном исполнении, способный работать при напряжении питания вдвое большем, чем традиционные (двухуровневые) ТИН (см., например, рис. 6.12 на стр. 208 в книге: Мыцык Г.С. Поисковое проектирование устройств силовой электроники (трансформаторно-выпрямительные устройства) / Г.С. Мыцык, А.В. Берилов, В.В. Михеев. - М.: Издательский дом МЭИ, 2010. - 284 с.). Он содержит 12 транзисторов и 18 диодов, а также блок управления транзисторами, который обеспечивает заданный алгоритм формирования трехуровневого напряжения ТИН с использованием управления его ключами на основе ШИМ. Это решение при той же мощности нагрузки позволяет снизить потери в транзисторах и в нагрузке (за счет повышения на ней напряжения питания и снижения тока) по сравнению с традиционным решением ТИН.

Недостатком настоящего технического решения является ограниченная область применения из-за возможности лишь удваивать напряжение питания и низкий КПД.

Наиболее близким по технической сущности к предлагаемому изобретению является регулируемый преобразователь постоянного тока в переменный с улучшенной формой кривой напряжения (авт. свидетельство СССР №381144, МКИ Н02М 7/48, Н02М 1/12, публ. 15.05.1973), которое содержит М число каналов, каждый из которых выполнен в виде трехфазного инвертора напряжения (ТИН) с общими шинами питания и с управлением их ключами по алгоритму ШИМ, а также три М стержневых трансформаторов (далее обозначаются здесь как трансфильтры - ТФ) с обмоткой на каждом стержне (ТФ-М), причем одни концы этих магнитно связанных обмоток каждого из трех ТФ-М подключены к одноименным по фазе трем выходным выводам МТИН, а другие концы обмоток каждого из трех ТФ-М объединены и образуют три выходных вывода, предназначенные для подключения к ним трехфазной нагрузки (m2=3). Особенностью управления каждым из М ТИН здесь является такое управление, которое обеспечивает фазовый сдвиг выходных напряжений М ТИН на несущей (далее тактовой) частоте ШИМ на угол 2π/M.

Недостатками данного технического решения являются низкий КПД и ограниченная область применения вследствие невозможности его использования при повышенных значениях напряжения питания, когда отсутствуют ключевые элементы (КЭ) с необходимым значением рабочего напряжения.

Технической задачей предлагаемого изобретения является улучшение энергетических показателей при использовании ограниченных по рабочему напряжению ключевых элементов за счет повышения напряжения питания.

Технический результат изобретения заключается в повышении КПД и расширении области его применения при повышенных значениях напряжения питания.

Это достигается тем, что известный преобразователь постоянного напряжения в квазисинусоидальное трехфазное напряжение повышенной мощности, содержащий М число каналов, каждый в виде трехфазного инвертора напряжения (ТИН) со своей парой шин питания и с управлением по алгоритму ШИМ, и три М стержневых трансформатора (далее трансфильтра) с обмоткой на каждом стержне (ТФ-М), причем одни концы этих магнитно связанных М стержневым магнитопроводом обмоток каждого из трех ТФ-М подключены к одноименным по фазе выходным выводам М ТИН, а также блок управления, обеспечивающий фазовый сдвиг выходных напряжений М ТИН на несущей (далее тактовой) частоте ШИМ на угол 2π/М, снабжен М числом конденсаторов, каждый из которых подключен между парой шин питания одного из М ТИН, М пар шин М ТИН соединены между собой согласно последовательно, а другие концы обмоток ТФ-М, расположенных на разных магнитопроводах и принадлежащие разным фазам М ТИН, образуют М трехфазных выходных выводов, выполненных с возможностью подключения к ним М гальванически развязанных трехфазных нагрузок (например, в виде М числа электрических тяговых двигателей), при этом, при М=2 к одноименным по фазе выходным выводам каждого из двух ТИН подключены концы обмоток разной полярности одного из трех ТФ-2, при М≥3 к одноименным по фазе выходным выводам каждого из М ТИН подключены концы обмоток одной полярности каждого из трех (m2=3) ТФ-М, M стержневые магнитопроводы трансфильтров выполнены по пространственно-магнитно-симметричной конструкции.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлена структурно-функциональная схема преобразователя постоянного напряжения в квазисинусоидальное трехфазное напряжение повышенной мощности; на фиг. 2 приведен пример возможной блок-схемы блока управления, поясняющий принцип формирования импульсов для управления этим преобразователем; на фиг. 3 приведены осциллограммы рабочих процессов на примере двухканального преобразователя (с М=2) при ШИМ алгоритме управления.

