×
27.05.2023
223.018.70c8

Результат интеллектуальной деятельности: Вводы тока в статорные обмотки ВТСП-электродвигателя

Вид РИД

Изобретение

Аннотация: Изобретение относится к бесколлекторным двигателям постоянного тока со сверхпроводящими обмотками, в частности к устройствам для ввода тока в статорные обмотки из высокотемпературных сверхпроводников (ВТСП) этих двигателей, и может найти применение при производстве таких двигателей. Технический результат заключается в выполнении устройства компактным. Устройство для ввода тока в статорные обмотки ВТСП-электродвигателя содержит криостат, во фланце которого установлен штуцер, и размещенные в криостате статорные обмотки из ВТСП проводов; трубку с установленными на ней шайбами с пазами, выполненными из электроизоляционного материала, пропущенную через штуцер; ВТСП кабель и токоподводящие шины, одним концом соединенные с ВТСП кабелем, а другим - со статорными обмотками, где токоподводящие шины со стороны ВТСП кабеля жестко закреплены на трубке в пазах шайб и зафиксированы на фланце криостата. Изобретение содержит техническое решение вводов тока, отличающееся компактностью, механически удерживающее ВТСП ленты статорных обмоток и ВТСП кабеля от повреждения, адаптированное для размещения в криостате цилиндрической формы с вводом через штуцер подсоединения металлорукава кабеля. 6 з.п. ф-лы, 3 ил.

Область техники

Изобретение относится к бесколлекторным двигателям постоянного тока со сверхпроводящими обмотками, в частности к устройствам для ввода тока в статорные обмотки этих двигателей и может найти применение при производстве таких двигателей. Уровень техники.

В самом общем случае бесколлекторный двигатель состоит из ротора с постоянными магнитами и статора с обмотками.

В последнее время интенсивно разрабатываются электродвигатели, обмотки статора которых выполнены из высокотемпературных сверхпроводников (ВТСП). Далее будем называть такие электродвигатели ВТСП-электродвигателями. В качестве ВТСП применяют ВТСП ленты второго поколения.

Под ВТСП лентами 2-го поколения понимаются сложные композитные структуры, основными компонентами которых являются: металлическая подложка (бывает магнитная и немагнитная); буферные слои для закрепления сверхпроводника на подложке; сверхпроводящий материал RBa2Cu3O7 (где R - редкоземельный элемент). Дополнительно на ленту могут быть нанесены серебро, медь, лента покрыта припоем, или другими материалами в зависимости от ее назначения и условий производства. ВТСП ленты 2-го поколения проявляют сверхпроводящие свойства уже при температурах ниже 95°K.

Если в качестве обмоток используются сверхпроводниковые обмотки на основе ВТСП лент, то для работы двигателя необходим криостат, обеспечивающий функционирование сверхпроводниковых обмоток, а также должен быть предусмотрен подвод тока от внешнего источника тока к статорным обмоткам двигателя.

В уровне техники раскрываются технические решения, в которых описывается, каким образом осуществляется подвод тока, а также средства для его реализации.

В частности, в патенте RU 74521 раскрывается токоввод сверхпроводящего кабеля, который выполнен в виде, по меньшей мере, трех стержней, размещенных в направляющей трубе. На теплом конце токонесущего элемента установлен стыковочный блок, закрепленный в изоляторе, а на холодном конце - стыковочный блок, который через гибкое шинное окончание соединен с жилой сверхпроводящего кабеля. Труба и стержни припаяны к стыковочным блокам. Гибкое окончание имеет болтовое соединение с жилой кабеля. Теплый блок снабжен стандартным шинным окончанием для соединения с электрооборудованием.

Токонесущий элемент выполнен из сплава с удельным сопротивлением 1-5 мкОм⋅см, например, латуни.

Данное устройство может быть применено для сопряжения сверхпроводящего кабеля с элементами высоковольтного оборудования, работающими при нормальных температуре и давлении.

