×
01.06.2023
223.018.7486

Результат интеллектуальной деятельности: Способ получения керамического образца на основе β-трикальцийфосфата с использованием метода стереолитографии для восстановления костной ткани

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, в частности биокерамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Технический результат изобретения - получение керамических образцов на основе β-трикальцийфосфата с общей пористостью до 80%, размером пор 300-800 мкм с низкой температурой спекания. Смесь порошков β-ТКФ и 2-6 мас.% карбоната лития прокаливают при 400-700°С, измельчают и смешивают с фотополимером. Образцы печатают с использованием 3D принтера методом стереолитографии при воздействии ультрафиолетового излучения. Форма образцов керамики, пористость и размер пор задаются на стадии печати образцов. Напечатанный образец обжигают ступенчато с промежуточными выдержками. За счет применения добавки - карбоната лития - образцы спекаются при низкой температуре 850-900°С и имеют мелкокристаллическую структуру 0,8-1,0 мкм. 1 табл., 3 пр.

Композиционные материалы на основе β-трикальцийфосфата (β-ТКФ) с применением 3D печати методом лазерной стереолитографии (источник света - лазер) и проекционной микростереолитографии (источник света - экран, проектор) являются одними из наиболее перспективных в медицине для новых технологий регенерации костных тканей. Принцип получения образцов основан на полимеризации (затвердевании) фотополимера в 3D принтере под действием ультрафиолетового излучения. В настоящее время активно развиваются 3D технологии, основанные на возможности печати фотополимера, содержащего порошки оксида алюминия, диоксида циркония, трикальцийфосфата и других. После печати образцы подвергают обжигу, в процессе которого происходит удаление органической составляющей и достижение спеченного состояния, характеризующегося низкой открытой пористостью, высокой относительной плотностью, а также заданной печатью формой. Высокая биорезорбция материалов со структурой β-ТКФ и возможность получения пористых матриксов в результате применения 3D печати создает условия для быстрого восстановления костной ткани. Однако керамика на основе фосфатов кальция (β-ТКФ, гидроксиапатит) характеризуется высокой температурой спекания 1200-1350°С (Баринов С.М., Комлев В.С. Биокерамика на основе фосфатов кальция. - М.: Наука, 2005 - 204 с.), что может приводить к деформации образцов особенно сложной конфигурации. Это снижает процент выхода годных изделий и приводит к удорожанию готовой продукции. Получить спеченные образцы возможно также за счет отработки технологии спекания и применения добавок, повышающих термическую стойкость или способствующих снижению температуры спекания материалов.

Наиболее близким по техническому решению и достигаемому эффекту является способ получения 3D керамического образца на основе трикальцийфосфата, заключающийся в смешении порошка β-ТКФ со фотополимером [Schmidleithner, С., Malferrari, S., Palgrave, R.G., Bomze, D., Schwentenwein, M., & Kalaskar, D.M. Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration // Biomedical Materials. - 2019.]. Печать проводили с использованием 3D принтера при воздействии ультрафиолетового излучения. После печати образец помещали в термопечь, где в течение 96 часов проводили удаление органической составляющей и окончательный обжиг при 1200°С в течение 2 часов. Скорость нагрева варьировали между 0,17 и 0,52°С мин-1. Полученные керамические образцы имели пористость 0, 50 и 75%, размер пор около 400 мкм, относительная пористость 0,95%, размер кристаллов около 3,8 мкм. Недостатком данного способа является большая длительность и высокая температура обжига, что может привести к потере заданной формы керамических образцов.

Технический результат предлагаемого изобретения - снижение температуры обжига до 850-900°С керамического образца, получение образца с меньшим размером кристаллов 0,8-1,0 мкм, с пористостью до 80% и размерами пор до 800 мкм.

Технический результат достигается тем, что способ получения керамического образца на основе β-трикальцийфосфата с использованием метода стереолитографии для восстановления костной ткани, включающий операции: смешение порошка β-трикальцийфосфата с фотополимером, печать образца методом стереолитографии с использованием 3D принтера при воздействии ультрафиолетового облучения, обжиг образца для удаления органической составляющей и получения пористой или плотной структуры, отличается тем, что керамический образец получают в следующей последовательности операций: порошок β-ТКФ смешивают с добавкой карбоната лития в количестве 2-6 масс.%, полученную смесь прокаливают при температуре 400-700°С и измельчают до размера частиц менее 0,5 мкм, полученный порошок в количестве 20-70 масс.% смешивают с фотополимером и производят печать пористого или плотного образца при воздействии ультрафиолетового излучения с использованием 3D принтера методом стереолитографии, при этом размер пор и пористость закладывается при печати с учетом усадки образца в процессе последующего обжига, затем напечатанный образец обжигают по следующему температурному режиму: до 120-140°С - 1 час, до 230-250°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С - 2 часа, выдержка - 2 часа при 850-900°С; в результате полученный керамический образец характеризуется следующими параметрами - средний размер кристаллов 0,8-1,0 мкм, пористость 0-80%, содержит крупные поры размером от 300 до 800 мкм.

