×
24.05.2023
223.018.6f97

Результат интеллектуальной деятельности: УСТАНОВКА ДЛЯ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ ИЗМЕНЕНИЯ ОБЪЕМА ТВЕРДЫХ МАТЕРИАЛОВ ОРГАНИЧЕСКОЙ И НЕОРГАНИЧЕСКОЙ ПРИРОДЫ И СПОСОБ ПРОВЕДЕНИЯ ТАКИХ ИЗМЕРЕНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтегазодобывающей сфере, а также к сфере производства различных пластичных материалов, а именно к установке и способу определения степени набухания и кинетики набухания вещества в различных средах в широком диапазоне термобарических условий. Установка для проведения измерений изменения объема твердых материалов органической и неорганической природы с течением времени включает термошкаф, две гидравлически соединенные между собой и с вакуумным насосом поршневые емкости, установленные в термошкафу, причем каждая указанная емкость также соединена со своим насосом высокого давления, при этом одна из емкостей выполнена в виде емкости с исследуемым флюидом, а вторая выполнена в виде емкости с исследуемым твердым материалом, причем в емкость с исследуемым твердым материалом установлена ячейка, содержащая дно, боковую цилиндрическую поверхность и крышку, причем в ячейке под крышкой установлена металлическая сетка, а на ее боковой и донной поверхностях выполнены сквозные отверстия. Также описан способ проведения измерений изменения объема твердых материалов органической и неорганической природы с течением времени. Технический результат ‒ обеспечение высокоточного измерения набухания твердых материалов органической и неорганической природы в различных средах в широком диапазоне термобарических условий. 2 н. и 8 з.п. ф-лы, 5 ил.

Область техники, к которой относится изобретение

Изобретение относится к нефтегазодобывающей сфере, а также к сфере производства различных пластичных материалов, а именно к установке и способу определения степени набухания и кинетики набухания вещества в различных средах в широком диапазоне термобарических условий.

Уровень техники

Широко известным является прибор Жигача-Ярова и модели, выполненные на его основе [RU57006U1, 27.09.2006]. Принцип действия данного прибора основан на движении поршня при расширении породы, приведенной в контакт с водой. Данный поршень посредством штока соединен с датчиком измерения линейных перемещений, показания которого и определяются как степень набухания. Недостатками данного прибора являются невозможность проведения измерений при повышенных (>40°С) температурах и давлениях, отличных от атмосферного; невозможность измерения набухания плохо набухающих веществ; отсутствие физического смысла получаемой величины; невозможность получения данных о количестве жидкости, вступившей во взаимодействие с породой.

Известен прибор [RU119887U1, 27.08.2012], в котором подача жидкости в измерительную ячейку осуществляется из второй емкости, по изменению уровня жидкости в которой делается вывод о количестве жидкости, вступившей во взаимодействие с породой. Недостатками остаются невозможность проведения измерений при пластовых условиях, невозможность измерения набухания плохо набухающих веществ.

Известен прибор [SU1012098A, 15.04.1983] для измерения набухания твердых частиц, также основанный на смещении поршня. В отличие от описанных ранее приборов, в данной установке используется уравновешиватель в виде перевернутого стакана, помещаемый на исследуемые частицы, имеющий сетку на торце. Данный уравновешиватель приводит в движение поршень, который выталкивает воду в измерительную емкость. Недостатком описанного подхода также является невозможность измерения при пластовых условиях.

Наиболее близким по физической сути аналогом является прибор [SU163789A1, 00.00.1964]. Исследуемое вещество помещается в прибор со штоком, который соединен с пером, приведенным в соприкосновение с фольгой на внутренней поверхности цилиндрического барабана, вращающегося с крайне медленной скоростью. В барабан подают через гидравлическую систему необходимое давление жидкости и помещают его в термошкаф. После проведения эксперимента, фольгу достают и по полученной кривой определяют кинетику изменения объема изучаемого вещества. Недостатками конструкции являются невозможность обеспечения высокоточного измерения набухания, крайне высокая металлоемкость, техническая сложность и трудность интерпретации полученных результатов.

Заявленное изобретение устраняет вышеуказанные недостатки.