Однако, при его использовании для сопряжения ВТСП кабеля со статорными обмотками могут возникнуть следующие проблемы. Решение является достаточно громоздким для задачи ввода тока в криостат, что приведет к снижению удельной мощности всей системы ввиду повышения массы. Также описанное решение применяется для ввода тока в криогенную среду из некриогенной, однако ввод тока в обмотки ВТСП-электродвигателя осуществляется в криогенной среде.

В патенте ЕР 2786472 раскрывается устройство для ввода тока в статорные обмотки ВТСП-электродвигателя, которое содержит статор с соединительным кольцом, внутри которого размещены несколько индивидуальных т.н. «обмоточных» криостатов торроидальной формы, внутри которых размещаются сверхпроводящие обмотки. «Обмоточные» криостаты изготавливают с штуцерами для подвода охлаждающей среды, а также к обмоткам, находящимся в криостатах подводят электрический ток. Подвод тока, как и подвод криогенной жидкости осуществляют через соединительное кольцо: к соединительному кольцу подсоединены трубка для подачи криогенной жидкости, также к внешней стороне кольца подведены силовые токоподводящие элементы. Со стороны внутреннего пространства статора подведены электрические элементы, осуществляющие связь обмоток криостата через соединительное кольцо и силовые токоподводящие элементы с источником тока.

Такое устройство для ввода тока с системой индивидуальных обмоточных криостатов, в которые индивидуально подводят ток и охлаждающую жидкость к каждому криостату, позволяет задействовать криогенную среду только для охлаждения в ней обмоток.

Технической проблемой наиболее близкого аналога является необходимость отдельной детали - соединительного кольца, для ввода токов в статорные обмотки. Дополнительная деталь увеличивает габариты ВТСП-электродвигателя, таким образом, уменьшая удельную мощность посредством увеличения массы всей конструкции. В предлагаемом решении вводы тока выполнены максимально компактно, и располагаются в объеме криостата и металлорукава кабеля, не требуя организации отдельного конструкционного узла.

Раскрытие сущности изобретения.

Предлагаемым изобретением решается следующая задача: разработать конструкцию вводов тока, отличающуюся максимальной компактностью, механически удерживающую ВТСП ленты подключения статорных обмоток и ВТСП кабеля от повреждения, адаптированную для размещения в криостате цилиндрической формы с вводом через штуцер подсоединения металлорукава кабеля.

Поставленная задача решается устройством для ввода тока в статорные обмотки ВТСП-электродвигателя, содержащим:

- криостат, во фланце которого установлен штуцер, и размещенные в криостате статорные обмотки из ВТСП проводов;

- трубку с установленными на ней шайбами с пазами, выполненными из электроизоляционного материала, пропущенную через штуцер;

- ВТСП кабель;

- токоподводящие шины, одним концом соединенные с ВТСП кабелем, а другим - со статорными обмотками, где токоподводящие шины со стороны ВТСП кабеля жестко закреплены на трубке в пазах шайб и зафиксированы на фланце криостата.

Токоподводящие шины могут быть выполнены из меди с изоляционным покрытием из термоусаживаемого материала.

Шайбы с пазами могут быть выполнены из стеклотекстолита.

Токоподводящие шины в устройстве могут быть зафиксированы на фланце криостата посредством клея.

Концы токоподводящих шин могут быть соединены со статорными обмотками и с ВТСП кабелем с образованием паяного соединения.

Криостат может быть выполнен в виде двух коаксиально расположенных цилиндров со сквозными окнами, образованными пазами в цилиндрах и соединительными вставками из электроизоляционного материала, где вокруг упомянутых соединительных вставок размещены статорные обмотки из ВТСП проводов.

ВТСП кабель может быть размещен в металлорукаве.

Сущность изобретения состоит в следующем.

Подвод тока от внешнего источника к статорным обмоткам ВТСП-электродвигателя осуществляется через ВТСП кабель, который находится в металлорукаве, при этом статорные обмотки находятся в криостате ВТСП-электродвигателя.

