×
23.05.2023
223.018.6c67

Результат интеллектуальной деятельности: Система топливопитания газотурбинного двигателя

Вид РИД

Изобретение

№ охранного документа
0002739658
Дата охранного документа
28.12.2020
Аннотация: Изобретение относится к системам топливопитания и может быть использовано для питания топливом авиационных газотурбинных двигателей. Система содержит насос подачи топлива с электроприводом, вычислительный модуль, регулятор частоты вращения насоса, систему управления высшего уровня, датчик температуры топлива и мерное устройство с постоянной площадью проходного сечения, снабженное датчиком перепада давления на мерном устройстве. Электропривод включает в себя электродвигатель и блок управления частотой его вращения. Датчик температуры топлива установлен на выходе насоса, первый вход вычислительного модуля связан с системой управления высшего уровня, которая формирует требуемое значение массового расхода топлива, второй вход вычислительного модуля связан с выходом датчика температуры топлива, первый вход регулятора частоты вращения насоса связан с выходом вычислительного модуля, а выход регулятора связан с входом блока управления частотой вращения электродвигателя. Мерное устройство установлено за датчиком температуры топлива, выход насоса сообщен с входом мерного устройства, выход датчика перепада давления на мерном устройстве связан со вторым входом регулятора частоты вращения насоса, а вычислительный модуль выполнен с возможностью определения требуемого значения перепада давления на мерном устройстве. Технический результат - повышение точности определения расхода топлива при его подаче в ГТД. 1 ил.

Изобретение относится к системам топливопитания и может быть использовано для питания топливом авиационных газотурбинных двигателей (ГТД).

Известна система топливопитания газотурбинного двигателя (RU 2194181, 2002), содержащая насос подачи топлива с электроприводом, вычислительный модуль, регулятор частоты вращения насоса и датчик температуры топлива, где электропривод включает в себя электродвигатель и блок управления частотой его вращения, датчик температуры топлива установлен на выходе насоса, при этом один из входов вычислительного модуля связан с выходом датчика температуры топлива, вход регулятора частоты вращения насоса связан с выходом вычислительного модуля, а выход регулятора связан с входом блока управления частотой вращения электродвигателя.

Известна система топливопитания газотурбинного двигателя (US 8666632, 2014), содержащая насос подачи топлива с электроприводом, вычислительный модуль и регулятор частоты вращения насоса, при этом вход регулятора частоты вращения насоса связан с выходом вычислительного модуля, а выход регулятора связан с входом блока управления частотой вращения электродвигателя.

Общим недостатком перечисленных систем топливопитания является наличие дополнительного гидромеханического дозирующего устройства или датчика расхода, что усложняет систему и снижает ее надежность.

Известна система топливопитания газотурбинного двигателя (US 6182438, 2001), содержащая насос подачи топлива с электроприводом, вычислительный модуль, систему управления высшего уровня, датчик температуры топлива и мерное устройство, снабженное датчиком перепада давления на мерном устройстве, где электропривод содержит электродвигатель и блок управления частотой его вращения, датчик температуры топлива установлен на выходе насоса, при этом первый вход вычислительного модуля связан с системой управления высшего уровня, а второй вход вычислительного модуля связан с выходом датчика температуры топлива.

Недостатком известной системы является отсутствие регулятора частоты вращения насоса, обеспечивающего необходимый расход топлива на всех режимах работы двигателя, что ограничивает область применения системы только режимом запуска двигателя с использованием характеристики насоса, снятой непосредственно перед запуском. Для работы известной системы требуется также клапан переключения и трубопровод возврата топлива в насос, которые усложняют систему и снижают ее надежность. На переходных режимах работы двигателя источником дополнительной погрешности при реализации требуемого расхода топлива являются отличия в пропускной способности мерного устройства (жиклера) и форсунок двигателя.

Наиболее близким аналогом заявленного изобретения является система топливопитания газотурбинного двигателя (RU 2588315, 2016), содержащая насос подачи топлива с электроприводом, вычислительный модуль, регулятор частоты вращения насоса, систему управления высшего уровня и датчик температуры топлива, где электропривод включает в себя электродвигатель и блок управления частотой его вращения, датчик температуры топлива установлен на выходе насоса, при этом первый вход вычислительного модуля связан с системой управления высшего уровня, которая формирует требуемое значение массового расхода топлива, второй вход вычислительного модуля связан с выходом датчика температуры топлива, вход регулятора частоты вращения насоса связан с выходом вычислительного модуля, а выход регулятора связан с входом блока управления частотой вращения электродвигателя.