Раскрытие изобретения

Техническая задача заключается в создании решения для высокоточного измерения набухания твердых материалов органической и неорганической природы в различных средах с высокой точностью в широком диапазоне термобарических условий, при этом технически упрощенного, обладающего низкой металлоемкостью и обеспечивающего легкость интерпретации полученных результатов.

Технический результат заключается в обеспечении высокоточного измерения набухания твердых материалов органической и неорганической природы в различных средах в широком диапазоне термобарических условий.

Технический результат достигается за счет того, что установка для проведения измерений изменения объема твердых материалов органической и неорганической природы с течением времени включает термошкаф, две гидравлически соединенные между собой и с вакуумным насосом поршневые емкости, установленные в термошкафу, причем каждая указанная емкость также соединена со своим насосом высокого давления, при этом одна из емкостей выполнена в виде емкости с исследуемым флюидом, а вторая выполнена в виде емкости с исследуемым твердым материалом, причем в емкость с исследуемым твердым материалом установлена ячейка, имеющая дно, боковую цилиндрическую поверхность и крышку, причем в ячейке под крышкой установлена металлическая сетка, а на ее боковой и донной поверхностях выполнены сквозные отверстия.

Кроме того, крышка ячейки выполнена свободно ходящей со сквозными отверстиями.

Кроме того, ячейка установлена в поршневую емкость с исследуемым твердым материалом таким образом, что крышка ячейки находится в плотном контакте с крышкой данной поршневой емкости.

Кроме того, насосы высокого давления выполнены с возможностью работы в режиме постоянного давления с использованием ПИД-регулятора и термостабилизацией гидравлической жидкости, как для сжатия и подачи флюида, так и для измерения изменения объема.

Кроме того, поршневые емкости выполнены металлическими.

Способ проведения измерений изменения объема твердых материалов органической и неорганической природы с течением времени с использованием установки, содержащей термошкаф, две гидравлически соединенные между собой и с вакуумным насосом емкости с поршнями для сжатия и подачи флюида и для измерения объема набухания, установленные в термошкафу, каждая из которых соединена со своим насосом высокого давления, и цилиндрическую ячейку с исследуемым твердым материалом включает в себя следующие этапы:

в ячейку для измерения набухания помещают исследуемый твердый материал;

ячейку с исследуемым твердым материалом загружают в первую поршневую емкость для измерения набухания, которую закрывают, помещают в термошкаф, подключают к первому насосу высокого давления и поднимают давление в подпоршневом пространстве емкости с исследуемым твердым материалом до давления выше атмосферного на 0,1 МПа;

затем во вторую поршневую емкость помещают исследуемый флюид;

закрывают вторую поршневую емкость с исследуемым флюидом, помещают в термошкаф, подключают ко второму насосу высокого давления и поднимают давление в подпоршневом пространстве емкости с исследуемым флюидом до давления испытания;

включают термошкаф, нагревая его до необходимой температуры, и вакуумный насос, после чего термостабилизируют установку в течение нескольких часов;

поршневую емкость, содержащую исследуемый твердый материал, вакуумируют в течение нескольких часов, после чего запускают флюид в поршневую емкость с исследуемым твердым материалом, и затем вновь поднимают давление флюида до необходимого значения;

далее насос высокого давления, подключенный к поршневой емкости с исследуемым твердым материалом, переключают на рабочий режим поддержания постоянного давления с необходимой уставкой, при этом насос высокого давления, подключенный к поршневой емкости исследуемым флюидом, также переключают на рабочий режим с той же уставкой.

в течение нескольких дней регистрируют изменение объема воды, откачанной насосом, и измеряют изменение объема исследуемого твердого материала.

Кроме того, ячейку загружают в поршневую емкость с исследуемым твердым материалом таким образом, чтобы крышка ячейки для набухания находилась в плотном контакте с крышкой поршневой емкости.

Кроме того, обе емкости соединяются между собой гидравлической линией.

Кроме того, термостабилизацию установки осуществляют в течение двенадцати часов.

Кроме того, поршневую емкость, содержащую исследуемый твердый материал, вакуумируют три часа.

