×
23.05.2023
223.018.6c9e

Результат интеллектуальной деятельности: Способ обезгаживания элементов конструкции космических аппаратов в наземных условиях

Вид РИД

Изобретение

Аннотация: Изобретение относится к области испытательной техники, в частности к испытаниям изделий, например, космических аппаратов (КА) на обезгаживание в условиях, приближенных к эксплуатационным, и может быть использовано в космической технике при проведении испытаний комплектующих КА: аппаратуры, приборов, узлов конструкции, бортовой кабельной сети, экрановакуумной теплоизоляции. Обезгаживание комплектующих КА необходимо для того, чтобы исключить конденсацию продуктов газоотделения и испарения в вакууме от них на оптические и радиационные поверхности КА в полете и тем самым повысить работоспособность оптических и радиационных поверхностей КА. Способ обезгаживания элементов конструкции космических аппаратов в наземных условиях заключается в том, что помещают космический аппарат в тепловакуумную камеру с криогенными экранами, вакуумируют ее до заданного давления. Далее заполняют криогенный экран тепловакуумной камеры жидким азотом. Одновременно создают тепловой поток заданной температуры на поверхности космического аппарата. Поддерживают на поверхности космического аппарата заданную температуру и выдерживают космический аппарат при заданной температуре в тепловакуумной камере заданный промежуток времени. Для создания и поддержания на поверхности космического аппарата заданной температуры используют тепловой поток от имитатора солнечного излучения, регулируя его интенсивность. Включают бортовую аппаратуру космического аппарата, при этом поддерживают заданное давление в тепловакуумной камере на уровне ниже давления возникновения электрического разряда в вакууме при максимальном напряжении электропитания включенной бортовой аппаратуры космического аппарата. Измеряют с заданной периодичностью давление в тепловакуумной камере, при достижении стабильной величины которого измеряют значение установившегося суммарного потока натекания и газоотделения в тепловакуумной камере. После чего прекращают вакуумирование тепловакуумной камеры и выдержку космического аппарата в ней. Изобретение обеспечивает увеличение срока службы аппаратуры, имеющей в своем составе оптические и радиационные поверхности и получение количественной оценки дегазации.

Изобретение относится к области испытательной техники, в частности к испытаниям изделий, например, космических аппаратов (КА) на обезгаживание в условиях, приближенных к эксплуатационным, и может быть использовано в ракетно-космической технике при проведении испытаний комплектующих КА: аппаратуры, приборов, узлов конструкции, бортовой кабельной сети, экрановакуумной теплоизоляции. Обезгаживание комплектующих КА необходимо для того, чтобы исключить конденсацию продуктов газоотделения и испарения в вакууме от названных комплектующих на оптические и радиационные поверхности КА в полете и тем самым повысить работоспособность данных поверхностей.

Известен способ (аналог) обезгаживания элементов конструкции КА, заключающийся в том, что помещают КА в вакуумную камеру, вакуумируют ее, поддерживают на КА температуру обезгаживания, выдерживают КА в вакуумной камере в течение заданного времени, прекращают вакуумирование и доводят давление в вакуумной камере до атмосферного (А. Рот, пер. с англ. Вакуумные уплотнения. М.: Энергия, 1971, стр. 10, 26-27).

Наиболее близким по технической сущности и достигаемому техническому результату к предлагаемому изобретению является способ (прототип) обезгаживания элементов конструкции КА, заключающийся в том, что помещают КА в вакуумную камеру, вакуумируют ее до заданного давления и производят нагрев КА до температуры обезгаживания с помощью инфракрасных нагревателей, заполняют криогенный экран вакуумной камеры жидким азотом и поддерживают температуру обезгаживания на КА, выдерживают КА в этих условиях заданное время, после чего прекращают процесс обезгаживания (патент RU 2177376 С1, опубл. 27.12.2001 г., МПК В08В 5/04 (2006.01)).

Недостатком аналога и прототипа является то, что они недостаточно достоверно обеспечивают проведение в полном объеме процесса дегазации испытываемого изделия. Определяющим параметром для аналога и прототипа является только заданное время дегазации. Кроме того, при использовании инфракрасного облучения КА не учитывается тот факт, что использование имитатора солнечного излучения (ИСИ) позволяет создать реальный солнечный поток, имеющий составляющие в инфракрасном, видимом и ультрафиолетовом участках спектра, то есть при использовании ИСИ процесс дегазации происходит в реальном солнечном спектре, как это происходит в полете, а также не учитываются требования к аппаратуре, входящей в состав КА, для которой необходимо проводить испытания при ее включении в условиях воздействия имитации солнечного излучения.

