×
05.06.2023
223.018.76c3

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ

Вид РИД

Изобретение

№ охранного документа
0002786526
Дата охранного документа
21.12.2022
Аннотация: Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение напряженности электрического поля стоячей электромагнитной волны, в частности ее минимум, в фиксированном сечении отрезка длинной линии при эталонном значении величины диэлектрической проницаемости жидкости, после чего в процессе измерений изменяют частоту возбуждаемых электромагнитных волн до достижения напряженностью электрического поля стоячей электромагнитной волны номинального значения, в частности ее минимума, при измеряемом значении диэлектрической проницаемости жидкости в этом фиксированном сечении отрезка длинной линии, и о значении измеряемой диэлектрической проницаемости жидкости судят по величине этой частоты. 4 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения значений диэлектрической проницаемости различных жидкостей.

Известны различные способы и устройства для измерения электрофизических параметров (диэлектрической проницаемости или (и) тангенса угла диэлектрических потерь) жидкостей с применением радиоволновых ВЧ и СВЧ резонаторов, содержащих контролируемую жидкость (монографии: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз. 1963. 404 с. С. 37-144; Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат. 1989. 208 с. С. 168-177). Недостатком таких способов и реализующих эти способы измерительных устройств является их ограниченная область применения, обусловленная невозможностью контроля малых изменений электрофизических свойств жидкостей ввиду невысокой точности измерения соответствующих малых изменений информативных параметров (резонансной частоты, добротности резонатора и др.). Для обеспечения возможности проведения таких измерений применяют двухканальные измерительные схемы с независимыми измерительным и эталонным каналами. В эталонном канале чувствительный элемент содержит жидкость с известными электрофизическими свойствами (монография: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз. 1963. 404 с. С. 258-268).

Известно также техническое решение (RU 2285913, 20.10.2006), которое содержит описание способа, согласно которому производят измерения физических свойств жидкостей с применением двух независимых измерительных каналов, рабочего и эталонного, с чувствительными элементами (измерительными ячейками) в виде отрезков коаксиальной линии. Они являются резонаторами с колебаниями основного типа ТЕМ и заполняются, соответственно, контролируемой жидкостью и эталонной жидкостью. Для реализации данного способа применяют линии связи этих чувствительных элементов с соответствующими электронными блоками, выходы которых подсоединены к входу функционального преобразователя. Информативным параметром каждого измерительных канала является основная резонансная частота электромагнитных колебаний соответствующего резонатора. Данный способ характеризуется сложностью его реализации, обусловленной необходимостью применения двух независимых измерительных каналов. В каждом из них необходимо наличие чувствительного элемента, генератора электромагнитных колебаний и приемного устройства для определения величины информативного параметра. Кроме того, необходимо наличие блока для функциональной обработки выходных сигналов этих (измерительного и опорного) каналов. Необходимость в данных элементах двухканальных измерительных устройств для реализации этого способа существенно усложняет его реализацию. Кроме того, этот способ характеризуется и невысокой точностью измерения вследствие возможных изменений схемных параметров, нестабильности указанных элементов измерительных схем (двух генераторов, приемных устройств). Это приводит к снижению точности измерения.

Известно также техническое решение (RU 2473889, 27.01.2013), которое содержит описание способа, по технической сущности наиболее близкого к предлагаемому способу и принятого в качестве прототипа. Этот способ-прототип заключается в возбуждении электромагнитных волн в волноводном резонаторе, размещении контролируемого объекта в электромагнитном поле одного из торцевых участков волноводного резонатора, размещении идентичного объекта с эталонным значением измеряемой физической величины в электромагнитном поле другого торцевого участка и определении одной из характеристик стоячей электромагнитной волны в волноводном резонаторе. В качестве волноводного резонатора возможно использование отрезка длинной линии, а в качестве его торцевых участков - идентичных измерительных ячеек.

Недостатком этого способа является невысокая точность измерения, обусловленная проведением амплитудных измерений при измерении напряженности поля стоячей волны в каком-либо сечении вдоль отрезка длинной линии, и проведением измерений резонансной частоты электромагнитных колебаний резонатора при его организации на основе отрезка длинной линии (при невысокой добротности такого резонатора, что может иметь место при контроле объектов, в частности жидкостей, являющимися несовершенными диэлектриками, при наличии потерь электромагнитной энергии в проводниках отрезка длинной линии, точность измерения является невысокой из-за невозможности высокоточного измерения резонансной частоты такого резонатора).