Проблемой соединения ВТСП кабеля и статорных обмоток напрямую заключается в том, что концы статорных обмоток заканчиваются ВТСП лентами, которые сами по себе не являются механически устойчивыми.

Данная проблема решается использованием специальных жестких вводов, чтобы ВТСП ленты не деформировались при транспортировке и работе ВТСП-электродвигателя.

Конструкция соединения должна быть максимально компактной. С одной стороны, она должна свободно помещаться в металлорукав, где протянут ВТСП кабель, с другой стороны ей необходимо пройти через узкое горлышко криостата и соединиться со статорными обмотками. В предлагаемое устройство, как составная часть, входит специальная система медных токоподводящих шин, которая заходит в криостат и подводит ток к каждой статорной обмотке.

Медные токоподводящие шины изгибаются, повторяя окружность цилиндрической стенки криостата, и укладываются через изоляционную прокладку на фланец криостата. На каждой шине отгибаются места для подпайки ВТСП лент статорных обмоток строго над выводом соответствующей статорной обмотки, таким образом позволяя надежно зафиксировать ВТСП ленту в пространстве и предотвратить ее повреждение при эксплуатации. С другой стороны, токоподводящие шины загибаются под 90° и выводятся в виде компактной стопки через штуцер фланца криостата. Токоподводящие шины между собой разделяются термоусаживаемым покрытием из изоляционного материала. После прохождения штуцера токоподводящие шины раздвигаются, и выгибаются таким образом, чтобы сформировать в сечение правильный многоугольник, например, шестиугольник. Размер многоугольника подбирается таким образом, чтобы диаметр описывающей его окружности был меньше диаметра металлорукава ВТСП кабеля, и совпадал с диаметром, на котором в ВТСП кабеле располагаются ВТСП ленты. Токоподводящие шины фиксируются в пространстве посредством вклеивания на шайбы с предварительно прорезанными пазами, а шайбы нанизываются на стальную трубку. На трубку надевается ВТСП кабель, ВТСП ленты с которого распаиваются на токоподводящие шины, таким образом надежно фиксируясь в пространстве без сгибов на углы, способные привести к повреждению ВТСП лент.

Для справки: в случае, если каждая токоподводящая шина должна вводить ток до 60 А. Тепло, выделяемое в единицу времени (здесь в секунду) в этих шинах, рассчитывается по формуле

где I - сила тока, ρ - удельное сопротивление материала токоподводящей шины в криогенной среде (здесь приведено значение для меди), L - общая длина каждой токоподводящей шины, например, 1,25 м, a F - площадь поперечного сечения этой шины, например 4 мм2, то

Такую мощность нетрудно отвести, не усложняя конструкцию устройства с помощью криогенной жидкости.

На выходе из криостата токоподводящие шины жестко связаны между собой в цилиндрическую сборку, изолированы, и позволяют подпаять ВТСП ленты подводящего ВТСП кабеля.

Изобретение осуществляется следующим образом.

На фиг. 1 приведено схематическое изображение устройства для ввода тока в статорные обмотки.

На фиг. 2 приведена схема осуществления соединения статорных обмоток и ВТСП кабеля.

На фиг. 3 приводится схематическое изображение ВТСП кабеля. Позиции означают следующее:

1 - фланец;

2 - криостат;

3 - статорная обмотка;

4 - штуцер;

5 - трубка;

6 - шайбы с пазами;

7 - ВТСП кабель;

8 - токоподводящие шины;

9 - места подпайки ВТСП лент статорных обмоток;

10 - внешний цилиндр;

11 - внутренний цилиндр;

12 - окна;

13 - вставки;

14 - ВТСП ленты;

15 - металлорукав.

Устройство для ввода тока в статорные обмотки ВТСП-электродвигателя (фиг. 1) включает фланец (1) криостата (2) со статорными обмотками (3) из ВТСП проводов и штуцерами для обеспечения циркулирования криогенной среды, где к одному из штуцеров (не показан) подводится криогенная среда, а штуцер (4) служит для отвода криогенной среды.