Недостатком известной системы является то, что текущее значение расхода топлива определяется с использованием экспериментальной зависимости расхода топлива от частоты вращения электродвигателя и величины тока в его обмотках, измеряемых с помощью соответствующих датчиков. При отказе одного из датчиков система становится не работоспособной, и подача топлива прекращается.

Кроме того, расходная характеристика насоса определяется однократно в экспериментальных условиях, т.е. в условиях, отличных от условий реальной работы двигателя. В процессе эксплуатации она может искажаться из-за износа деталей насоса, изменения температуры топлива и окружающей среды и других факторов, что увеличивает погрешность расчетного определения расхода топлива при эксплуатации и, в итоге, ведет к несанкционированному изменению параметров ГТД (в частности, тяги).

Согласно требованиям к системам регулирования и топливопитания авиационных ГТД погрешность расхода топлива должна быть не более ±2-3% (Энциклопедия, т. IV-21 «Самолеты и вертолеты», книга 3 «Авиационные двигатели», глава 3.2 «Вопросы теории САУ ГТД», Машиностроение, Москва, 2010, стр. 376) в различных условиях эксплуатации двигателя, включая износ качающих узлов, засорение форсунок камеры сгорания и т.п.

Техническая проблема, на решение которой направлено заявленное изобретение, заключается в низкой надежности и отказоустойчивости системы топливопитания на установившихся режимах работы двигателя.

Технический результат, достигаемый при осуществлении заявленного изобретения, заключается в повышении точности определения расхода топлива при его подаче в ГТД.

Технический результат достигается за счет того, что система топливопитания газотурбинного двигателя содержит насос подачи топлива с электроприводом, вычислительный модуль, регулятор частоты вращения насоса, систему управления высшего уровня и датчик температуры топлива, где электропривод включает в себя электродвигатель и блок управления частотой его вращения, датчик температуры топлива установлен на выходе насоса, при этом первый вход вычислительного модуля связан с системой управления высшего уровня, которая формирует требуемое значение массового расхода топлива, второй вход вычислительного модуля связан с выходом датчика температуры топлива, первый вход регулятора частоты вращения насоса связан с выходом вычислительного модуля, а выход регулятора связан с входом блока управления частотой вращения электродвигателя, при этом система дополнительно содержит мерное устройство с постоянной площадью проходного сечения, снабженное датчиком перепада давления на мерном устройстве, причем мерное устройство установлено за датчиком температуры топлива, выход насоса сообщен со входом мерного устройства, выход датчика перепада давления на мерном устройстве связан со вторым входом регулятора частоты вращения насоса, а вычислительный модуль выполнен с возможностью определения требуемого значения перепада давления на мерном устройстве.

Существенность отличительных признаков, составляющих изобретение, подтверждается тем, что:

- наличие в системе мерного устройства с постоянной площадью проходного сечения, установленного за датчиком температуры топлива, где выход насоса сообщен со входом мерного устройства, обеспечивает стабильность его характеристик в эксплуатации;

- снабжение мерного устройства датчиком перепада давления, выход которого связан со вторым входом регулятора частоты вращения насоса, обеспечивает возможность замкнутого регулирования расхода топлива с требуемой погрешностью;

- наличие насоса подачи топлива с электроприводом, вычислительного модуля, регулятора частоты вращения насоса, системы управления высшего уровня и датчика температуры топлива, где электропривод включает в себя электродвигатель и блок управления частотой его вращения, датчик температуры топлива установлен на выходе насоса, при этом первый вход вычислительного модуля связан с системой управления высшего уровня, которая формирует требуемое значение массового расхода топлива, второй вход вычислительного модуля связан с выходом датчика температуры топлива, первый вход регулятора частоты вращения насоса связан с выходом вычислительного модуля, выход регулятора связан с входом блока управления частотой вращения электродвигателя, а вычислительный модуль выполнен с возможностью определения требуемого значения перепада давления на мерном устройстве, позволяет при отказе датчика перепада давления перейти на программное регулирование подачи топлива в ГТД и повысить точность определения его расхода.

Настоящее изобретение поясняется иллюстрацией, где на фигуре изображена принципиальная схема системы топливопитания газотурбинного двигателя.