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат достигается тем, что в способе измерения диэлектрической проницаемости жидкости, заключающийся в возбуждении электромагнитных волн в волноводном резонаторе в виде отрезка длинной линии, размещении контролируемого объекта в электромагнитном поле одного из торцевых участков отрезка длинной линии, размещении идентичного объекта с эталонным значением диэлектрической проницаемости в электромагнитном поле другого торцевого участка отрезка длинной линии и определении одной из характеристик стоячей волны в отрезке длинной линии, предварительно определяют номинальное значение напряженности электрического поля стоячей электромагнитной волны, в частности минимум, в фиксированном сечении отрезка длинной линии при эталонном значении величины диэлектрической проницаемости жидкости, в процессе измерения изменяют частоту возбуждаемых электромагнитных волн до достижения напряженностью электрического поля стоячей электромагнитной волны номинального значения, в частности минимума, при измеряемом значении диэлектрической проницаемости жидкости в этом фиксированном сечении отрезка длинной линии и о значении измеряемой диэлектрической проницаемости жидкости судят по величине этой частоты.

Предлагаемый способ поясняется чертежами.

На фиг. 1 показан отрезок длинной линии с размещенными на его концах идентичными чувствительными элементами. На фиг. 2 показан отрезок длинной линии с электрическими емкостями на его концах. На фиг. 3 приведен пример устройства для реализации способа измерения.

На чертежах показаны отрезок длинной линии 1, чувствительные элементы 2 и 3, генератор 4, элементы связи 5 и 6, детектор 7, блок перестройки частоты генератора 8, индикатор 9, эталонная жидкость 10, контролируемая жидкость 11.

Способ реализуется следующим образом.

На фиг. 1 показан отрезок длинной линии 1 с размещенными на его концах идентичными чувствительными элементами 2 и 3. В их электромагнитном поле помещены объекты с, соответственно, эталонным и текущим (измеряемым) значениями измеряемой диэлектрической проницаемости жидкости. Каждому значению ε измеряемой диэлектрической проницаемости жидкости соответствует значение сопротивления Zн(ε) чувствительного элемента, в общем случае комплексного сопротивления.

При возбуждении с помощью генератора 4 фиксированной частоты электромагнитных волн в отрезке длинной линии 1, к концам которого подсоединены нагрузочные сопротивления - идентичные чувствительные элементы 2 и 3, в отрезке длинной линии 1 имеет место интерференция возбуждаемых и отраженных от чувствительных элементов электромагнитных волн. Она характеризуется режимом стоячих (точнее, смешанных) смешанных волн. Напряженность электрического поля стоячей электромагнитной волны в какой-либо точке вдоль отрезка длинной линии 1 является функцией нагрузочных сопротивлений отрезка длинной линии 1, т.е. значения ε измеряемой диэлектрической проницаемости жидкости. При отклонении этого значения от его некоторого номинального значения ε0 измеряемой диэлектрической проницаемости жидкости, напряженность электрического поля стоячей электромагнитной волны в указанной точке также изменяется.

Для определения значения ε измеряемой диэлектрической проницаемости жидкости осуществляют, согласно предлагаемому способу, изменение фиксированной частоты ƒ0 возбуждаемой электромагнитной волны на величину Δƒ до значения ƒ=ƒ0+Δƒ. При фиксированной частоте ƒ генератора восстанавливается номинальное значение, в частности минимум, напряженности электрического поля стоячей электромагнитной волны в сечении отрезка длинной линии с координатой z1, в котором подсоединен детектор. Следовательно, изменение частоты ƒ0 возбуждаемой волны на величину Δƒ до значения ƒ=ƒ0+Δƒ приводит к восстановлению номинального значения, в частности

минимума, напряженности электрического поля стоячей электромагнитной волны (напряжения U) в указанном сечении с координатой z1 вдоль отрезка длинной линии. Частота Δƒ является мерой отклонения значения измеряемой диэлектрической проницаемости жидкости ε от его номинального значения ε0, и, значит, частота ƒ=ƒ0+Δƒ служит мерой значения ε самой измеряемой диэлектрической проницаемости жидкости.