Преобразователь постоянного напряжения в квазисинусоидальное трехфазное напряжение (в данном примере с числом каналов М=3 на фиг. 1) повышенной мощности содержит первый трехфазный инвертор напряжения (ТИН) 1 с парой шин питания 2, 3, второй ТИН 4 с парой шин питания 5, 6, третий ТИН 7 с парой шин питания 8, 9, первый трехстержневой трансфильтр (ТФ-3) 10 (с обмотками 10.1, 10.2, 10.3), второй трехстержневой трансфильтр 11 (с обмотками 11.1, 11.2, 11.3), третий трехстержневой трансфильтр 12 (с обмотками 12.1, 12.2, 12.3) и три конденсатора 13, 14, 15, представляющие собой делитель напряжения. Каждый трансфильтр 10, 11, 12 выполнен на М стержневом магнитопроводе с обмоткой на каждом стержне (ТФ-М).

Нагрузка преобразователя выполнена М-канальной (М=3) и представляет собой три гальванически развязанные, например, трехфазные (m2=3) якорные обмотки электрических тяговых двигателей (ЭТД) 16, 17, 18.

Выходные выводы 1.1 (А1) ТИН 1, 4.1 (А2) ТИН 4 и 7.1 (А3) ТИН 7, принадлежащие одной и той же фазе трехканальной нагрузки - Al, А2, A3, подключены к одним одноименным по полярности концам обмоток первого ТФ-3 10, другие концы которых подключены к выходным выводам одноименных фаз Al, А2, A3 трехканальной трехфазной (m2=3) нагрузки 16, 17, 18.

Выходные выводы 1.2 (В1) ТИН 1, 4.2 (В2) ТИН 4 и 7.2 (В3) ТИН 7, принадлежащие одной и той же фазе трехканальной нагрузки - B1, В2, В3 подключены к одним одноименным по полярности концам обмоток второго ТФ-3 11, другие концы которых подключены к выходным выводам одноименных фаз B1, В2, В3 трехканальной трехфазной нагрузки 16, 17, 18.

Выходные выводы 1.3 (С1) ТИН 1, 4.3 (С2) ТИН 4 и 7.3 (С3) ТИН 7, принадлежащие одной и той же фазе трехканальной нагрузки - C1, С2, С3 подключены к одним одноименным по полярности концам обмоток третьего ТФ-3 12, другие концы которых подключены к выходным выводам одноименных фаз C1, С2, С3 трехканальной трехфазной нагрузки 16, 17, 18. В общем случае нагрузка 16, 17, 18 обозначена как М канальная т2 фазная.

К управляющим входам транзисторов первого ТИН 1, второго ТИН 4 и третьего ТИН 7 подключен блок управления 19. Он содержит узел формирования 3-х фазной системы (М=3) развертывающих сигналов симметричной треугольной формы с тактовой частотой fт 20, выполненный с возможностью обеспечения последовательного фазового сдвига между М=3 развертывающими сигналами на угол 2π/3 (М=3), узел формирования 3-х фазной системы задающих сигналов синусоидальной или квазсинусоидальной формы частоты f2 - 21, по значению равной выходной частоте ТИН; три 3-х фазных компаратора - 22, 23, 24; три (М=3) узла распределения импульсов 25, 26, 27, а также узел синхронизации 28, включающий в себя задатчик частоты 28.1 и делители частоты 28., 28.3. Для повышения функциональной надежности частота задатчика частоты 28.1 задана кратной частотам всех узлов блока управления 19. Взаимосвязи между узлами показаны на фиг. 2. Узел 20 включает в себя три (М=3) генератора пилообразного напряжения (ГПН) - 20.1, 20.2, 20.3, распределители импульсов 20.2÷20.4, и делитель частоты 20.5.

Следует заметить, что блок управления 19 может быть выполнен полностью в цифровом (микропроцессорном) исполнении, Представленный пример в цифро-аналоговом исполнении позволяет раскрыть его функциональную сущность в виде легко воспринимаемой последовательности стандартных логических операций.

При М больше 3-х соответственно возрастает число ТИН, конденсаторов и гальванически развязанных М канальных m2 фазных нагрузок. Число трансфильтров при этом всегда равно числу фаз одного канала нагрузки (m2), а число стержней магнитопровода трансфильтра (и число его обмоток) равно числу М. При этом связи между элементами и узлами преобразователя во всех случаях определяются формулой изобретения.

Преобразователь постоянного напряжения в квазисинусоидальное трехфазное напряжение повышенной мощности работает следующим образом.