Задачей изобретения является повышение точности и достоверности проведения обезгаживания комплектующих КА.

Техническим результатом является увеличение срока службы аппаратуры, имеющей в своем составе оптические и радиационные поверхности и получение количественной оценки дегазации.

Технический результат достигается за счет того, что в способе обезгаживания элементов конструкции КА в наземных условиях, заключающемся в том, что помещают КА в тепловакуумную камеру (ТВК) с криогенным экраном, вакуумируют ее до заданного давления, заполняют криогенный экран тепловакуумной камеры жидким азотом, одновременно создают с помощью теплового потока заданную температуру на поверхности КА, поддерживают на поверхности КА заданную температуру и выдерживают КА при заданной температуре в тепловакуумной камере заданный промежуток времени, при этом для создания и поддержания на поверхности КА заданной температуры используют тепловой поток от имитатора солнечного излучения (ИСИ), регулируя его интенсивность, включают бортовую аппаратуру КА, поддерживают заданное давление в тепловакуумной камере на уровне ниже давления возникновения электрического разряда в вакууме при максимальном напряжении электропитания включенной бортовой аппаратуры КА, измеряют с заданной периодичностью давление в тепловакуумной камере, при достижении стабильной величины которого измеряют значения установившегося суммарного потока натекания и газоотделения в тепловакуумной камере, после чего прекращают вакуумирование тепловакуумной камеры и выдержку КА в ней.

В предложенном способе для получения заданной температуры на поверхности КА используют имитатор солнечного излучения, имеющего полный солнечный спектр, а также измеряют установившийся суммарный поток газоотделения и натекания в вакуумной камере, получая таким образом не только качественную оценку дегазации, но и количественную, а также появляется возможность проводить испытания КА при включенной бортовой аппаратуре. Кроме того, если при испытаниях бортовую аппаратуру КА не включают, то достаточно, чтобы давление в тепловакуумной камере было ниже или равно давлению, при котором длина свободного пробега молекул продуктов газоотделения была бы больше максимального расстояния от поверхности КА до холодного экрана ТВК. Это давление соответствует молекулярно-вязкостному режиму течения (приблизительно 1⋅10-3 мм рт.ст.).

Данный способ осуществляется следующим образом:

- помещают КА в тепловакуумную камеру, например, в ВК 600/300;

- вакуумируют ТВК до заданного давления, которое измеряют, например, вакуумметром Televac СС-10, например, до 5⋅10-5 мм рт.ст. с помощью вакуумных насосов, например, механических Oerlikon Leybold RUTA WH7000/DV1200/G, турбомолекулярных Edwards STP-iXA4506C;

- заполняют криогенный экран ТВК жидким азотом и одновременно включают ИСИ, например, ИС-500 ВК600/300, регулируя его интенсивность для создания и поддержания на поверхности КА заданной температуры, например, 60°С, которую измеряют, например, с помощью датчиков температур ТЭП 018-06;

- выдерживают космический аппарат в ТВК при заданной температуре заданный промежуток времени, например, 74 ч;

- включают бортовую аппаратуру КА, при этом заданное давление в вакуумной камере поддерживают на уровне ниже давления возникновения электрического разряда в вакууме при максимальном напряжении электропитания включенной бортовой аппаратуры КА, например, 3⋅10-5 мм рт.ст., которое указано в технической документации на аппаратуру, после проверки бортовую аппаратуру выключают;

- измеряют с заданной периодичностью давление в ТВК и определяют момент достижения стабильного давления и суммарного потока натекания и газоотделения в тепловакуумной камере, например, отключая систему вакуумирования от тепловакуумной камеры и используя уравнение:

Q=V⋅ΔР/ΔТ,

где V - свободный объем тепловакуумной камеры;

ΔР - нарастание давления в ТВК за время ΔT;

ΔT - длительность отключения системы вакуумирования от тепловакуумной камеры;

- достигают стабильной величины давления в тепловакуумной камере, например, когда изменение величины суммарного потока натекания и газоотделения в вакуумной камере отличается от предыдущего измеренного значения не более чем на 5%;

- прекращают вакуумирование камеры и выдержку космического аппарата в ней, после удаляют КА из тепловакуумной камеры.