Краткое описание чертежей

Фиг. 1 - Общая схема установки;

Фиг. 2 - Схема ячейки для измерения набухания;

Фиг. 3 - Зависимость степени набухания бентонита в растворе NaOH от времени при 40°C и 15 МПа;

Фиг. 4 - Зависимость степени набухания резины в CO2 от времени при 90°C и 15 Мпа;

Фиг. 5 - Зависимость степени набухания сланцевой породы в растворе NaOH от времени при 110°C и 12 МПа.

На фигурах цифрами обозначены следующие элементы:

1 - игольчатый вентиль с отводом на вакуум-насос;

2,3 - игольчатые вентили;

4 - поршневая емкость с исследуемым флюидом;

5 - поршневая емкость с исследуемым твердым материалом;

6 - ячейка для измерения набухания с исследуемым твердым материалом;

7 - исследуемый флюид;

8,9 - игольчатые вентили;

10, 11 - насосы высокого давления;

12 - термошкаф;

13 - вакуум-насос;

14 - исследуемый материал;

15 - металлические сетки (200 меш);

16 - свободно ходящая крышка со сквозными отверстиями;

17 - сквозные отверстия в стенке ячейки;

18 - проточка на боковой стенке ячейки;

19 - дно ячейки со сквозными отверстиями;

20 - боковая цилиндрическая поверхность.

Осуществление изобретения

Заявленная установка для проведения измерений изменения объема твердых материалов органической и неорганической природы с течением времени, включает термошкаф, насосы высокого давления, вакуумный насос, цилиндрическую ячейку со свободно ходящей крышкой, металлической сеткой и отверстиями на боковой и донной поверхностях, металлические емкости с поршнями для сжатия и подачи флюида и для измерения объема набухания.

Изобретение поясняется с помощью нижеприведенных примеров измерений и иллюстрируется фигурами 1-4.

Установка содержит, расположенные в термошкафу 12, две гидравлически соединенные между собой поршневые емкости 4 и 5 для сжатия и подачи флюида и для измерения объема набухания, каждая из которых гидравлически соединена со своим насосом высокого давления 10 и 11.

Одна из этих емкостей 4 предназначена для исследуемого флюида 7, во второй емкости 5 установлена цилиндрическая ячейка 6 для измерения набухания, заполненная исследуемым твердым материалом 14.

Ячейка 6 содержит дно 19, боковую цилиндрическую поверхность 20, крышку 16 и металлическую сетку 15. Крышка выполнена свободно движущейся со сквозными отверстиями. На боковой и донной поверхностях также выполнены сквозные отверстия. Отверстия в боковой поверхности способствуют дополнительному равномерному смачиванию флюидом всего твердого материала. На дне ячейки также может быть установлена металлическая сетка. Металлические сетки предназначены для предотвращения рассеивания породы из ячейки.

Ячейка может быть изготовлена из химически и термостойкого полимера PEEK (полиэфир-эфиркетон).

Насосы высокого давления 10 и 11 выполнены с возможностью работы в режиме поддержания постоянного давления с использованием ПИД-регулятора и термостабилизацией гидравлической жидкости для сжатия и подачи флюида и измерения величины набухания.

Соединение элементов между собой гидравлическое, посредством трубопроводов. Для закрытия и открытия подачи жидкости предусмотрены соответствующие вентили, например, игольчатые, установленные в необходимых для этого местах, например, между емкостями, насосами и емкостями, собственно, как показано на фиг. 1.

Изобретение обеспечивает возможность проведения измерения изменения объема твердых материалов органической и неорганической природы с течением времени в средах органической и неорганической природы в диапазоне температур 20-150°С и давлений 0-70 МПа.

Способ проведения измерений с применением вышеуказанной установки в общем виде включает подготовку образцов и установки, приведение к пластовым условиям, заполнение ячейки жидкостью, выдержку при пластовых условиях до прекращения изменения объема флюида. Применяемая ячейка с металлической сеткой, наполненной исследуемым твердым веществом, помещается в поршневую емкость с подключенным к ней насосом, выполняющим функции средства измерения изменения объема вещества при взаимодействии с закачиваемым флюидом. Подача флюида при повышенном давлении обеспечивается с помощью второго насоса. Создание повышенных температур обеспечивается с помощью размещения составных частей прибора в термошкафу.