Принцип работы каждого из ТИН 1, 4, 7 при формировании в них выходного напряжения по алгоритму с ШИМ достаточно широко описан в технической литературе. Поэтому здесь приводятся лишь особенности взаимодействия их между собой, направленные на решение поставленной задачи.

Выходное напряжение ТИН 1 формируется в результате сравнения 1-го (i=a) сигнала развертки upi(t) тактовой частоты fт (где i=a, b, с - фазовый индекс системы развертывающих сигналов) с каждым из трех сигналов задания u3j (t) частоты(где j=А, В, С - фазовый индекс 3-х фазной системы сигналов задания). Полученные в результате этой операции сигналы - ψ1÷ψ6 с выхода узла распределения импульсов 25 обеспечивают управление транзисторами ТИН 1 (см. фиг. 2).

Сигналы для управления транзисторами ТИН 4 - ψ7÷ψ12, сформированные в результате сравнения 2-го (i=b) развертывающего сигнала uvb(t), с каждым из трех сигналов задания u3j (t) частоты f2, с выходов узла распределения импульсов 26 поступают на управляющие входы транзисторов ТИН 4.

Сигналы для управления транзисторами ТИН 7 - ψ13÷ψ18 сформированные в результате сравнения 3-го (i=с) развертывающего сигнала upc(t), с каждым из трех сигналов задания u3j (f) частоты f2, с выходов узла распределения импульсов 27 поступают на управляющие входы транзисторов ТИН 7. При этом (по определению), развертывающий сигнал upb (t) сдвинут по фазе (на частоте fт) относительно 1-го развертывающего сигнала upa(t) на угол 2π/3, а развертывающий сигнал upc(t) относительно развертывающего сигнала upb (t) тоже сдвинут на такой же угол.

В соответствии с фиг. 1 выходное напряжение каждого из М каналов 3-х фазной нагрузки 16, 17, 18 формируется своим ТИН (например, 3-х фазный канал нагрузки A1, B1, С1 - формируется ТИН 1). Но в его формировании участвуют при этом еще и другие (М-1=3-1=2) в данном примере два ТИН. Это их участие проявляется в заграждающем действии (для нагрузки) тех высших гармоник, которые образуют М фазные системы напряжений (при М=3 - трехфазные системы). Это получено за счет того, что обмотки 10.1, 102, 10.3 ТФ-М 10 включены последовательно между соответствующими одноименными по фазе выходными выводами трех ТИН 1.1 (А1), 4.1 (А2), 7.1 (A3) и выходными выводами A1, А2, A3 для подключения к ним М=3 числа одноименных фаз 3-х трехканальной нагрузки 16, 17, 18. Заграждающее воздействие определенных гармоник (по сути, их фильтрация) заключается в том, что три (m2=3) ТФ-М для них представляет достаточно большое сопротивление (как при работе трансформатора в режиме холостого хода), т.е. для них он представляет, по сути, фильтр-пробку. При этом те же гармоники напряжения в выходных напряжениях одноименных по фазе каналов ТИН (с М=3), которые между собой синфазны, в нагрузку через ТФ-М проходят беспрепятственно. Таковой гармоникой, прежде всего, является основная (первая) гармоника напряжения. Для таких гармоник нет условий в магнитопроводе ТФ-М для протекания в его стержнях магнитных потоков, следовательно, он для них «прозрачен». В результате взаимодействия МТИН с тремя ТФ-М в каждом из М каналов в одноименных по фазе нагрузках формируются напряжения одинаковой формы. Процесс формирования выходного напряжения для двух других фаз аналогичен. Отличие их будет лишь в том, что основные гармоники напряжения по фазе будут сдвинуты относительно напряжения фазы А1 соответственно на углы 2π/3 и 4π/3.

На фиг. 3 представлены осциллограммы рабочих процессов в 2П-ТИН+3ТФ-2 с ШИМ (при М=2 и следующих значениях его параметров: напряжение питания ЕП = 500 В; выходная частота f2(1)=50Тц; емкости конденсаторов делителя: С12=100 мкФ; параметры фильтра: Lф=5 мГн; Cф=5 мкФ; модуль сопротивления каждой фазы нагрузки 1-го и 2-го каналов: ZH=3,51 Om с cosϕ2(1)=0,8): а) - выходные напряжения до и после фильтра и ток нагрузки (фазы А); б) - напряжение на обмотке одного трансфильтра (в фазе А) и ток через нее; в), г) - напряжения на конденсаторах 1-го и 2-го канала ТИН; д), е) - напряжение на транзисторе 1-го канала ТИН (с максимальным значением Uмакс=259 В - это практически половина напряжения питания). На транзисторе 2-го канала ТИН максимальное значение такое же.