К штуцеру (4) криостата (2) подведена трубка (5) (см. фиг. 2 и 3) из нержавеющей стали. На трубке (5) установлены шайбы с пазами (6), выполненными из электроизоляционного материала, например, из стеклотекстолита. Трубка (5) пропущена через штуцер (4).

ВТСП кабель (7) соединен с токоподводящими шинами (8).

Токоподводящие шины (8) могут быть выполнены из меди с изоляционным покрытием из термоусаживаемого материала.

Токоподводящие шины (8) со стороны ВТСП кабеля (7) жестко закреплены на трубке (5) в пазах шайб с пазами (6) и установлены в штуцере (4).

Сами токоподводящие шины (8) изогнуты по форме, повторяющей форму фланца (1) криостата (2) и закреплены на нем с помощью клея.

Другим концом токоподводящие шины соединены со статорными обмотками (3).

Оба соединения токоподводящих шин (8) с ВТСП кабелем (7) и статорными обмотками (3) могут быть выполнены посредством пайки. Позицией 9 на фиг. 2 отмечено одно из мест подпайки ВТСП лент статорных обмоток токоподводящих шин (8), которые могут быть отогнуты для удобства соединения со статорными обмотками.

Сам криостат (2) может включать два коаксиально установленных цилиндра - внешний (10) и внутренний (11), выполненных с окнами (12), образованными вставками (13), установленными между внутренним и внешним цилиндрами (10 и 11). Вокруг окон (12) во внутреннем пространстве, образованном цилиндрическими стенками криостата размещены статорные обмотки (3), к которым подключаются токоподводящие шины (8), подводя ток от ВТСП кабеля (7).

ВТСП кабель (7) включает ВТСП ленты (14) намотанные на жесткую основу и металлорукав (15), в который заключены ВТСП ленты (14).

Жесткой основой может быть второй металлорукав (не показан), который может быть соединен с трубкой (5), т.е. трубка (5) одновременно будет создавать жесткий контакт с ВТСП кабелем (7) и быть каналом для прохождения криогенной жидкости.

Монтаж предложенного устройства осуществляется следующим образом.

Медные токодводящие шины (8) изгибаются, чтобы принять необходимую форму. Примеркой к фактической сборке криостата (2) отгибаются места подпайки ВТСП лент (14), чтобы располагаться точно над выводами статорных обмоток (3). Концы токоподводящих шин со стороны ВТСП кабеля вклеиваются в шайбы с пазами (6), которые нанизываются на трубку (5). После высыхания клея, данная конструкция с помощью клея фиксируется на фланце (1). Фланец (1) вклеивается в криостат (2) и выводы статорных обмоток (3) подпаиваются на соответствующие места подпайки ВТСП лент статорных обмоток (9). После этого криостат (2) устанавливается в ВТСП-электродвигатель и на трубку (5) надевается ВТСП кабель (7), ВТСП ленты (14) которого подсоединяются с помощью пайки к участкам токоподводящих шин (8) наклеенным на шайбы с пазами (6).

В результате заявляемое изобретение содержит техническое решение задачи вводов тока в статорные обмотки ВТСП-электродвигателя, отличающееся компактностью, механически удерживающее ВТСП ленты подключения статорных обмоток и ВТСП кабеля от повреждения, адаптированное для размещения в криостате цилиндрической формы с вводом через штуцер подсоединения металлорукава ВТСП кабеля.

Источник поступления информации: Роспатент

Showing 1-10 of 174 items.
13.01.2017
№217.015.88dc

Одномодовый плазмонный волновод

Изобретение относится к плазмонной интегральной оптике и может быть использовано при конструировании компонентов плазмонных устройств различного назначения. Одномодовый плазмонный волновод, выполненный в виде заполненного диэлектриком протяженного V-образного канала в пленке металла на...
Тип: Изобретение
Номер охранного документа: 0002602737
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.b204