Если точнее, то способ проведения измерений с применением вышеуказанной установки, содержащей термошкаф, две поршневые емкости для сжатия и подачи флюида и для измерения объема набухания, установленные в термошкафу, каждая из которых соединена со своим насосом высокого давления, вакуумный насос и цилиндрическую ячейку с исследуемым твердым материалом, включает в себя следующие этапы:

в ячейку для измерения набухания помещают исследуемый твердый материал;

ячейку с исследуемым твердым материалом загружают в первую поршневую емкость для измерения набухания, которую закрывают, помещают в термошкаф, подключают к первому насосу высокого давления и поднимают давление в подпоршневом пространстве емкости с исследуемым твердым материалом до давления выше атмосферного на 0.1 МПа;

затем во вторую поршневую емкость помещают исследуемый флюид;

закрывают вторую поршневую емкость с исследуемым флюидом, помещают в термошкаф, подключают ко второму насосу высокого давления и поднимают давление в подпоршневом пространстве емкости с исследуемым флюидом до давления испытания;

включают термошкаф, нагревая его до необходимой температуры, и вакуумный насос, после чего термостабилизируют установку в течение нескольких часов;

поршневую емкость, содержащую исследуемый твердый материал, вакуумируют в течение нескольких часов, после чего запускают флюид в поршневую емкость с исследуемым твердым материалом, и затем вновь поднимают давление флюида до необходимого значения;

далее насос высокого давления, подключенный к поршневой емкости с исследуемым твердым материалом, переключают на рабочий режим поддержания постоянного давления с необходимой уставкой, при этом насос высокого давления, подключенный к поршневой емкости исследуемым флюидом, также переключают на рабочий режим с той же уставкой.

в течение нескольких дней регистрируют изменение объема воды, откачанной насосом, и измеряют изменение объема исследуемого твердого материала.

Ячейка загружается в поршневую емкость исследуемым твердым материалом таким образом, чтобы крышка ячейки для набухания находилась в плотном контакте с крышкой поршневой емкости.

Обе емкости соединяются между собой гидравлической линией.

Термостабилизироать установку могут в течение двенадцати часов.

Поршневую емкость, содержащую исследуемый твердый материал, могут вакуумировать три часа.

Работоспособность установки обеспечивается следующим образом. Изначально вентили 1, 2, 3 - закрыты, вентили 8, 9 - открыты. Ячейка для измерения набухания 6 заполнена твердым материалом, который, благодаря присутствию сетки 15 и крышки 16, не может при набухании покинуть ячейку. Присутствие отверстий 17 способствует равномерному смачиванию флюидом всего твердого материала. Собранная ячейка загружается в поршневую емкость 5 таким образом, чтобы крышка ячейки для набухания находилась в плотном контакте с крышкой поршневой емкости. Поршневая емкость 5 подключается к насосу 10, после чего поднимается давление до значения 0,2-0,3 МПа в подпоршневом пространстве 5 с помощью гидравлической жидкости и насоса 10.

В поршневую емкость 4 загружают исследуемый флюид 7, после чего подсоединяют ее к насосу 11 и поднимают давление в подпоршневом пространстве 4 до давления испытания. Включают термошкаф 12, термостабилизируют в течение 12 часов, открывают вентили 1 и 3, включают вакуумный насос, вакуумируют в течение 3 часов. После этого закрывают 1 и 3, дожидаются стабилизации температуры шкафа и запускают флюид 7 через вентили 2 и 3 в поршневую емкость 5, после чего вновь поднимают давление флюида до давления эксперимента с помощью насоса 11. С этого момента переводят насос 10 в режим работы «по давлению», при этом уставкой является равновесное давление, установившееся на плунжере насоса 10 при давлении на плунжере насоса 11, равном пластовому.

При расширении исследуемого материала 14, он толкает свободно движущуюся крышку 16. Поскольку она находится вплотную к крышке поршневой емкости 5, она двигаться не может, в результате чего происходит движение поршня поршневой емкости 5 и повышение давления на плунжере насоса 10. Поскольку насос работает в режиме «по давлению», он будет откачивать гидравлическую жидкость из подпоршневого пространства, при этом количество откачанной гидравлической жидкости из подпоршневого пространства 5 будет равняться увеличению объема исследуемого вещества. Постоянство температуры поддерживается термошкафом 13, постоянство давления - насосом 11, подсоединненым к поршневкой емкости 4 с флюидом 7.