Осциллограммы на фиг. 3 на простейшем примере преобразователя с М=2 подтверждают работоспособность предложенного решения и достижение поставленной в изобретении цели - возможности создания устройства, способного работать при высоковольтном напряжении питания при использовании ограниченных по рабочему напряжению и току транзисторов.

При этом число каналов определяется требуемым уровнем электропитания ТИН с МКП и допустимым уровнем рабочего напряжения реальных транзисторов и диодов. Взаимосвязь между числом каналов М, напряжением питания Еп и рабочим напряжением на транзисторе UVT определяется следующим соотношением:

M=Еп⋅K3(u)/UVT,

где UVT - паспортное значение рабочего напряжения транзистора, Кз(u)=1,4÷1,5 - коэффициент запаса по напряжению (для повышения надежности). По току транзисторов взаимосвязь аналогичная:

М=I2mK3(i) / IVTm,

где I2m - максимальное значение результирующего (суммарного) фазного тока одной фазы нагрузки одного ее канала, IVTm ~ паспортное значение максимального тока транзистора, Kз(i)≈1,4÷1,5 - коэффициент запаса по току (для повышения надежности).

Действующее значение фазного напряжения в одном канале нагрузки (при ШИМ с μ=1) определяется выражением:

Например, при

Что касается массогабаритных показателей трансфильтров, то, например, даже при тактовой частоте ШИМ 1200 Гц при М=2 (как показывают компьютерное моделирование и расчеты) габаритная мощность ТФ-2 одной его фазы (с приведением его расчетной частоты к выходной частоте 2П-ТИН+3ТФ-2) в долях от мощности одной фазы 2-х канальной нагрузки составляет примерно 0,3%.

Таким образом, результирующая энергетическая эффективность предлагаемого изобретения определяется возможностью увеличения (в М раз) напряжения питания и снижения в М раз тока нагрузки (при заданной ее мощности). Именно его значение определяет потери, как в нагрузке, так и в преобразователе (т.е. приводит к повышению КПД) при реально располагаемых ограниченных возможностях транзисторов.

Использование реальных ключевых элементов (транзисторов) со значительно меньшими значениями паспортных значений по напряжению и по току позволяет расширить область применения изобретения. Например, при использовании современных транзисторов с рабочим напряжением 6,5 кВ и током 500 А согласно изобретению при Еп=12кВ можно построить преобразователь (с М=3) для питания групповой (М=3) двигательной нагрузки мощностью 3 МВт. При этом коэффициенты запаса будут по напряжению и по току соответственно равны Kз(u)=1,6, а Кз(i)=2,1, т.е. более, чем достаточны для надежной работы.

Рост числа каналов М сопровождается улучшением электромагнитной совместимости преобразователя: искажения выходного напряжения и потребляемого тока уменьшаются обратно пропорционально числу М. При этом уровни квантования напряжения на нагрузке также уменьшаются тоже обратно пропорционально числу М. Этот эффект принципиально важен, т.к. способствует продлению срока службы изоляции якорных обмоток ЭТД.

Использование изобретения позволяет повысить КПД преобразователя и расширить область его применения при повышенных значениях напряжения питания.

Источник поступления информации: Роспатент

Showing 11-20 of 208 items.
12.01.2017
№217.015.5fa9

Способ получения монодисперсных сферических гранул

Изобретение относится к получению монодисперсных сферических гранул. Расплавляют в тигле химически активный материал, содержащий по крайней мере один металл из группы редкоземельных металлов, формируют ламинарную струю при истечении расплава через фильеру, выполненную из тугоплавкого металла,...
Тип: Изобретение
Номер охранного документа: 0002590360
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6697

Устройство для совершенствования технико-тактических действий

Устройство предназначено для тренировки спортсменов в ударных и универсальных единоборствах, позволяет повысить эффективность тренировок, путем совершенствования атакующих и защитных действий с использованием двух идентичных манекенов, расположенных вертикально или горизонтально, имеющих не...
Тип: Изобретение
Номер охранного документа: 0002592016
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.68e7

Полосно-пропускающий фильтр

Изобретение относится к технике СВЧ. Полосно-пропускающий фильтр содержит прямоугольный металлический корпус 1, образованный параллельными плоскими стенками 2, запредельный для центральной частоты фильтра, n металлических стержней 3, число которых равно порядку фильтра, расположенных...
Тип: Изобретение
Номер охранного документа: 0002591743
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6da0

Пылегазомазутная топка

Заявляемая пылегазомазутная топка относится к области тепловой энергетики и может быть использована на паровых котлах, снабженных шаровыми барабанными мельницами. Она содержит экранированные вертикальную прямоугольную камеру сгорания 1 и двускатную холодную воронку 2, шлаковый комод 3, группы...
Тип: Изобретение
Номер охранного документа: 0002597346
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6ded

