×
29.05.2023
223.018.7271

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ

Вид РИД

Изобретение

№ охранного документа
0002796388
Дата охранного документа
22.05.2023
Аннотация: Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Технический результат – повышение точности определения длины металлической трубы. Способ включает в себя этапы, при которых контролируемую трубу располагают изолированно над заземленной металлической плоскостью и возбуждают электромагнитные колебания в первом радиоволновом резонаторе в виде отрезка длинной линии. Далее измеряют разность резонансных частот и электромагнитных колебаний, соответствующих числам n+p и n полуволн стоячей электромагнитной волны вдоль отрезка длинной линии и возбуждаемых последовательно в данном отрезке длинной линии. Дополнительно возбуждают электромагнитные колебания во втором радиоволновом резонаторе, размещаемом в пределах измерительного участка и заполняемом окружающей средой на измерительном участке, и измеряют резонансную частоту электромагнитных колебаний этого радиоволнового резонатора. Производят совместное преобразование измеренных значений согласно соотношению по результату которого судят о длине металлической трубы. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях.

Известны механический способ измерения длины металлических изделий и реализующее его устройство (SU 313070 А1, 31.08.1971). Согласно им контролируемое изделие перемещают протяжным устройством в осевом направлении. Синхронно с этим приводят во вращение роликовый датчик пути, отсчитывая длину изделия как превышение некоторой базовой величины, обозначенной стационарными датчиками. Недостатками этих способа и устройства являются контактность измерений, часто неприемлемая на практике; громоздкость оборудования (его двойная длина); невысокие точность измерения и быстродействие. Точность измерения снижена вследствие проскальзывания изделия относительно ролика.

Известен также способ измерения, согласно которому контролируемую металлическую трубу располагают изолированно над заземленной металлической плоскостью (SU 442361 А1, 05.09.1974). В совокупности проводников-трубы и данной плоскости возбуждают электромагнитные колебания как в отрезке длинной линии. Измеряя колебательные характеристики отрезка длинной линии, в частности, его резонансную частоту электромагнитных колебаний, судят о длине металлической трубы. Недостатком данного способа является его ограниченные функциональные возможности, вызванные невысокой точностью измерения вследствие возможных изменений электрофизических параметров среды на измерительном участке.

Известно также техническое решение (RU 2656007 С1, 30.05.2018), которое содержит описание способа измерения, по технической сущности наиболее близкого к предлагаемому способу, и принятое в качестве прототипа. Согласно этому способу-прототипу, контролируемую металлическую трубу располагают изолированно над заземленной металлической плоскостью, в совокупности проводников - трубы и данной плоскости возбуждают электромагнитные колебания ТЕМ-типа как в отрезке длинной линии, разомкнутом на концах, при девиации их частоты и измеряют одну из колебательных характеристик отрезка длинной линии, по которой судят о длине металлической трубы, в качестве измеряемой колебательной характеристики используют разность резонансных частот электромагнитных колебаний, соответствующих числам n+p и n полуволн стоячей электромагнитной волны вдоль отрезка длинной линии и возбуждаемых последовательно в данном отрезке длинной линии; n=1, 2, …; p=1, 2, …. Недостатком этого способа невысокая точность определения длины металлической трубы вследствие возможных изменений электрофизических параметров окружающей среды на измерительном участке. Такие изменения влияют на величину информативного параметра, снижая точность измерения.

Техническим результатом изобретения является повышение точности определения длины металлической трубы.

Технический результат достигается тем, что в предлагаемом способе определения длины металлической трубы, при котором контролируемую трубу располагают изолированно над заземленной металлической плоскостью, возбуждают электромагнитные колебания в первом радиоволновом резонаторе в виде отрезка длинной линии, разомкнутого на концах и образуемого совокупностью проводников - трубы и данной плоскости, при девиации частоты электромагнитных колебаний и измеряют разность резонансных частот и электромагнитных колебаний, соответствующих числам n+p и n полуволн стоячей электромагнитной волны вдоль отрезка длинной линии и возбуждаемых последовательно в данном отрезке длинной линии; n=1, 2, …; p=1, 2, …, дополнительно возбуждают электромагнитные колебания во втором радиоволновом резонаторе, размещаемом в пределах измерительного участка и заполняемом окружающей средой на измерительном участке, и измеряют резонансную частоту электромагнитных колебаний этого радиоволнового резонатора, производят совместное преобразование измеренных значений и согласно соотношению n=1, 2, …, p=1, 2, …, где - значение незаполненного средой второго радиоволнового резонатора, с - скорость света, по результату которого судят о длине металлической трубы.