Эксперимент проводят несколько дней, определяя зависимость количества откачанной гидравлической жидкости от времени с начала эксперимента. Степень набухания определяется как:

Где Vo - начальный объем материала (мл), Vнi - объем гидравлической жидкости, откачанный насосом с момента начала эксперимента.

Примеры конкретных анализов приведены ниже. Они не исчерпывают всех возможностей заявленной установки и способа, но иллюстрируют ее основные применения.

Пример 1.

В ячейку помещают 49.05 грамм бентонита. Исходя из плотности в 1.75 г/см3, его истинный объем составляет 28.02 мл. Ячейку помещают в поршневую емкость объемом 200 мл, которую закрывают и подключают к насосу высокого давления и помещают в термошкаф.

Во вторую поршневую емкость помещают 200 мл раствора гидроксида натрия квалификации «хч» (далее - NaOH) в дистиллированной воде с концентрацией 2 г/л, также закрывают ее, помещают в термошкаф и подключают ко второму насосу высокого давления. Обе емкости соединяются между собой гидравлической линией с двумя закрытыми вентилями.

Термошкаф нагревается до 40°С, давление в емкости с NaOH увеличивают до 15 МПа. Термостабилизируют систему в течение двенадцати часов. Поршневую емкость, содержащую бентонит, вакуумируют три часа, после чего вентили между емкостями открываются. Производится подъем давления в системе до 15 МПа, после чего насос, подключенный к емкости с бентонитом, переключается на режим работы «по давлению - обратный ход» с уставкой 15 МПа, насос, подключенный к емкости с NaOH переключается на режим работы «по давлению - прямой ход» с той же уставкой.

В течение четырех дней регистрируют изменение объема воды, откачанной насосом, работающим на обратном ходу.

Результат представлен на Фигуре 3.

Пример 2.

В ячейку помещают 25.04 грамм резиновой крошки фракции 0-0.63 мм. Исходя из плотности в 1.1 г/см3, ее истинный объем составляет 22.8 мл. Ячейку помещают в поршневую емкость объемом 200 мл, которую закрывают и подключают к насосу высокого давления и помещают в термошкаф.

Во вторую поршневую емкость помещают из баллона 300 г углекислоты марки 4.5 (далее - CO2) с давлением 5 МПа. Помещают емкость в термошкаф и подключают ко второму насосу высокого давления. Обе емкости соединяются между собой гидравлической линией с двумя закрытыми вентилями.

Термошкаф нагревается до 90°С, давление в емкости с CO2 насосом увеличивают до 15 МПа. Термостабилизируют систему в течение 12 часов. Поршневую емкость, содержащую резину, вакуумируют 3 часа, после чего вентили между емкостями открываются. Производится подъем давления в системе до 15 МПа, после чего насос, подключенный к емкости с резиной, переключается на режим работы «по давлению - обратный ход» с уставкой 15 МПа, насос, подключенный к емкости с CO2 переключается на режим работы «по давлению - прямой ход» с той же уставкой.

В течение трех дней регистрируют изменение объема воды, откачанной насосом, работающим на обратном ходу.

Результат представлен на Фигуре 4.

Пример 3.

В ячейку помещают 58.01 грамм горной породы сланцевого коллектора. Исходя из плотности в 2.65 г/см3, ее истинный объем составляет 21.9 мл. Ячейку помещают в поршневую емкость объемом 200 мл, которую закрывают и подключают к насосу высокого давления и помещают в термошкаф.

Во вторую поршневую емкость помещают раствор NaOH в воде с концентрацией 2 г/л. Помещают емкость в термошкаф и подключают ко второму насосу высокого давления. Обе емкости соединяются между собой гидравлической линией с двумя закрытыми вентилями.

Термошкаф нагревается до 110°С, давление в емкости с NaOH насосом увеличивают до 12 МПа. Термостабилизируют систему в течение 12 часов. Поршневую емкость, содержащую породу, вакуумируют 3 часа, после чего вентили между емкостями открываются. Производится подъем давления в системе до 12 МПа, после чего насос, подключенный к емкости с породой, переключается на режим работы «по давлению - обратный ход» с уставкой 12 МПа, насос, подключенный к емкости с naOH переключается на режим работы «по давлению - прямой ход» с той же уставкой.