Система топливопитания газотурбинного двигателя содержит насос 1 подачи топлива с электроприводом 2, вычислительный модуль 3, регулятор 4 частоты вращения насоса 1, систему 5 управления высшего уровня, датчик 6 температуры топлива, установленный на выходе насоса 1, и мерное устройство 7 с постоянной площадью проходного сечения, установленное за датчиком 6 температуры топлива и снабженное датчиком 8 перепада давления на мерном устройстве 7. Электропривод 2 включает в себя электродвигатель 9 и блок 10 управления частотой его вращения. К электроприводу 2 подведено напряжение питания (Uпит).

Первый вход вычислительного модуля 3 связан с системой 5 управления высшего уровня, второй вход вычислительного модуля 3 связан с выходом датчика 6 температуры топлива, а выход вычислительного модуля 3 - с первым входом регулятора 4 частоты вращения насоса 1, выход которого связан с входом блока 10 управления частотой вращения электродвигателя 9, выход насоса 1 сообщен со входом мерного устройства 7, выход датчика 8 перепада давления на мерном устройстве 7 связан со вторым входом регулятора 4 частоты вращения насоса 1.

Система 5 управления высшего уровня формирует требуемое значение массового расхода топлива, а вычислительный модуль 3 выполнен с возможностью определения требуемого значения перепада давления на мерном устройстве 7.

Мерное устройство 7 может быть выполнено в виде калиброванной шайбы с сечением в соответствии с ГОСТ 8.586.1-2005. В частности, в качестве мерного устройства 7 могут быть использованы форсунки камеры сгорания в системе топливопитания и управления ГТД, а в качестве датчика 8 перепада давления на форсунках - устройства, определяющие разность давлений перед форсунками и в камере сгорания (за компрессором высокого давления), имеющиеся в составе систем управления ГТД.

В качестве регулятора 4 частоты вращения насоса 1 может быть использован пропорционально-интегрально-дифференциальный (ПИД) регулятор или регулятор иного типа.

Блок 10 управления частотой вращения по электрическим линиям связан с электродвигателем 9, ротор которого соединен рессорой 11 с валом насоса 1. Топливо поступает в насос 1 из бака, затем из насоса 1 оно поступает к датчику 6 температуры топлива, далее к мерному устройству 7 и ГТД. Гидравлические связи на фигуре показаны сплошными линиями со стрелками, а электрические - квадратными точками со стрелками.

В качестве электропривода 2 может быть использован вентильный электропривод с постоянными магнитами на роторе. Его отказоустойчивость обеспечивается резервированием датчиков электропривода 2, использованием многофазного электродвигателя 9 и двухканального блока управления 10.

Система топливопитания газотурбинного двигателя работает следующим образом.

В процессе работы насоса 1 из системы 5 управления высшего уровня на первый вход вычислительного модуля 3 поступает требуемое значение массового расхода G топлива, а на второй его вход - измеренное датчиком 6 значение температуры ТИЗМ топлива. При определении требуемого значения перепада давления ΔРТРБ на мерном устройстве 7 сначала вычисляется значение плотности ρ топлива по заранее введенной в вычислительный модуль 3 зависимости от измеренного значения температуры ТИЗМ топлива, например:

где k0, k1 - коэффициенты аппроксимации.

Далее рассчитывается требуемое значение перепада давления ΔРТРБ на мерном устройстве 7 по известной зависимости от требуемого значения массового расхода G топлива, заранее введенного в память вычислительного модуля 3 значения площади сечения μF мерного устройства 7 и рассчитанного значения плотности ρ топлива:

Рассчитанное требуемое значение перепада давления ΔРТРБ на мерном устройстве 7 поступает на первый вход регулятора 4 частоты вращения насоса 1, а измеренное датчиком 8 значение перепада давления ΔРИЗМ на мерном устройстве 7 - на второй вход регулятора 4 частоты вращения насоса 1.

Регулятор 4 частоты вращения насоса 1 определяет величину рассогласования между требуемым значением перепада давления ΔРТРБ на мерном устройстве 7 и измеренным значением ΔРИЗМ. После коррекции величины рассогласования по величине производной и использования других операций для обеспечения нужного качества переходных процессов (изменение коэффициентов ПИД-регулятора, введение зоны нечувствительности и др.) формируется сигнал управления UЭП, который с выхода регулятора 4 поступает на вход блока управления 10 частотой вращения электродвигателя 9. Блок управления 10 отрабатывает сигнал управления и реализует требуемую частоту вращения электродвигателя 9 и насоса 1.