Полученный керамический образец характеризуется более низкой температурой обжига по сравнению с прототипом - 850-900°С, менее длительным режимом обжига образцов - 23 часа, однородной мелкокристаллической структурой 0,8-1,0 мкм. Введение добавки карбоната лития, имеющей температуру плавления около 732°С, приводит к образованию низкотемпературного расплава в процессе обжига, что способствует снижению температуры спекания (получению высокой плотности), мелкокристаллической структуры. Введение добавки менее 2,0 масс. % по отношению к β-ТКФ, а также использование порошка размером более 0,5 мкм не позволяет получить спеченный образец при температуре 850-900°С и размером кристаллов 0,8-1,0 мкм. При содержании добавки более 6 масс. % может происходить деформация образца керамики при его обжиге. Уменьшение времени обжига, увеличение скорости нагрева образца, а также изменение температуры и времени выдержек при обжиге образца может привести к деформации и разрушению образца, а также к появлению дефектов - трещин, отслоений, раковин. При введении порошка в фотополимеры менее 30 масс. % напечатанный образец в процессе обжига сильно деформируется и частично разрушается. При содержании порошка более 70 масс. % качество печатаемого образца снижается или становится невозможной его печать вследствие повышения вязкости эмульсии (смесь фотополимера и порошка β-ТКФ). Выход за указанные температуры прокаливания порошков (400-700°С) приводит к снижению качества печати - уменьшается разрешение напечатанного образца, в том числе, становится невозможно печатать образец с порами размером менее 500 мкм.

Пример 1. В порошок β-ТКФ добавили при перемешивании карбонат лития в количестве 6 масс. %, затем порошок прокалили при температуре 400°С, затем измельчили в планетарной мельнице до размера частиц менее 0,5 мкм. Полученный порошок в количестве 30 масс. % смешали с фотополимером, поместили в 3D принтер и произвели печать образца при воздействии ультрафиолетового излучения с размерами пор 1 мм методом стереолитографии. После печати произвели обжиг образцов по режиму до 120-140°С - 1 час, до 230-250°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С - 2 часа, выдержка - 2 часа при 850°С. В результате был получен керамический образец со средним размером кристаллов 0,8-0,9 мкм, пористостью 50%, размерами пор 800 мкм.

Пример 2. В порошок β-ТКФ добавили при перемешивании карбонат лития в количестве 5 масс. %, затем порошок прокалили при температуре 650°С, затем измельчили в планетарной мельнице до размера частиц менее 0,5 мкм. Полученный порошок в количестве 50 масс. % смешали с фотополимером, поместили в 3D принтер и произвели печать беспористого образца при воздействии ультрафиолетового излучения методом стереолитографии. После печати произвели обжиг образца по режиму до 120-140°С - 1 час, до 230-250°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С - 2 часа, выдержка - 2 часа при 880°С. В результате был получен плотный керамический образец со средним размером кристаллов около 0,9 мкм, пористостью менее 0,05%, крупные поры отсутствуют.

Также были изготовлены другие образцы керамики в пределах заявленного способа, и определены их свойства в сравнении с прототипом. Полученные результаты сведены в таблицу 1, где температурные режимы обжига обозначены: 1 - до 120-140°С - 1 час, до 240°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С - 2 часа, выдержка - 2 часа при 850-900°С.

2 - скорость нагрева варьировали между 0,17 и 0,52°С мин-1, общая продолжительность составляет 96 часов.