В течение двух недель дней регистрируют изменение объема воды, откачанной насосом, работающим на обратном ходу.

Результат представлен на Фигуре 5.

Таким образом, за счет преимуществ указанных выше, в том числе, за счет использования ячейки, состоящей из цилиндра с отверстиями на боковой поверхности для равномерной пропитки, свободно ходящей крышки и металлической сетки, использования насосов высокого давления с функцией работы в режиме постоянного давления с использованием ПИД-регулятора и термостабилизацией гидравлической жидкости, как для сжатия и подачи флюида, так и для измерения изменения объема, использования металлической емкости с поршнем, смещаемым в ходе набухания исследуемого материала и выталкивающим гидравлическую жидкость, и использования металлической емкости с поршнем для сжатия и подачи исследуемого флюида, обеспечивается возможность проведения с повышенной точностью измерения набухания твердых материалов органической и неорганической природы с течением времени в различных средах с высокой точностью в широком диапазоне термобарических условий. При этом установка является технически упрощенной, обладающей низкой металлоемкостью, обеспечивающей легкость интерпретации полученных результатов.


УСТАНОВКА ДЛЯ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ ИЗМЕНЕНИЯ ОБЪЕМА ТВЕРДЫХ МАТЕРИАЛОВ ОРГАНИЧЕСКОЙ И НЕОРГАНИЧЕСКОЙ ПРИРОДЫ И СПОСОБ ПРОВЕДЕНИЯ ТАКИХ ИЗМЕРЕНИЙ
УСТАНОВКА ДЛЯ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ ИЗМЕНЕНИЯ ОБЪЕМА ТВЕРДЫХ МАТЕРИАЛОВ ОРГАНИЧЕСКОЙ И НЕОРГАНИЧЕСКОЙ ПРИРОДЫ И СПОСОБ ПРОВЕДЕНИЯ ТАКИХ ИЗМЕРЕНИЙ
УСТАНОВКА ДЛЯ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ ИЗМЕНЕНИЯ ОБЪЕМА ТВЕРДЫХ МАТЕРИАЛОВ ОРГАНИЧЕСКОЙ И НЕОРГАНИЧЕСКОЙ ПРИРОДЫ И СПОСОБ ПРОВЕДЕНИЯ ТАКИХ ИЗМЕРЕНИЙ
УСТАНОВКА ДЛЯ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ ИЗМЕНЕНИЯ ОБЪЕМА ТВЕРДЫХ МАТЕРИАЛОВ ОРГАНИЧЕСКОЙ И НЕОРГАНИЧЕСКОЙ ПРИРОДЫ И СПОСОБ ПРОВЕДЕНИЯ ТАКИХ ИЗМЕРЕНИЙ
УСТАНОВКА ДЛЯ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ ИЗМЕНЕНИЯ ОБЪЕМА ТВЕРДЫХ МАТЕРИАЛОВ ОРГАНИЧЕСКОЙ И НЕОРГАНИЧЕСКОЙ ПРИРОДЫ И СПОСОБ ПРОВЕДЕНИЯ ТАКИХ ИЗМЕРЕНИЙ
Источник поступления информации: Роспатент

Showing 1-10 of 33 items.
29.12.2017
№217.015.f586

Маркирующая добавка

Изобретение может быть использовано для установления подлинности или верификации взрывчатых веществ, ценных бумаг, дорогостоящего оборудования, ювелирных изделий. Маркирующая добавка в виде частиц сферической формы содержит магнитный компонент и маркирующий компонент при следующем соотношении,...
Тип: Изобретение
Номер охранного документа: 0002637334
Дата охранного документа: 04.12.2017
13.02.2018
№218.016.23f1

Способ нанесения гидрофобного и олеофобного покрытия на текстильный материал и текстильный материал с гидрофобным и олеофобным покрытием

Изобретение относится к способу нанесения гидрофобного и олеофобного покрытия на текстильный материал, включающему выдержку текстильного материала в растворе сополимера в сверхкритическом диоксиде углерода в реакторе высокого давления, характеризующемуся тем, что указанный раствор содержит...
Тип: Изобретение
Номер охранного документа: 0002642775
Дата охранного документа: 25.01.2018
10.05.2018
№218.016.4099