В реализующем предлагаемый способ устройстве от генератора 4 фиксированной частоты электромагнитные колебания поступают в отрезок длинной линии 1 с помощью элемента связи 5. К противоположным концам отрезка длинной линии 1 подсоединены чувствительные элементы 2 и 3. Их эквивалентные электрические схемы могут содержать, в зависимости от электрофизических параметров контролируемого объекта, электрическую емкость, индуктивность или их совокупность; может быть также подсоединен дополнительно резистор, характеризуя наличие диэлектрических потерь в контролируемом объекте.

С изменением значения измеряемой диэлектрической проницаемости жидкости происходит изменение, в частности, емкостной составляющей нагрузочного сопротивления, что предопределяет ее конструкцию, т.е. конструкцию как чувствительного элемента 3, так и чувствительного элемента 2. Чувствительными элементами 2 и 3 могут являться, например, коаксиальные конденсаторы (измерительные ячейки), заполняемые эталонной и контролируемой жидкостями.

Если контролируемая жидкость является несовершенным диэлектриком или электропроводным веществом, то при покрытии внутренних проводников указанных коаксиальных конденсаторов - чувствительных элементов 2 и 3 - диэлектрической оболочкой контролируемая жидкость в каждом из них характеризуется эффективной диэлектрической проницаемостью двухслойного диэлектрика - жидкости и диэлектрической оболочки (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука, 1989. 280 с. С. 125-131). При этом такое нагрузочное сопротивление становится емкостным. Величина измеряемой диэлектрической проницаемости жидкости определяется с учетом известных значений параметров такого чувствительного элемента (геометрических параметров конденсатора и диэлектрической проницаемости оболочки).

В некотором сечении с координатой z1 вдоль отрезка длинной линии 1 к нему с помощью элемента связи 6 подсоединен детектор 7, с выхода которого продетектированный сигнал поступает в блок перестройки частоты генератора 8, подключенный выходом к генератору 4. В зависимости от амплитуды продетектированного сигнала, определяемой значением напряженности электрического поля стоячей электромагнитной волны в указанном сечении с координатой z1, изменяется частота ƒ0 генератора 4 на величину Δƒ. При измерениях предварительно выбором частоты генератора ƒ0 или (и) длины отрезка длинной линии устанавливают номинальное значение, в частности минимум, напряженности электрического поля стоячей электромагнитной волны в указанном сечении с координатой z1 при некотором номинальном значении ε0 определяемой диэлектрической проницаемости жидкости. Возбуждение в отрезке длинной линии электромагнитной волны на фиксированной частоте ƒ, измененной на величину Δƒ относительно частоты ƒ0, приводит к восстановлению в указанном сечении с координатой z1 номинального значения, в частности минимума, электрического поля стоячей электромагнитной волны. По величине ƒ, фиксируемой индикатором 9, подключенным к генератору 4, можно судить о величине измеряемой диэлектрической проницаемости жидкости х. Диапазон рабочих частот, снимаемых с генератора 4, может составлять значения в пределах 1÷100 МГц.

Отрезок длинной линии 1 может иметь на его концах чувствительные элементы 2 и 3 - нагрузочные сопротивления Zн0) и Zн(ε). В качестве оконечных нагрузочных сопротивлений отрезка длинной линии 1 могут быть применены различные измерительные ячейки. Если на концах отрезка длинной линии расположены измерительные ячейки - емкостные чувствительные элементы с электрической емкостью С, то Zн=1/j2πƒC.

Емкостные чувствительные элементы наиболее часто применимы на практике, поскольку контролируемыми веществами являются в большинстве случаев диэлектрические вещества, в частности жидкости. При этом измеряемым параметром является диэлектрическая проницаемость ε контролируемой жидкости в измерительной ячейке. Величина ε может являться, в свою очередь, функцией физической величины х, например, влагосодержания W жидкости: ε=ε(x)=ε(W).