Предлагаемый способ поясняется чертежом, где показана функциональная схема устройства для реализации способа определения длины металлической трубы.

Устройство, реализующее способ, содержит металлическую трубу 1, диэлектрические опоры 2, металлическую плоскость 3, элемент связи 4, линию связи 5, электронный блок 6, электронный блок 7, резонатор 8, функциональный преобразователь 9, регистратор 10.

Сущность предлагаемого способа состоит в следующем.

Контролируемую металлическую трубу располагают на измерительном участке изолированно над заземленной металлической плоскостью. В совокупности проводников - металлической трубы и данной металлической плоскости - возбуждают электромагнитные колебания как в отрезке длинной линии, разомкнутом на обоих концах и являющимся первым радиоволновым резонатором.

Согласно данному способу, для проведения измерений длины металлической трубы используют информативный параметр - расстояние по частотной оси - разность резонансных частот и электромагнитных колебаний двух каких-либо соседних или иных типов ТЕМ-колебаний (гармоник), соответствующих числам n+p и n полуволн стоячей электромагнитной волны вдоль отрезка длинной линии, возбуждаемых последовательно в данном отрезке длинной линии; n=1, 2, …; p=1, 2, ….

Эти резонансные частоты выражаются следующими формулами:

В этих формулах n=1, 2, …; p=1, 2, … - номера гармоник (типов ТЕМ-колебаний), возбуждаемых в данном отрезке длинной линии; с - скорость света; ε и μ - соответственно, относительное значение диэлектрической и относительное значение магнитной проницаемости среды в пространстве, где расположены проводники рассматриваемого отрезка длинной линии.

Следовательно, как следует из (1) и (2), разность резонансных частот и есть

Следовательно, значение не зависит от номера n гармоники (типа ТЕМ-колебаний), а зависит только от номера р - числа, соответствующего расстоянию по частотной оси между значениями резонансных частот и с произвольным (неизвестным) номером n. В частности, в качестве этих частот могут быть выбраны частоты и соответствующие двум соседним гармоникам, что имеет место p=1. Тогда формула (3) принимает следующий вид:

При этом в качестве резонансных частот и могут быть выбраны частоты и соответствующие двум соседним гармоникам с наименьшими значениями резонансных частот, что имеет место при n=1. Тогда если ε=1 и μ=1. Тогда при изменении длины металлической трубы в пределах от значения до значения изменение (уменьшение) резонансной частоты (расстояние по частотной оси между двумя соседними гармониками) при произвольном значении n изменяется в пределах 100÷16,7 МГц. При использовании 1-ой (n=1) и 3-ей (n=3) гармоник будем иметь: тогда при изменении значения в пределах 1,5÷9 м соответствующее изменение составляет 200÷33,4 МГц.

Такие же значения разности частот гармоник имеют место при работе на более высоких частотах, соответствующих гармоникам с более высоких значением n, т.е. в тех случаях, когда вдоль отрезка длинной линии образуется стоячая волна с большим числом полуволн n. Тогда для измерений возможно применять генераторы высокой частоты с малой ее девиацией, требуемой для проведения измерений во всем диапазоне изменения длины контролируемой трубы.

В формулах (3) и (4) есть значения диэлектрической проницаемости ε и магнитной проницаемости μ окружающей среды на измерительном участке. При возможных изменениях ε и μ имеет место снижение точности измерения информативного параметра и, следовательно, снижение точности измерения длины трубы.

Согласно данному способу, для повышения точности измерения длины трубы, обусловленной устранением зависимости результата измерения длины трубы от значений ε и μ и их возможных изменений производят дополнительные измерения текущих значений ε и μ и их учет при определении длины трубы независимо от значений ε и μ.

Для этого дополнительно возбуждают электромагнитные колебания во втором радиоволновом резонаторе, размещаемом в пределах измерительного участка и заполняемом окружающей средой на измерительном участке. Таким резонатором может быть колебательный контур, дополнительный отрезок длинной линии или полый объемный резонатор, резонансная (собственная) частота электромагнитных колебаний которых зависит от электрофизических параметров ε и μ окружающей среды на измерительном участке. Измеряют резонансную частоту электромагнитных колебаний этого резонатора, которая выражается формулой:

где - значение в незаполненном средой (при ε= и μ=1) втором радиоволновом резонаторе.

Далее производят совместное функциональное преобразование измеренных информативных параметров первого и второго радиоволновых резонаторов - значений и соответственно, согласно соотношению, получаемому при делении (формула (3)) на (формула (5)):

В формуле (6) отсутствуют значения диэлектрической проницаемости ε и магнитной проницаемости μ окружающей среды на измерительном участке, то есть данное соотношение является инвариантом к величинам ε и μ.