Способ получения тонких пленок на основе углеродных наноматериалов

Изобретение относится к нанотехнологии. Сначала готовят суспензию, содержащую этиленгликоль в качестве жидкой дисперсионной среды и углеродный наноматериал, например графен, оксид графена, восстановленный оксид графена, однослойные углеродные нанотрубки, двухслойные углеродные нанотрубки,...
Тип: Изобретение
Номер охранного документа: 0002648920
Дата охранного документа: 28.03.2018
29.05.2018
№218.016.575b

Способ определения содержания незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и к горным наукам, а именно к геокриологии, и позволяет определять содержание незамерзшей воды в различных минеральных и органогенных мерзлых грунтах, а также в мерзлых загрязненных породах, содержащих органические (нефть, нефтепродукты и др.) и солевые...
Тип: Изобретение
Номер охранного документа: 0002654832
Дата охранного документа: 22.05.2018
19.04.2019
№219.017.2b85

Способ получения высокомощного катодного материала на основе твердого раствора life1-x-ymnxcoypo4 со структурой оливина для литий-ионных аккумуляторов

Изобретение относится к области электродных материалов на основе сложных фосфатов переходных металлов и лития и может быть использовано для получения катодного активного материала для литий-ионных аккумуляторов и батарей на основе такого материала. Способ получения материала формулы LiFeMnCoPO,...
Тип: Изобретение
Номер охранного документа: 0002684895
Дата охранного документа: 16.04.2019
27.04.2019
№219.017.3ca9

Система виртуальной реальности на основе смартфона и наклонного зеркала

Изобретение относится к системам мобильной виртуальной реальности, в частности к системам мобильной виртуальной реальности, осуществляющим отслеживание положения пользователя с 6 степенями свободы с помощью камеры смартфона в качестве единственного устройства формирования изображения....
Тип: Изобретение
Номер охранного документа: 0002686029
Дата охранного документа: 23.04.2019
03.07.2019
№219.017.a418

Способ изготовления наночастиц оксидов марганца и аэрогелей на их основе и полученный таким способом аэрогель

Изобретение относится к синтезу наночастиц оксидов марганца и аэрогелей оксидов марганца. Способ включает растворение металлорганического прекурсора марганца в сверхкритическом диоксиде углерода в реакторе высокого давления с добавлением в качестве окислителя чистого кислорода. Затем проводят...
Тип: Изобретение
Номер охранного документа: 0002693200
Дата охранного документа: 01.07.2019
05.07.2019
№219.017.a665

Многоэлектродная гармонизированная ионная ловушка кингдона со слившимися внутренними электродами

Изобретение относится к области масс-спектрометрии. Ионная ловушка содержит по меньшей мере два внешних электрода, вытянутых вдоль продольной оси ловушки, и две пары внутренних электродов, вытянутых вдоль продольной оси ловушки и расположенных таким образом, что каждый электрод из одной...
Тип: Изобретение
Номер охранного документа: 0002693570
Дата охранного документа: 03.07.2019
10.07.2019
№219.017.a999

Способ добычи природного газа из газогидратной залежи

Изобретение относится к газовой промышленности, в частности, к разработке газогидратных месторождений. Способ добычи природного газа из газогидратной залежи заключается в том, что сооружают скважину на газопроницаемый газогидратный пласт, вскрывают этот пласт и периодически проводят закачку в...
Тип: Изобретение
Номер охранного документа: 0002693983
Дата охранного документа: 08.07.2019
11.07.2019
№219.017.b2bc

Тонкопленочный гибридный фотоэлектрический преобразователь и способ его изготовления

Настоящее изобретение относится к полупроводниковым гибридным структурам для преобразования энергии светового излучения в электрическую энергию и может быть использовано при создании альтернативных источников энергии. Согласно изобретению предложены тонкопленочные гибридные фотоэлектрические...
Тип: Изобретение
Номер охранного документа: 0002694113
Дата охранного документа: 09.07.2019
Showing 1-10 of 13 items.
20.07.2014
№216.012.de48