Пример осуществления способа: проводились испытания экспериментального изделия по предлагаемому способу обезгаживания. Были получены следующие результаты по суммарному потоку натекания и газоотделения в тепловакуумной камере в процессе обезгаживания:

- через 24 ч выдержки изделия поток составил Q=60 л⋅мкм рт.ст./с;

- через 50 ч выдержки изделия поток составил Q=35 л⋅мкм рт.ст./с;

- через 60 ч выдержки изделия поток составил Q=30 л⋅мкм рт.ст./с;

- через 70 ч выдержки изделия поток составил Q=29 л⋅мкм рт.ст./с.

Так как последнее измеренное значение величины суммарного потока в тепловакуумной камере отличалось от предыдущего менее чем на 5%, было принято решение о завершении испытаний.

Использование данного способа обезгаживания элементов конструкции космических аппаратов в наземных условиях позволит увеличить срок службы аппаратуры, имеющей в своем составе оптические и радиационные поверхности за счет использования ИСИ, позволяющего более достоверно проводить процесс дегазации, максимально приблизив его к натурным условиям эксплуатации КА, а также позволит, измеряя установившийся суммарный поток газоотделения и натекания в ТВК, получать не только качественную оценку дегазации, но и количественную. Способ достаточно прост в эксплуатации и не требует разработки нового оборудования.

Способ обезгаживания элементов конструкции космических аппаратов в наземных условиях, заключающийся в том, что помещают космический аппарат в тепловакуумную камеру с криогенным экраном, вакуумируют ее до заданного давления, заполняют криогенный экран тепловакуумной камеры жидким азотом, одновременно создают тепловой поток заданной температуры на поверхности космического аппарата, поддерживают на поверхности космического аппарата заданную температуру и выдерживают космический аппарат при заданной температуре в тепловакуумной камере заданный промежуток времени, отличающийся тем, что для создания и поддержания на поверхности космического аппарата заданной температуры используют тепловой поток от имитатора солнечного излучения, регулируя его интенсивность, включают бортовую аппаратуру космического аппарата, при этом поддерживают заданное давление в тепловакуумной камере на уровне ниже давления возникновения электрического разряда в вакууме при максимальном напряжении электропитания включенной бортовой аппаратуры космического аппарата, измеряют с заданной периодичностью давление в тепловакуумной камере, при достижении стабильной величины давления в тепловакуумной камере измеряют значение установившегося суммарного потока натекания и газоотделения в тепловакуумной камере, после чего прекращают вакуумирование тепловакуумной камеры и выдержку космического аппарата в ней.
Источник поступления информации: Роспатент

Showing 21-30 of 111 items.
29.05.2018
№218.016.55a4

Щелевая антенна

Изобретение относится к антенной технике, в частности к щелевым антеннам резонаторного типа с полунаправленной диаграммой направленности, и может быть использовано в технике связи, особенно на борту космического объекта. Технический результат - уменьшение габаритов антенны и ее двухчастотное...
Тип: Изобретение
Номер охранного документа: 0002654346
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.55ca

Способ испытаний изделий на суммарную негерметичность

Изобретение относится к области исследования устройств на герметичность. Сущность: изделие помещают в вакуумную камеру с подключенным к ней течеискателем. Вакуумируют вакуумную камеру. Подают в вакуумную камеру эталонный поток пробного газа. Измеряют приращение парциального давления пробного...
Тип: Изобретение
Номер охранного документа: 0002654340
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.57ca

Способ определения временной привязки производимых с космического аппарата снимков земной поверхности

Изобретение относится к космической технике и может быть использовано для определения временной привязки снимков земной поверхности с космического аппарата (КА). В способе определения временной привязки производимых с КА снимков земной поверхности осуществляют генерацию на борту значения...
Тип: Изобретение
Номер охранного документа: 0002654883
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.584e

Способ оценки состояния солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к системам электроснабжения космических аппаратов (КА) с помощью солнечных батарей (СБ). Способ включает ориентацию СБ на Солнце, измерение на последовательных витках орбиты угла между направлением на Солнце и нормалью к плоскости орбиты КА, а также тока СБ в моменты...
Тип: Изобретение
Номер охранного документа: 0002655089
Дата охранного документа: 23.05.2018
09.06.2018
№218.016.5b10

Способ контроля производительности солнечной батареи космического аппарата на бестеневых орбитах

Изобретение относится к эксплуатации солнечных батарей (СБ) космического аппарата (КА). Способ включает ориентацию нормали к рабочей поверхности СБ на Солнце (под углом α) и измерение тока СБ. На последовательных витках орбиты измеряют угол β между направлением на Солнце и плоскостью орбиты КА...
Тип: Изобретение
Номер охранного документа: 0002655561
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5b16