Способ телеметрического измерения и фиксации скорости транспортных средств

Способ телеметрического измерения и фиксации скорости транспортных средств относится к области измерительной техники, в частности к системам телеметрического контроля скорости транспортных средств. Способ заключается в видеонаблюдении за транспортной обстановкой на дороге с помощью видеокамеры,...
Тип: Изобретение
Номер охранного документа: 0002597328
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6f37

Электрохимический генератор на основе водородно-кислородных топливных элементов

Изобретение относится к энергетическому оборудованию и может быть использовано в качестве электрохимического генератора на основе водородно-кислородных топливных элементов для резервного электропитания аварийных объектов, при этом в заявленном генераторе газообразный водород получают в...
Тип: Изобретение
Номер охранного документа: 0002597412
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.73ea

Способ контроля изменений электропроводимости внутренних слоев немагнитного металла и устройство для его осуществления

Изобретение может быть использовано при контроле электропроводимости и коррелирующего с ней значения температуры внутренних слоев листа, например, из рафинированной меди - медной рубашки кристаллизатора путем измерения электропроводимости внутренних слоев меди. Согласно изобретению способ...
Тип: Изобретение
Номер охранного документа: 0002597960
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.8591

Способ эксплуатации бифункциональной электрохимической системы и устройство для его осуществления

Изобретение относится к способу эксплуатации бифункциональной электрохимической системы, содержащей анодную и катодную электродные камеры с четырехходовыми клапанами на входе и выходе из электродных камер, резервуар-сепаратор с водой, соединенный с анодной и катодной камерами и с контейнерами...
Тип: Изобретение
Номер охранного документа: 0002603142
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.89ae

Способ интенсификации теплообмена в конденсаторе паротурбинной установки

Изобретение относится к энергетике. При эксплуатации паротурбинной установки, характеризующейся чередующимися режимами работы и простоя, в период простоя конденсатор с межтрубным и внутритрубным пространствами и очищенными от отложений латунными трубками отключают от системы оборотного...
Тип: Изобретение
Номер охранного документа: 0002602653
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8afd

Способ управления теплосиловой установкой и устройство для его реализации

Предлагаемый способ управления теплосиловой установкой относится к области электроэнергетики и может быть использован на атомных электрических станциях (АЭС). Технический результат заключается в высокой маневренности установки при ее упрощении в целом и, как следствие, сокращение сроков...
Тип: Изобретение
Номер охранного документа: 0002604095
Дата охранного документа: 10.12.2016
Showing 11-14 of 14 items.
18.12.2019
№219.017.ee12

Стабилизированный по напряжению генератор на основе асинхронной машины с короткозамкнутой роторной обмоткой

Стабилизированный по напряжению генератор на основе асинхронной машины с короткозамкнутой роторной обмоткой относится к области электротехники и может быть использован при построении машинно-электронных генерирующих систем постоянного (МЭГС-1) или переменного (МЭГС-2) тока при переменной...
Тип: Изобретение
Номер охранного документа: 0002709101
Дата охранного документа: 16.12.2019
06.02.2020
№220.017.feda

Бесконтактный стабилизированный по напряжению генератор переменного тока с комбинированным возбуждением

Изобретение относится к области электротехники и может быть использовано при построении генераторов переменного и постоянного тока для систем электропитания автономных объектов, прежде всего, для летательных аппаратов, где требуются минимально возможная масса, габариты и бесконтактность, а...
Тип: Изобретение
Номер охранного документа: 0002713470
Дата охранного документа: 05.02.2020
23.02.2020
№220.018.0545

Способ стабилизации выходного напряжения вентильного магнитоэлектрического генератора

Изобретение относится к области электротехники и может быть использовано в системе электропитания автономных объектов. Техническим результатом является улучшение массогабаритных и энергетических показателей при упрощении технической реализации способа, что обеспечивает повышение...
Тип: Изобретение
Номер охранного документа: 0002714921
Дата охранного документа: 21.02.2020
21.07.2020
№220.018.34d3

Стабилизированный по напряжению вентильный магнитоэлектрический генератор

Изобретение относится к электротехнике. Технический результат заключается в повышении КПД и улучшении удельного его показателя. Стабилизированный по напряжению вентильный магнитоэлектрический генератор (ВМЭГ) содержит синхронную машину с возбуждением от постоянных магнитов 1, выпрямительный...
Тип: Изобретение
Номер охранного документа: 0002726950
Дата охранного документа: 17.07.2020
+ добавить свой РИД