Способ добычи вязкой нефти

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности добычи высоковязкой нефти. В способе добычи вязкой нефти предварительно в призабойную зону пласта для формирования на забое катализаторной подушки с проницаемостью не ниже проницаемости...
Тип: Изобретение
Номер охранного документа: 0002522690
Дата охранного документа: 20.07.2014
10.12.2014
№216.013.0d7d

Способ добычи вязкой нефти

Изобретение относится к нефтеперерабатывающей промышленности. Технический результат - повышение степени извлечения вязкой нефти. В способе добычи вязкой нефти предварительно в призабойную зону пласта для формирования на забое катализаторной подушки с проницаемостью не ниже проницаемости...
Тип: Изобретение
Номер охранного документа: 0002534870
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1014

Способ кислотной обработки карбонатного пласта

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности кислотной обработки карбонатного пласта. Способ кислотной обработки карбонатного пласта включает предварительную промывку скважины органическим растворителем, затем последовательную закачку в...
Тип: Изобретение
Номер охранного документа: 0002535538
Дата охранного документа: 20.12.2014
19.10.2018
№218.016.9408

Способ разработки низкопроницаемых нефтяных залежей

Изобретение относится к области разработки нефтяных месторождений, в частности к добыче нефти из низкопроницаемых коллекторов. Технический результат - повышение нефтеотдачи пласта за счет снижения фильтрационного сопротивления движению флюидов. По способу осуществляют бурение системы наклонно...
Тип: Изобретение
Номер охранного документа: 0002669949
Дата охранного документа: 17.10.2018
11.03.2019
№219.016.d859

Способ захоронения техногенного диоксида углерода дымовых газов

Изобретение относится к способам захоронения парниковых газов, производимых тепловыми электростанциями, теплоэлектроцентралями и другими стационарными источниками газообразных продуктов сгорания минерального топлива - дымового газа. Обеспечивает повышение эффективности способа. Сущность...
Тип: Изобретение
Номер охранного документа: 0002393344
Дата охранного документа: 27.06.2010
09.05.2019
№219.017.5057

Способ определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала

Использование: для определения пространственного распределения и концентрации компонента в поровом пространстве пористого материала. Сущность: заключается в том, что в образец пористого материала закачивают контрастное рентгеновское вещество, в качестве которого используют водорастворимую соль...
Тип: Изобретение
Номер охранного документа: 0002467316
Дата охранного документа: 20.11.2012
03.09.2019
№219.017.c682

Способ изоляции газопритоков в добывающих скважинах

Использование: нефтяная промышленность. Проводят закачку в скважину изолирующего состава, полученного путем диспергирования гидрофобного глинистого материала в мазуте при следующем соотношении, мас.%: гидрофобный глинистый материал - 1,0-3,0, мазут - остальное, до 100. Затем продавливают...
Тип: Изобретение
Номер охранного документа: 0002698929
Дата охранного документа: 02.09.2019
03.09.2019
№219.017.c6ab

Способ изоляции газопритоков в добывающих скважинах

Изобретение относится к нефтяной промышленности. Способ изоляции газопритоков в добывающих скважинах включает закачку в скважину изолирующего состава, полученного путем диспергирования гидрофобного глинистого материала в гомогенной смеси отработанного масла и мазута, взятых при следующем...
Тип: Изобретение
Номер охранного документа: 0002698924
Дата охранного документа: 02.09.2019
07.06.2020
№220.018.2513

Способ разработки многопластового неоднородного нефтяного месторождения

Изобретение относится к нефтедобывающей промышленности, в частности к способам разработки трудноизвлекаемых запасов нефти плотных неоднородных по проницаемости коллекторов. Для реализации способа разработки многопластового неоднородного нефтяного месторождения осуществляют бурение вертикальных...
Тип: Изобретение
Номер охранного документа: 0002722893
Дата охранного документа: 04.06.2020
07.06.2020
№220.018.251a

Способ разработки многопластовой неоднородной нефтяной залежи

Изобретение относится к нефтедобывающей промышленности, в частности к способам разработки трудноизвлекаемых запасов нефти плотных неоднородных по проницаемости коллекторов. Для осуществления разработки многопластового неоднородного нефтяного месторождения осуществляют бурение горизонтальных...
Тип: Изобретение
Номер охранного документа: 0002722895
Дата охранного документа: 04.06.2020
+ добавить свой РИД