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники. Сущность: устройство содержит корпус (1) с внутренней полостью (2) и расточкой (3). В расточке (3) установлена крышка (4),...
Тип: Изобретение
Номер охранного документа: 0002655675
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5b37

Устройство осевой фиксации коаксиальных деталей и способы осевой фиксации и расфиксации коаксиальных деталей

Изобретение относится к машиностроению, а именно к устройствам осевой фиксации деталей в отверстиях. Техническим результатом изобретения является повышение надежности устройства осевой фиксации путем обеспечения стойкости проволочного фиксатора к вибрации и ударным осевым нагрузкам, а также...
Тип: Изобретение
Номер охранного документа: 0002655910
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5b6c

Герметизированное устройство

Изобретение относится к машиностроению и может быть использовано, например, при испытаниях полостей устройств авиационной и ракетной техники. Сущность: устройство содержит корпус (1), с наружного торца (2) которого имеется расточка (3), сообщенная с внутренней полостью (4) корпуса (1). На...
Тип: Изобретение
Номер охранного документа: 0002655743
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5bcd

Способ зондирования верхней атмосферы

Изобретение относится к космической технике и может быть использовано для зондирования верхней атмосферы. Сущность: измеряют и прогнозируют орбиту космического аппарата. Определяют момент времени начала зондирования верхней атмосферы. Выпускают с космического аппарата на тросе капсулу с научной...
Тип: Изобретение
Номер охранного документа: 0002655645
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5dc3

Коаксиальный электрохимический компрессор водорода

Изобретение относится к электрохимии, в том числе к «зеленой энергетике», и может использоваться в транспортных энергосистемах и космосе. Компрессор водорода включает корпус с входным и выходным штуцерами, а также пакет электроизолированных мембранно-электродных блоков, состоящих из...
Тип: Изобретение
Номер охранного документа: 0002656219
Дата охранного документа: 01.06.2018
Showing 11-15 of 15 items.
15.05.2023
№223.018.5c6f

Стенд для тепловакуумных испытаний элементов космических аппаратов

Изобретение относится к испытаниям элементов космических аппаратов (КА) с имитацией условий космического пространства. Стенд содержит вакуумную камеру (ВК) с системой ее вакуумирования (СВ), криогенный экран, расположенный по внутреннему контуру ВК, имитатор внешних тепловых потоков, систему...
Тип: Изобретение
Номер охранного документа: 0002759359
Дата охранного документа: 12.11.2021
23.05.2023
№223.018.6cb8

Способ захолаживания системы космического объекта, работающей в вакууме, при моделировании условий штатной эксплуатации

Изобретение относится к области испытательной техники, в частности к наземным тепловакуумным испытаниям космических объектов. Способ захолаживания системы космического объекта, работающей в вакууме, при моделировании условий штатной эксплуатации заключается в том, что устанавливают испытываемую...
Тип: Изобретение
Номер охранного документа: 0002771263
Дата охранного документа: 29.04.2022
23.05.2023
№223.018.6cd9

Способ испытаний изделий на герметичность

Изобретение относится к области испытательной техники, в частности, к испытаниям изделий космической техники на герметичность, и может найти применение в таких областях техники, как газовая промышленность, атомное машиностроение, авиастроение. Способ испытаний изделий на герметичность включает...
Тип: Изобретение
Номер охранного документа: 0002770228
Дата охранного документа: 14.04.2022
23.05.2023
№223.018.6ce2

Способ имитации давления в вакуумной камере при наземной проверке космических аппаратов на работоспособность

Изобретение относится к области испытательной техники, в частности, к наземной проверке космических аппаратов (КА). Способ имитации давления в вакуумной камере при наземной проверке КА на работоспособность, при котором помещают КА в вакуумную камеру, вакуумируют её и проверяют КА на...
Тип: Изобретение
Номер охранного документа: 0002770327
Дата охранного документа: 15.04.2022
23.05.2023
№223.018.6d09

Способ проведения тепловакуумных испытаний при наземной проверке космических аппаратов на работоспособность

Изобретение относится к области испытательной техники, в частности к наземной проверке космических аппаратов (КА) на работоспособность. Способ проведения тепловакуумных испытаний при наземной проверке КА на работоспособность включает помещение КА в вакуумную камеру, вакуумирование камеры,...
Тип: Изобретение
Номер охранного документа: 0002772763
Дата охранного документа: 25.05.2022
+ добавить свой РИД