Изменение частоты вращения насоса 1 приводит к изменению величины расхода топлива через него и, следовательно, к изменению величины перепада давления на мерном устройстве 7. Таким образом, процесс работы системы реализует замкнутое регулирование расхода топлива и продолжается до тех пор, пока значения требуемого и измеренного перепадов давлений не совпадут с заданной погрешностью, которая определяется погрешностью датчика 8 перепада давления и составляет 1-2%.

Компенсация возможной инерционности датчика 6 температуры топлива производится в вычислительном модуле 3 путем использования, например, известного уравнения:

где

Т - компенсированное значение температуры топлива;

τИЗМ - постоянная времени датчика температуры;

dTИЗМ/dt - производная измеренного значения температуры.

В вычислительном модуле 3 имеется резервная характеристика системы в виде зависимости сигнала управления UЭП с выхода регулятора 4 частоты вращения насоса 1 от ΔРТРБ. При отказе датчика 8 перепада давления система реализует программное регулирование расхода топлива. При этом на первый вход вычислительного модуля 3 поступает требуемое значение массового расхода G топлива, а на второй его вход - измеренное датчиком 6 значение температуры ТИЗМ топлива и вычисляется значение плотности ρ топлива по заранее введенной в вычислительный модуль 3 зависимости. Далее рассчитывается требуемое значение ΔРТРБ перепада давления на мерном устройстве 7 по известной зависимости от требуемого значения массового расхода G, заранее введенного в память вычислительного модуля 3 значения площади сечения μF мерного устройства 7 и рассчитанного значения плотности ρ топлива. Рассчитанное требуемое значение ΔРТРБ используется в резервной характеристике системы для определения величины сигнала управления UЭП, поступающего на вход блока управления 10 частотой вращения электродвигателя 9.

Таким образом, система топливопитания ГТД помимо выполнения функции подачи топлива позволяет регулировать величину расхода топлива без использования характеристик насосов, клапанов постоянного перепада и других гидромеханических устройств, что подтверждает достижение заявленного технического результата - повышения точности определения расхода топлива при его подаче в ГТД. Как следствие, обеспечивается повышение надежности системы топливопитания ГТД, в том числе на установившихся и переходных режимах работы двигателя.

Заявленная система топливопитания может также найти применение в двигателях стационарных энергоустановок и других объектах, где требуется обеспечить подачу топлива и его дозирование.

Система топливопитания газотурбинного двигателя, содержащая насос подачи топлива с электроприводом, вычислительный модуль, регулятор частоты вращения насоса, систему управления высшего уровня и датчик температуры топлива, где электропривод включает в себя электродвигатель и блок управления частотой его вращения, датчик температуры топлива установлен на выходе насоса, при этом первый вход вычислительного модуля связан с системой управления высшего уровня, которая формирует требуемое значение массового расхода топлива, второй вход вычислительного модуля связан с выходом датчика температуры топлива, первый вход регулятора частоты вращения насоса связан с выходом вычислительного модуля, а выход регулятора связан с входом блока управления частотой вращения электродвигателя, отличающаяся тем, что дополнительно содержит мерное устройство с постоянной площадью проходного сечения, снабженное датчиком перепада давления на мерном устройстве, при этом мерное устройство установлено за датчиком температуры топлива, выход насоса сообщен с входом мерного устройства, выход датчика перепада давления на мерном устройстве связан со вторым входом регулятора частоты вращения насоса, а вычислительный модуль выполнен с возможностью определения требуемого значения перепада давления на мерном устройстве.
Источник поступления информации: Роспатент

Showing 101-110 of 204 items.
05.07.2018
№218.016.6c53

Водонагревательное устройство и способ его работы

Изобретение относится к области энергетики, а именно к водонагревательному устройству и способу его работы, и может быть использовано в аппаратах с погружным горением при нагреве воды. Водонагревательное устройство содержит бак с днищем и крышкой, вертикальную камеру сгорания, установленную в...
Тип: Изобретение
Номер охранного документа: 0002659711
Дата охранного документа: 03.07.2018
09.08.2018
№218.016.7910

Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях

Изобретение относится к области испытаний высокоскоростных летательных аппаратов с двигательной установкой на основе воздушно-реактивного двигателя и может быть использовано для определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях. Сущность изобретения состоит в...
Тип: Изобретение
Номер охранного документа: 0002663320
Дата охранного документа: 03.08.2018
28.08.2018
№218.016.7ff8