Из формулы (6) следует соотношение для определения текущего значения длины трубы:

Если n=1, p=1, что соответствует двум соседним гармоникам с наименьшими значениями резонансных частот, то формула (7) принимает следующий вид:

Таким образом, измерение длины металлической трубы с достижением инвариантности результата измерения к электрофизическим параметрам ε и μ окружающей среды сводится к совместному преобразованию значений и согласно соотношению (7) или, при n=1 и p=1, соотношению (8).

Согласно данному способу, возбуждают электромагнитные колебания в первом радиоволновом резонаторе в виде рассматриваемого отрезка длинной линии, разомкнутого на концах и образуемого совокупностью проводников - трубы и данной плоскости. Для образования данного радиоволнового резонатора - разомкнутого на концах отрезка длинной линии - контролируемую трубу 1 располагают на диэлектрических опорах 2 (роликах) над металлической плоскостью 3 (фиг. 1). С помощью элемента связи 4, которой может являться металлическая петля (индуктивность), и линии связи 5 (коаксиальный кабель) в таком отрезке длинной линии возбуждают электромагнитные колебания с применением высокочастотного генератора, входящего в состав электронного блока 6. Частота генератора изменяется в некоторых пределах, соответствующих диапазону изменения длины контролируемой трубы в рабочем диапазоне. В этом же электронном блоке 6 производят измерение информативного параметра - разности резонансных частот выбранных гармоник отрезка длинной линии, возбуждаемых в нем последовательно при девиации частоты генератора.

Дополнительно, с применением электронного блока 7, осуществляют возбуждение электромагнитных колебаний во втором радиоволновом резонаторе 8. Этот резонатор 8 входит в состав электронного блока 7, размещается в пределах измерительного участка и заполняется окружающей средой на измерительном участке. С применением электронного блока 7 измеряют резонансную частоту электромагнитных колебаний этого резонатора 8.

Выход электронного блока 6 подсоединен к одному из двух входов функционального преобразователя 9, куда поступает информация о текущем значении информативного параметра первого радиоволнового резонатора - разности резонансных частот отрезка длинной линии. Ко второму входу функционального преобразователя 9 подсоединен выход электронного блока 7, куда поступает информация о текущем значении информативного параметра второго радиоволнового резонатора - резонансной частоты В функциональном преобразователе 9 производят совместное преобразование измеренных значений и согласно соотношению (7). По результату этого преобразования значений и судят об измеряемой длине трубы. К выходу функционального преобразователя 9 подсоединен регистратор 10, выходной сигнал которого соответствует определяемому значению длины металлической трубы.

Процесс измерения согласно данному способу достаточно прост в реализации и не связан с необходимостью проведения двух последовательных тактов измерений с операциями замыкания накоротко и размыкания совокупности проводников -металлической плоскости и располагаемой изолированно над ней металлической трубы. Данный способ измерения может найти применение на практике там, где требуется производить высокоточные бесконтактные измерения длины различных металлических труб при наличии возможных изменений электрофизических параметров окружающей среды в области расположения измерительного участка, где производят измерения длины металлической трубы.

Способ определения длины металлической трубы, при котором контролируемую трубу располагают изолированно над заземленной металлической плоскостью, возбуждают электромагнитные колебания в первом радиоволновом резонаторе в виде отрезка длинной линии, разомкнутого на концах и образуемого совокупностью проводников - трубы и данной плоскости, при девиации частоты электромагнитных колебаний и измеряют разность резонансных частот и электромагнитных колебаний, соответствующих числам n+p и n полуволн стоячей электромагнитной волны вдоль отрезка длинной линии и возбуждаемых последовательно в данном отрезке длинной линии; n=1, 2, …; p=1, 2, …, отличающийся тем, что дополнительно возбуждают электромагнитные колебания во втором радиоволновом резонаторе, размещаемом в пределах измерительного участка и заполняемом окружающей средой на измерительном участке, и измеряют резонансную частоту электромагнитных колебаний этого радиоволнового резонатора, производят совместное преобразование измеренных значений и согласно соотношению n=1, 2, …, p=1, 2, …, где - значение незаполненного средой второго радиоволнового резонатора, с - скорость света, по результату которого судят о длине металлической трубы.
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИНЫ МЕТАЛЛИЧЕСКОЙ ТРУБЫ
Источник поступления информации: Роспатент

Showing 51-60 of 276 items.
27.12.2014
№216.013.1521

Способ измерения резонансной частоты

Изобретение относится к измерительной технике и предназначено для высокоточного определения резонансной частоты с использованием цифровых методов обработки сигналов, а также определения величин, которые функционально связаны с резонансной частотой резонаторов, входящих в состав радиочастотных...
Тип: Изобретение
Номер охранного документа: 0002536833
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1618