Квантовый генератор случайных чисел

Изобретение относится к квантовым генераторам случайных чисел и может быть использовано в криптографии. Техническим результатом является повышение качества, степени надежности и скорости генерации. Устройство содержит источник фотонов, однофотонный детектор, измеритель времени, задающий...
Тип: Изобретение
Номер охранного документа: 0002613027
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b401

Генератор плазмонных импульсов терагерцовой частоты

Изобретение относится к технике генерации импульсов терагерцовой частоты. Генератор плазмонных импульсов терагерцовой частоты включает спазер в режиме пассивной модуляции добротности на основе активной среды, помещенной в резонансную структуру, образованную в тонкой пленке металла, размещенной...
Тип: Изобретение
Номер охранного документа: 0002613808
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.c0b4

Устройство для изготовления интегральной оптической волноводной структуры

Изобретение относится к области изготовления трехмерных интегральных оптических волноводных структур. Устройство для изготовления интегральной оптической волноводной структуры в оптически прозрачном образце с показателем преломления n, включающее в себя трехмерную систему перемещения...
Тип: Изобретение
Номер охранного документа: 0002617455
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.d079

Устройство для сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для проведения подводной многомерной сейсмической разведки на акваториях, покрытых льдом. Устройство для сейсмической разведки снабжено буксируемой капсулой. Капсула состоит из правого и левого бортов, в которых на специальных...
Тип: Изобретение
Номер охранного документа: 0002621272
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d304

Способ подводной сейсмической разведки

Изобретение относится к области геофизики и может быть использовано для поиска и уточнения строения месторождений углеводородов и других полезных ископаемых на акваториях, покрытых льдом круглогодично или большую часть года, и повышения эффективности процесса их освоения. При реализации...
Тип: Изобретение
Номер охранного документа: 0002621638
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d32a

Сеть квантового распределения ключей

Изобретение относится к области сетевой волоконно-оптической квантовой криптографии - к защищенным информационным сетям с квантовым распределением криптографических ключей. Технический результат - создание сети с возможностью реконфигурации, а также обладающей большей выживаемостью при потере...
Тип: Изобретение
Номер охранного документа: 0002621605
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.de15

Подводный буровой модуль для бурения нефтяных и газовых скважин

Изобретение относится к горной промышленности, в частности к буровым модулям, предназначенным для бурения нефтяных и газовых скважин на шельфах морей. Подводный буровой модуль, имеющий открытую рамную конструкцию, включает буровую вышку с вертикальными направляющими для бурильной машины,...
Тип: Изобретение
Номер охранного документа: 0002624841
Дата охранного документа: 07.07.2017
26.08.2017
№217.015.e62e

Система детектирования одиночных фотонов

Изобретение относится к области оптического приборостроения и касается системы детектирования одиночных фотонов. Система включает в себя приемный модуль с приемной зоной, блок ориентации, оптический модуль и световод, который имеет оболочку с первым и вторым окончаниями и сердцевину с первым и...
Тип: Изобретение
Номер охранного документа: 0002627025
Дата охранного документа: 02.08.2017
29.12.2017
№217.015.f0bd

Композиция для получения полупроницаемой пористой мембраны

Изобретение относится к составу формовочного раствора для получения нетканого материала методом электроформования и может использоваться для получения водоупорной, воздухо-, паропроницаемой мембраны, а также регулирования комплекса эксплуатационных свойств мембранного материала. Композиция...
Тип: Изобретение
Номер охранного документа: 0002638981
Дата охранного документа: 19.12.2017
Showing 1-10 of 21 items.
10.05.2013
№216.012.3eea

Способ изготовления тонкопленочного высокотемпературного сверхпроводящего материала

Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов и может быть использовано при промышленном производстве длинномерных сверхпроводящих лент для создания токопроводящих кабелей, токоограничителей, обмоток мощных электромагнитов,...
Тип: Изобретение
Номер охранного документа: 0002481673
Дата охранного документа: 10.05.2013
10.05.2013
№216.012.3eeb

Способ изготовления подложки для высокотемпературных тонкопленочных сверхпроводников и подложка

Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов, в частности к изготовлению подложек для этих материалов. Сущность изобретения: способ изготовления биаксиально текстурированной подложки для высокотемпературных тонкопленочных...
Тип: Изобретение
Номер охранного документа: 0002481674
Дата охранного документа: 10.05.2013
27.02.2016
№216.014.c19c

Модуль сверхпроводящего ограничителя тока и ограничитель тока

Использование: в области электротехники. Технический результат - обеспечение эффективного охлаждения сверхпроводящего элемента при срабатывании токоограничивающего устройства. Модуль ограничителя тока включает, по меньшей мере, один сверхпроводящий элемент, расположенный в керамической капсуле...
Тип: Изобретение
Номер охранного документа: 0002576243
Дата охранного документа: 27.02.2016
10.04.2016
№216.015.2d95

Многослойный блок из сверхпроводящих лент и способ его получения

Изобретение относится к электротехнике, к многослойным магнитным блокам из высокотемпературных сверхпроводящих лент второго поколения и может быть использовано при промышленном производстве устройств для магнитной левитации, экранов магнитного поля, постоянных магнитов захваченного магнитного...
Тип: Изобретение
Номер охранного документа: 0002579457
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.9079

Сверхпроводниковая трансмиссия

Изобретение относится к электротехнике, а именно к электрической трансмиссии со сверхпроводящими обмотками. Сверхпроводниковая трансмиссия включает: входной вал и входной электромеханический преобразователь, содержащий статор с многофазными обмотками и ротор, установленный на входном валу, по...
Тип: Изобретение
Номер охранного документа: 0002603972
Дата охранного документа: 10.12.2016
29.12.2017
№217.015.f825

Сверхпроводящий ограничитель тока короткого замыкания

Использование: в области электротехники. Технический результат - обеспечение стабильной эксплуатации сильноточного сверхпроводящего ограничителя тока за счет реализации одинакового подводящего и отводящего сопротивления в цепи к каждому модулю ограничителя тока, а также уменьшение габаритов...
Тип: Изобретение
Номер охранного документа: 0002639316
Дата охранного документа: 21.12.2017
19.01.2018
№218.016.054b

Мангал

Изобретение относится к мангалам, используемым для приготовления пищи на открытом огне в быту и в дорожно-походных условиях. Изобретение обеспечивает возможность качественного приготовления пищи при использовании мангала на грунтах любой твердости в широком диапазоне возможных рельефов...
Тип: Изобретение
Номер охранного документа: 0002630715
Дата охранного документа: 12.09.2017
29.05.2018
№218.016.5646

Сверхпроводящий токоввод

Изобретение относится к области электротехники, в частности к токовводам с электрически параллельным соединением сверхпроводящих модулей. Техническим результатом является обеспечение стабильной эксплуатации токоввода при значениях тока, близких к критическим, и создание токовводов с большим...
Тип: Изобретение
Номер охранного документа: 0002654538
Дата охранного документа: 21.05.2018
26.09.2018
№218.016.8bbc

Применение полилактида для изготовления продукта, эксплуатируемого в криогенных средах, и продукт

Настоящее изобретение относится к продуктам, которые могут эксплуатироваться в криогенных средах в сверхпроводящих устройствах. Описано применение полилактидов для изготовления продуктов для сверхпроводящих устройств, эксплуатируемых в криогенных средах и обладающих высокой электрической...
Тип: Изобретение
Номер охранного документа: 0002667900
Дата охранного документа: 25.09.2018
11.03.2019
№219.016.d827

Способ преобразования тепловой энергии в электрическую и термоэмиссионный генератор для его осуществления

Заявляемое изобретение относится к области прямого преобразования тепловой энергии в электрическую посредством термоэлектронной эмиссии, в частности к получению электрической энергии за счет тепла газов, образующихся при сжигании углеводородного топлива, и может быть использовано на тепловых...
Тип: Изобретение
Номер охранного документа: 0002398307
Дата охранного документа: 27.08.2010
+ добавить свой РИД