На фиг. 2 приведен в качестве примера отрезок однородной длинной линии 1, к концам которого подсоединены идентичные чувствительные элементы 2 и 3 - измерительные ячейки в виде электрической емкости с, соответственно, эталонным C(ε0)=ε0C0 и текущим C(ε)=εC0 значениями, где С0 - электрическая емкость незаполненной измерительные ячейки. Такие емкостные измерительные ячейки могут быть выполнены, в частности, в виде коаксиальных конденсаторов, пространство между проводниками которых заполняется соответствующей (эталонной или контролируемой) жидкостью.

Подключение к концу отрезка длинной линии емкостного сопротивления С эквивалентно удлинению разомкнутого на конце отрезка длинной линии на величину (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М: Наука. 1989. 280 с. С. 10-21). Здесь Z0 - волновое (характеристическое) сопротивление отрезка длинной линии, с - скорость света.

Поэтому подключение к одному концу отрезка длинной линии 1, разомкнутого на обоих концах, электрической емкости C(ε), а к его другому концу - электрической емкости C(ε0), эквивалентно удлинению этого отрезка длинной линии 1 на одном конце на величину , а на его другом конце - на величину . При этом эквивалентная длина такого отрезка длинной линии длиной l есть . Наличие этих разных емкостей С(ε0) и С(ε) на концах отрезка длинной линии приводит к изменению распределения напряженности электрического поля стоячей электромагнитной волны вдоль отрезка длинной линии в зависимости от значения ε жидкости в измерительной ячейке с контролируемой жидкостью.

В полуволновом отрезке длинной линии, разомкнутом на обоих концах или замкнутом накоротко на обоих концах, возможно существование электромагнитных колебаний, соответствующих длинам волн λ=2l=c/ƒ. При наличии на одном конце такого отрезка длинной линии электрической емкости C(ε0), а на другом конце - емкости C(ε), что эквивалентно удлинению этого отрезка длинной линии 1 на одном конце на величину , а на его другом конце - на величину , соответственно, данное соотношение для λ можно записать так: Отсюда вытекает соотношение, выражающее причинно-следственную связь - зависимость измеряемой частоты ƒ(ε) от величины lC(ε), которая, в свою очередь, является функцией величины ε:

Значение ε может зависеть от измеряемой величины х, которой, в частности, может являться влагосодержание W контролируемой жидкости.

Если , то тогда соотношение (1) принимает вид

При измерениях предварительно выбором частоты генератора ƒ0 (или длины l отрезка длинной линии) устанавливают номинальное значение, в частности минимум, напряженности электрического поля стоячей электромагнитной волны (напряжения U) в сечении с координатой z1 при некотором номинальном значении ε0 определяемой диэлектрической проницаемости жидкости.

Частота ƒ(ε) изменена относительно частоты ƒ0 на величину Δƒ:

Возбуждение в отрезке длинной линии электромагнитной волны на фиксированной частоте ƒ, измененной на величину Δƒ относительно частоты ƒ0, приводит к восстановлению в указанном сечении с координатой z1 номинального значения, в частности минимума, напряженности электрического поля стоячей электромагнитной волны (напряжения U). По величине ƒ, фиксируемой индикатором, подключенным к генератору, можно судить о величине измеряемой диэлектрической проницаемости жидкости.

На фиг. 3 показана схема устройства для измерения диэлектрической проницаемости жидкости с применением отрезка длинной линии 1, имеющего на обоих концах идентичные чувствительные элементы 2 и 3 - части длины отрезка однородной длинной линии. Они погружены на одинаковую глубину в эталонную жидкость 10 с диэлектрической проницаемостью ε0 и контролируемую жидкость 11 с диэлектрической проницаемостью ε, соответственно. Часть длины отрезка однородной длинной линии, имеющую длину lC и погруженную в контролируемую жидкость 11, можно представить как эквивалентное подключение на конце отрезка длинной линии, разомкнутого на этом конце, сосредоточенной электрической емкости Сн(ε). Для части длины отрезка однородной длинной линии, имеющей длину и погруженной в эталонную жидкость 10, будем иметь соответствующее значение электрической емкости Сн00). Наличие разных емкостей Сн(ε) и Сн00) на концах отрезка длинной линии приводит к изменению распределения напряженности электрического поля стоячей электромагнитной волны вдоль полуволнового отрезка длинной линии в зависимости от значения ε.