Способ получения керамического образца на основе β-трикальцийфосфата с использованием метода стереолитографии для восстановления костной ткани, включающий операции: смешение порошка β-трикальцийфосфата с фотополимером, печать образца с использованием 3D принтера при воздействии ультрафиолетового облучения, обжиг образца для удаления органической составляющей и получения пористой структуры, отличающийся тем, что керамический образец получают в следующей последовательности операций: порошок β-ТКФ смешивают с добавкой карбоната лития в количестве 2-6 масс. %, полученную смесь прокаливают при температуре 400-700°С и измельчают до размера частиц менее 0,5 мкм, полученный порошок в количестве 30-70 масс. % смешивают с фотополимером и производят печать пористых или плотных образцов при воздействии ультрафиолетового излучения с использованием 3D принтера методом стереолитографии, при этом размер пор и пористость закладывается при печати с учетом усадки образца в процессе последующего обжига, затем напечатанный образец обжигают по следующему температурному режиму: до 120-140°С - 1 час, до 230-250°С - 5 часов, выдержка при 240-250°С - 10 часов, до 300°С - 3 часа, до 850-900°С 2 часа, выдержка - 2 часа при 850-900°С.
Источник поступления информации: Роспатент

Showing 41-50 of 108 items.
25.08.2017
№217.015.b601

Способ получения листового композиционного материала системы титан-алюминий

Изобретение может быть использовано при получении листового композиционного материала системы титан-алюминий для изготовления деталей летательных аппаратов, в том числе подвергаемых повышенным тепловым нагрузкам. Способ включает получение слоистой заготовки в виде пакета и последующую ее...
Тип: Изобретение
Номер охранного документа: 0002614511
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.b688

Способ получения наноразмерных порошков элементов и их неорганических соединений и устройство для его осуществления

Изобретение может быть использовано для получения наноразмерных порошков элементов и их неорганических соединений методом «испарения - конденсации» в потоке газа. Перерабатываемый материал подают в виде грубодисперсного порошка с размером частиц не менее 1 мм. Для его испарения используют поток...
Тип: Изобретение
Номер охранного документа: 0002614714
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.bc5d

Способ получения карбидов элементов и композиций элемент-углерод

Изобретение относится к порошковой металлургии. Описан способ получения нанопорошков систем металл-углерод, состоящих из карбидов металлов и композиций металл-углерод, из хлоридных и оксидных соединений металлов и углеводородов в термической плазме электрических разрядов, в котором процесс...
Тип: Изобретение
Номер охранного документа: 0002616058
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.bf42

Высокопрочная низколегированная конструкционная сталь

Изобретение относится к области металлургии, а именно к составам высокопрочных конструкционных сталей, используемых в оборудовании для холодной обработки давлением, в конструкциях летательных аппаратов, в транспортном, горнодобывающем и дорожно-строительном машиностроении, в деталях и...
Тип: Изобретение
Номер охранного документа: 0002617070
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.bfaf

Литейный магниевый сплав с редкоземельными металлами

Изобретение относится к области металлургии, а именно к магниевым сплавам, содержащим редкоземельные металлы, и может быть использовано в машиностроении, авиастроении и ракетной технике в качестве легкого высокопрочного конструкционного материала для изготовления различных деталей, особенно...
Тип: Изобретение
Номер охранного документа: 0002617072
Дата охранного документа: 19.04.2017
25.08.2017
№217.015.c5f4

Способ получения корундовой керамики, содержащей металлический никель

Изобретение относится к области керамических материалов на основе корунда, использующихся в технике в качестве режущего инструмента, как носитель для никелевых, платиновых и палладиевых катализаторов, керамических мембран, применяемых для очистки сточных вод и др. Способ получения корундовой...
Тип: Изобретение
Номер охранного документа: 0002618768
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.cc5c

Карбонаткальциевый цемент для заполнения костных дефектов

Изобретение относится к медицине и может быть использовано для пластической реконструкции поврежденных костных тканей. Карбонаткальциевый цемент для заполнения костных дефектов характеризуется тем, что для его получения используют порошок кристаллической фазы карбоната кальция – кальцита, и...
Тип: Изобретение
Номер охранного документа: 0002620549
Дата охранного документа: 26.05.2017
25.08.2017
№217.015.d2ba

Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы

Изобретение относится к деформационнотермической обработке сплава TiNiTa с эффектом памяти формы и может быть использовано в медицине при изготовлении стентов. Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы включает термомеханическую обработку...
Тип: Изобретение
Номер охранного документа: 0002621535
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d96c

Способ переработки лейкоксенового концентрата

Изобретение относится к переработке титановых концентратов с высоким содержанием кремния, например лейкоксеновых концентратов. Cпособ переработки лейкоксеновых концентратов включает плавление концентрата совместно с содой. При этом содержащийся в концентрате диоксид кремния взаимодействует с...
Тип: Изобретение
Номер охранного документа: 0002623564
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.daf0

Способ получения композиционного пористого биоактивного покрытия

Изобретение относится к способам напыления композиционных пористых биоактивных покрытий и может быть использовано для формирования покрытий на поверхности внутрикостных имплантатов, фильтрующих покрытий, носителей катализаторов. Способ получения композиционного пористого биоактивного покрытия...
Тип: Изобретение
Номер охранного документа: 0002623944
Дата охранного документа: 29.06.2017
Showing 41-50 of 55 items.
29.03.2019
№219.016.f4cc