Система определения гидродинамических коэффициентов математической модели движения судна

Изобретение относится к области судовождения - автоматическому управлению движением судна. Система определения гидродинамических коэффициентов математической модели движения судна содержит задатчик идентификационных маневров управления движением судна, объект управления, а также блок...
Тип: Изобретение
Номер охранного документа: 0002537080
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1a5f

Устройство фильтрации гармоник сетевого напряжения

Использование: в области электроэнергетики. Технический результат - уменьшение потерь энергии, обусловленных постоянным подключением к сети резонансных фильтров-подавителей, гармоники которых в данный момент отсутствуют. Устройство фильтрации гармоник сетевого напряжения содержит включенный в...
Тип: Изобретение
Номер охранного документа: 0002538179
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1ae4

Кольцевой генератор на кмдп транзисторах

Изобретение относится к области вычислительной техники и может быть использовано в системах тактовой синхронизации микропроцессорных устройств. Достигаемый технический результат - расширение функциональных возможностей путем генерирования сигналов типа меандра-трапеции, кроме сигналов типа...
Тип: Изобретение
Номер охранного документа: 0002538312
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2488

Устройство анализа результатов тестирования для поиска неисправных блоков

Изобретение относится к области тестирования дискретных объектов большой размерности. Техническим результатом является повышение глубины локализации неисправностей. Устройство содержит m n-разрядных многовходовых сигнатурных анализаторов (СА строк), входы которых соединены со всеми mn выходами...
Тип: Изобретение
Номер охранного документа: 0002540805
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.25c2

Способ измерения резонансной частоты

Изобретение относится к измерительной технике. В частности, оно может быть использовано в радиочастотных резонансных датчиках. Способ измерения заключается в том, что периодически на вход резонатора подают колебания с частотой, изменяющейся дискретно с заданным шагом в прямом и обратном...
Тип: Изобретение
Номер охранного документа: 0002541119
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.28a2

Устройство для оценки экономической эффективности процесса управления сложными системами

Изобретение относится к вычислительной технике и может быть использовано для оценки экономической эффективности процесса управления сложными системами. Техническим результатом является повышение надежности процесса управления, а также расширение арсенала технических вычислительных средств....
Тип: Изобретение
Номер охранного документа: 0002541859
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2bc3

Парафазный логический элемент

Изобретение относится к парафазному логическому элементу. Технический результат заключается в уменьшении потребляемой мощности в расчете на один такт. Логический элемент содержит два транзистора р-типа, первый тактовый транзистор n-типа и логический блок, включающий прямые и инверсные ключевые...
Тип: Изобретение
Номер охранного документа: 0002542660
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2e42

Радиоволновое устройство для обнаружения живых людей под завалами и за стенами зданий

Изобретение относится к поисково-спасательной службе и может быть использовано для активного зондирования с целью объективного определения наличия в них человека с признаками жизни и оценки его состояния по частотам дыхания и пульса. Технический результат - повышение точности обнаружения живого...
Тип: Изобретение
Номер охранного документа: 0002543310
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.346a

Способ определения диаметра диэлектрического полого цилиндрического изделия

Изобретение относится к измерительной технике и представляет собой способ определения диаметра диэлектрического полого цилиндрического изделия. При реализации способа контролируемое изделие предварительно помещают в электрическое поле, облучают изделие электромагнитной волной, принимают...
Тип: Изобретение
Номер охранного документа: 0002544893
Дата охранного документа: 20.03.2015
Showing 51-60 of 86 items.
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3995

Способ измерения положения границы раздела двух сред в емкости

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально...
Тип: Изобретение
Номер охранного документа: 0002647182
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39f9

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают...
Тип: Изобретение
Номер охранного документа: 0002647186
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.470b

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве, в том числе при их производстве, например, по методу центробежного литья на металлургических,...
Тип: Изобретение
Номер охранного документа: 0002650605
Дата охранного документа: 16.04.2018
29.05.2018
№218.016.55cb

Устройство для измерения уровня вещества в открытой металлической емкости

Изобретение предназначено для измерения уровня жидких и сыпучих веществ в открытых металлических емкостях. В частности, оно может быть применено для определения уровня жидкого металла в открытых технологических емкостях металлургического производства. Техническим результатом является расширение...
Тип: Изобретение
Номер охранного документа: 0002654362
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5c88

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность заявленного технического решения заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002656007
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5cac

Устройство для измерения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002656021
Дата охранного документа: 30.05.2018
+ добавить свой РИД