Таким образом, данный способ, характеризуемый проведением высокоточных измерений значения частоты (а не значения амплитуды при измерении напряженности поля стоячей волны в каком-либо сечении вдоль отрезка длинной линии или значения резонансной частоты электромагнитных колебаний резонатора при его организации на основе отрезка длинной линии), позволяет достаточно просто и с высокой точностью измерять значения диэлектрической проницаемости различных жидкостей.

Способ измерения диэлектрической проницаемости жидкости, заключающийся в возбуждении электромагнитных волн в волноводном резонаторе в виде отрезка длинной линии, размещении контролируемого объекта в электромагнитном поле одного из торцевых участков отрезка длинной линии, размещении идентичного объекта с эталонным значением диэлектрической проницаемости в электромагнитном поле другого торцевого участка отрезка длинной линии и определении одной из характеристик стоячей волны в отрезке длинной линии, отличающийся тем, что предварительно определяют номинальное значение напряженности электрического поля стоячей электромагнитной волны, в частности минимум, в фиксированном сечении отрезка длинной линии при эталонном значении величины диэлектрической проницаемости жидкости, в процессе измерения изменяют частоту возбуждаемых электромагнитных волн до достижения напряженностью электрического поля стоячей электромагнитной волны номинального значения, в частности минимума, при измеряемом значении диэлектрической проницаемости жидкости в этом фиксированном сечении отрезка длинной линии и о значении измеряемой диэлектрической проницаемости жидкости судят по величине этой частоты.
Источник поступления информации: Роспатент

Showing 11-20 of 276 items.
20.02.2014
№216.012.a328

Автономный счетчик газа

Изобретение относится к измерительным устройствам и может быть использовано в технологических трубопроводах для измерения количества газа или жидкости в производственных процессах, а также в узлах учета энергоресурсов для коммерческого расчета в ЖКХ. Автономный счетчик газа содержит вход и...
Тип: Изобретение
Номер охранного документа: 0002507483
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a743

Устройство для измерения геометрического размера диэлектрической частицы

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом является повышение точности измерения. Технический результат достигается тем, что в устройство для измерения геометрического размера диэлектрической частицы, содержащее источник излучения, детектор и...
Тип: Изобретение
Номер охранного документа: 0002508534
Дата охранного документа: 27.02.2014
20.04.2014
№216.012.b945

Способ отказоустойчивого управления движением корабля по глубине

Изобретение относится к области судостроения. Способ заключается в использовании задатчика глубины, первого фильтра оценки сигнала глубины, четвертого фильтра оценки сигнала угла дифферента и сумматора, на вход которого вводят сигналы. С выхода сумматора сигнал заданной скорости...
Тип: Изобретение
Номер охранного документа: 0002513157
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c0ab

Устройство для определения поступательного перемещения

Изобретение относится к измерительной технике. Техническим результатом заявляемого изобретения является повышение точности измерения. Технический результат достигается тем, что в устройство для определения поступательного перемещения, содержащее источник излучения и приемник, введены измеритель...
Тип: Изобретение
Номер охранного документа: 0002515072
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c131

Спецпроцессор для задачи выполнимости булевых формул

Изобретение относится к вычислительной технике, в частности к специализированным процессорам с высокой степенью параллелизма. Технический результат заключается в снижении сложности спецпроцессора и повышении скорости решения задачи о выполнимости булевых функций за счет упрощения структуры...
Тип: Изобретение
Номер охранного документа: 0002515206
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c136

Спецпроцессор для поиска гамильтоновых циклов в графах

Изобретение относится к вычислительной технике и направлено на построение эффективного спецпроцессора, осуществляющего поиск Гамильтонова цикла в графе, заданном матрицей смежностей, хранящейся в памяти. Техническим результатом является увеличение скорости решения задачи отыскания Гамильтонова...
Тип: Изобретение
Номер охранного документа: 0002515211
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c144

Каскадное парафазное логическое устройство

Изобретение относится к области вычислительной техники и может быть использовано в КМДП интегральных схемах при реализации логических устройств. Технический результат - повышение быстродействия устройства. Устройство содержит тактовый КМДП инвертор и в каждом каскаде два транзистора сброса...
Тип: Изобретение
Номер охранного документа: 0002515225
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c2ae