Пористый композиционный хитозан-желатиновый матрикс для заполнения костных дефектов

Изобретение относится к области медицины и касается композиционных материалов для пластической реконструкции поврежденных костных тканей. Высокопористые эластичные хитозан-желатиновые матриксы с пористостью более 90% состоит из хитозана и содержит желатин до 60 мас.% и лаурилсульфат натрия до...
Тип: Изобретение
Номер охранного документа: 0002421229
Дата охранного документа: 20.06.2011
10.04.2019
№219.017.053b

Способ получения наноразмерного порошка на основе системы трикальцийфосфат-гидроксиапатит для синтеза керамических биоматериалов

Изобретение относится к медицине, в частности к кальцийфосфатным керамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Для снижения степени агрегированности и повышения удельной поверхности влажные порошки,...
Тип: Изобретение
Номер охранного документа: 0002367633
Дата охранного документа: 20.09.2009
19.04.2019
№219.017.2fed

Материал для закрытия костных дефектов при реконструктивно-пластических операциях

Изобретение относится к медицине. Описан материал для закрытия костных дефектов при реконструктивно-пластических операциях, изготовления костных имплантатов, замещения дефектов при различных костных патологиях. Материал изготовлен на основе фосфатов кальция, представляет собой частицы...
Тип: Изобретение
Номер охранного документа: 0002333010
Дата охранного документа: 10.09.2008
09.05.2019
№219.017.4acd

Шихта для карбонат гидроксиапатитовой керамики

Шихта для получения керамического материала на основе карбоната гидроксиапатита может быть использована для заполнения костных дефектов в травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Шихта карбоната гидроксиапатита дополнительно содержит 2-20 мас.%...
Тип: Изобретение
Номер охранного документа: 0002280017
Дата охранного документа: 20.07.2006
09.06.2019
№219.017.7e35

Способ получения нанодисперсного гидроксиапатита для медицины

Изобретение относится к способу получения нанодисперсного гидроксиапатита осаждением из растворов солей кальция и фосфатов щелочных металлов и/или аммония в присутствии биополимера, например желатина или крахмала, концентрацией 0,1-1 мас.%. Образующийся осадок фосфата кальция, имеющий...
Тип: Изобретение
Номер охранного документа: 0002402483
Дата охранного документа: 27.10.2010
19.06.2019
№219.017.8936

Композиционный материал на основе гидроксиапатита и карбоната кальция для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины, а именно к травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, и может использоваться для заполнения костных дефектов. Изобретение представляет композиционный материал на основе гидроксиапатита и карбоната кальция,...
Тип: Изобретение
Номер охранного документа: 0002429885
Дата охранного документа: 27.09.2011
19.06.2019
№219.017.8975

Низкотемпературная фторгидроксиапатитовая керамика для реконструкции костных дефектов

Изобретение относится к медицине, в частности к кальцийфосфатным фторгидроксиапатитовым керамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Получение прочного ФГА связано с высокой температурой обжига керамики....
Тип: Изобретение
Номер охранного документа: 0002428206
Дата охранного документа: 10.09.2011
10.07.2019
№219.017.b122

Способ получения наноразмерного порошка для биоматериалов

Изобретение относится к медицине, в частности к кальцийфосфатным керамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Для снижения степени агрегированности и повышения площади удельной поверхности осажденные...
Тип: Изобретение
Номер охранного документа: 0002440149
Дата охранного документа: 20.01.2012
16.08.2019
№219.017.c0ae

Способ получения биоцемента для заполнения костных дефектов на основе дикальцийфосфата дигидрата и сульфата кальция двуводного

Изобретение относится к медицине и касается получения биоцемента для заполнения костных дефектов. Для этого цементный раствор получают в результате смешения порошка трикальцийфосфата и сульфата кальция полуводного с водным раствором дигидроортофосфата магния 4-водного - раствор 50-66% соли...
Тип: Изобретение
Номер охранного документа: 0002697396
Дата охранного документа: 14.08.2019
04.11.2019
№219.017.de5f

Способ получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция

Изобретение может быть использовано в реконструктивно-пластической хирургии для пластической реконструкции поврежденных костных тканей. Для получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция, для заполнения костных дефектов проводят синтез in...
Тип: Изобретение
Номер охранного документа: 0002705084
Дата охранного документа: 01.11.2019
+ добавить свой РИД