Способ регулирования водности в имитируемом атмосферном облаке

Изобретение относится к области сертификационных испытаний авиационной техники и, в частности, к технологии имитации атмосферного облака, а также имитации перемежающейся облачности при испытаниях противообледенительных систем основных узлов летательного аппарата и его двигателя на наземных...
Тип: Изобретение
Номер охранного документа: 0002664932
Дата охранного документа: 23.08.2018
28.08.2018
№218.016.8010

Двухконтурная горелка

Изобретение относится к теплоэнергетике и может быть использовано для непрерывного пламенного сжигания подготовленных топливовоздушных смесей газообразного углеводородного топлива в камерах сгорания газотурбинных установок. Двухконтурная горелка для камеры сгорания газотурбинной установки...
Тип: Изобретение
Номер охранного документа: 0002665009
Дата охранного документа: 24.08.2018
29.08.2018
№218.016.814f

Способ полетной диагностики узлов турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к способу полетной диагностики узлов турбореактивного двухконтурного двигателя (ТРДД) со смешением потоков. Для диагностики узлов измеряют определенным образом рабочие параметры двигателя на стационарном полетном режиме работы двигателя, измеряют параметры окружающей...
Тип: Изобретение
Номер охранного документа: 0002665142
Дата охранного документа: 28.08.2018
25.09.2018
№218.016.8b55

Фронтовое устройство камеры сгорания газотурбинного двигателя

Фронтовое устройство камеры сгорания содержит фронтовую плиту жаровой трубы и топливовоздушные модули, каждый из которых содержит пилотный и основной контуры с коаксиально расположенными внутренним, средним и наружным воздушными каналами и канал охлаждения, образованные соответствующими...
Тип: Изобретение
Номер охранного документа: 0002667820
Дата охранного документа: 24.09.2018
25.09.2018
№218.016.8b62

Способ диагностики технического состояния агрегата авиационного привода

Изобретение относится к области авиации, в частности к способам контроля и диагностики технического состояния агрегатов авиационных приводов по вибрации их корпусов при работающих двигателях. Техническим результатом, достигаемым в заявленном изобретении, является повышение точности диагностики...
Тип: Изобретение
Номер охранного документа: 0002667830
Дата охранного документа: 24.09.2018
26.10.2018
№218.016.9647

Асимметричный воздухозаборник для трехконтурного двигателя сверхзвукового самолета

Изобретение относится к входным устройствам высокоскоростных летательных аппаратов. Асимметричный воздухозаборник для трехконтурного двигателя сверхзвукового самолета содержит пространственный клин (1), обечайку (2), боковые стенки (3), дозвуковой диффузор (6), горло и систему управления...
Тип: Изобретение
Номер охранного документа: 0002670664
Дата охранного документа: 24.10.2018
27.10.2018
№218.016.974f

Кольцевая камера сгорания газотурбинного двигателя

Изобретение относится к камерам сгорания газотурбинных двигателей, использующим жидкое топливо, предпочтительно авиационных двигателей. Кольцевая камера сгорания газотурбинного двигателя содержит жаровую трубу, фронтовое устройство, обтекатель с открытой передней центральной частью и диффузор....
Тип: Изобретение
Номер охранного документа: 0002670858
Дата охранного документа: 25.10.2018
27.10.2018
№218.016.9772

Способ определения характера касания лопатки вращающегося колеса о корпус турбомашины

Изобретение относится к области машиностроения, в частности турбостроения, и может быть использовано для доводки авиационных двигателей при стендовых испытаниях. Снабжают лопатку колеса по меньшей мере одним тензометрическим датчиком, обеспечивают регистрацию сигнала тензометрического датчика,...
Тип: Изобретение
Номер охранного документа: 0002670771
Дата охранного документа: 25.10.2018
Showing 11-12 of 12 items.
23.02.2019
№219.016.c60b

Способ определения истинного объёмного газосодержания

Изобретение относится к способам определения физических свойств двухфазных потоков, а именно к способам определения истинного объемного газосодержания потока масловоздушной эмульсии в трубопроводе, в частности в системах смазки газотурбинных двигателей. Способ заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002680416
Дата охранного документа: 21.02.2019
17.08.2019
№219.017.c110

Электродвигатель с внешним ротором и системой охлаждения статора

Изобретение относится к области электротехники, в частности, к охлаждению статора обращенной машины. Технический результат - повышение надежности и КПД. Электродвигатель с внешним ротором и системой охлаждения статора включает статический вал, установленный в подшипниковой опоре, концентрично...
Тип: Изобретение
Номер охранного документа: 0002697511
Дата охранного документа: 15.08.2019
+ добавить свой РИД