Способ организации и ведения медицинского мониторинга

Изобретение относится к способу организации и ведения медицинского мониторинга данных состояния пациентов. Технический результат заключается в повышении эффективности и надежности мониторинга и диагностики состояния пациентов. В способе на каждого пациента формируют несколько электронных карт,...
Тип: Изобретение
Номер охранного документа: 0002515587
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c317

Тактируемый логический элемент и-или

Изобретение относится к области вычислительной техники и может быть использовано для реализации каскадных логических устройств конвейерного типа. Техническим результатом является уменьшение потребляемой мощности. Тактируемый логический элемент И-ИЛИ содержит предзарядовый транзистор 1 p-типа,...
Тип: Изобретение
Номер охранного документа: 0002515702
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c405

Инерционный магнитоэлектрический генератор

Изобретение относится к электротехнике и может служить автономным источником питания для различных систем. Технический результат состоит в получении высоких удельных показателей генерации электрических сигналов с величиной, достаточной для электропитания различных электротехнических устройств...
Тип: Изобретение
Номер охранного документа: 0002515940
Дата охранного документа: 20.05.2014
Showing 11-20 of 86 items.
20.01.2014
№216.012.9880

Устройство для определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Предлагаемое устройство определения уровня...
Тип: Изобретение
Номер охранного документа: 0002504739
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9881

Способ измерения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Предлагается способ измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002504740
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9f85

Способ определения массы сжиженного углеводородного газа в резервуаре

Изобретение относится к области измерительной техники и может быть использовано для определения массы сжиженного углеводородного газа, содержащегося в резервуаре. Предлагается способ определения массы сжиженного углеводородного газа в резервуаре, при котором измеряют электрическую емкость...
Тип: Изобретение
Номер охранного документа: 0002506545
Дата охранного документа: 10.02.2014
10.04.2014
№216.012.b36a

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение относится к измерительной технике, в частности, оно может быть применено для измерения массы криогенных жидкостей в металлических емкостях. Предлагается способ определения количества диэлектрической жидкости в металлической емкости, при котором в первом цикле измерений излучают...
Тип: Изобретение
Номер охранного документа: 0002511646
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c0ad

Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в...
Тип: Изобретение
Номер охранного документа: 0002515074
Дата охранного документа: 10.05.2014
10.07.2014
№216.012.da88

Устройство для измерения физических параметров объекта

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических параметров объектов, таких как геометрические размеры изделий, расстояние до какого-либо объекта, уровень веществ в емкостях, физические свойства жидкостей и газов,...
Тип: Изобретение
Номер охранного документа: 0002521722
Дата охранного документа: 10.07.2014
20.10.2014
№216.012.fe99

Устройство для измерения количества вещества в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения объемов металлических полостей произвольной формы, а также для измерения количества (объема, массы) содержащихся в таких полостях веществ, занимающих произвольное положение в объеме емкости, в том числе и...
Тип: Изобретение
Номер охранного документа: 0002531033
Дата охранного документа: 20.10.2014
27.11.2014
№216.013.0be2

Расходомер

Изобретение относится к области измерительной техники и может быть использовано для измерения расхода веществ, перемещаемых по трубопроводам, и применимо в пищевой, химической, нефтяной и других отраслях промышленности, в энергетике и др. Предлагаемый расходомер содержит два расположенных вдоль...
Тип: Изобретение
Номер охранного документа: 0002534450
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0d02

Устройство для измерения физических свойств жидкости в емкости

Изобретение относится к устройству измерения физических свойств жидкости в емкости. Повышение точности измерения является техническим результатом заявленного устройства, которое представляет собой первый рабочий чувствительный элемент в виде первого резонатора - отрезка коаксиальной линии,...
Тип: Изобретение
Номер охранного документа: 0002534747
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1285

Устройство для определения концентрации смеси веществ

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения концентрации бинарных смесей различных жидких веществ, перекачиваемых по трубопроводам. Устройство для определения концентрации смеси веществ содержит установленный на измерительном участке...
Тип: Изобретение
Номер охранного документа: 0002536164
Дата охранного документа: 20.12.2014
+ добавить свой РИД