×
21.05.2023
223.018.6875

Результат интеллектуальной деятельности: Способ сканирования пространства лазерным лучом и определения координат обнаруженных объектов

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам для обнаружения пространственных объектов. Способ сканирования пространства лазерным лучом и определения координат обнаруженных объектов, включающий формирование спиральной развертки луча двумя одинаковыми оптическими клиньями, последовательно установленными по ходу луча, вращающимися двумя приводами, спиральную развертку формируют вращением клиньев в одну сторону, подавая на входы приводов линейно возрастающих угловых задающих воздействий, одновременно задавая вращение тех же клиньев в разные стороны на угол, равный угловому радиусу поля сканирования, умноженному на оптическую редукцию пары клиньев, подавая на входы приводов в противофазе дополнительных линейно возрастающих угловых входных воздействий противоположных знаков, синхронизируя в каждом цикле начало задания возвратно-поступательного движения луча с нулевыми показаниями датчиков угла поворота клиньев, при развертке луча контролируют отработку приводами задающих воздействий по датчикам углов поворота клиньев, координату обнаруженного объекта в поле сканирования определяют в полярных координатах по датчикам углов, переводят полярные координаты объекта в координаты в декартовой системе. Технический результат - повышение эксплуатационных характеристик. 1 ил.

Изобретение относится к оптико-механическому приборостроению, в частности к устройствам для обнаружения пространственных объектов и может быть использовано в системах наведения лазерных комплексов.

Известно, что вращение в одну и ту же сторону двух одинаковых оптических клиньев, последовательно установленных по ходу луча, приводит к вращению прошедшего через клинья луча по окружности. Вращение клиньев в разные стороны на одинаковый угол приводит к перемещению в пространстве прошедшего луча по прямой линии, ортогональной оси вращения, причем угол, на который поворачивается прошедший через клинья оптический луч, меньше, чем угол поворота клиньев и связан с ним через коэффициент оптической редукции, зависящий от параметров клиньев [1].

Известен способ управления в пространстве лазерным лучом с помощью двух оптических клиньев, установленных вдоль общей оптической оси, клинья вращаются приводом через шестеренчатую передачу [2]. Привод управляется по программе в пределах цикла, определяемого срабатыванием датчиков взаимного положения клиньев.

Недостатком этого способа является невозможность задания оптимальной для поиска спиральной траектории развертки луча с управляемыми в процессе поиска параметрами спирали и без повторения траектории перемещения луча, поскольку в этом способе отсутствует строгое соответствие между задаваемыми на вход привода воздействиями и формируемой траекторией развертки луча в пространстве. Кроме того, данный способ не предусматривает возможности определения координат обнаруженных при сканировании объектов.

Наиболее близким по технической сущности к предлагаемому способу является способ развертывания лазерного луча, реализованный в устройстве для сканирования пространства лазерным излучением путем раздельного поворота приводами двух одинаковых оптических клиньев, установленных по ходу луча и имеющих возможность вращения с различными скоростями [3]. Этот способ применим в технологических операциях, а также для сканирования пространства при поиске излучающих объектов.

Недостатком способа является невозможность задания оптимальной для поиска спиральной траектории развертки луча с управляемыми в процессе поиска параметрами спирали и без повторения траектории перемещения луча, поскольку в этом способе отсутствует строгое соответствие между задаваемыми на вход приводов воздействиями и формируемой траекторией развертки луча в пространстве. Кроме того, при сканировании по данному способу возможен пропуск отдельных участков сканируемого пространства из-за сложной формы траектории поиска, что приводит к увеличению времени поиска. Недостатком способа при использовании его при поиске пространственных объектов является также то, что способ не раскрывает процедуры определения координат обнаруженных при сканировании пространственных объектов.

Задачей изобретения является создание способа сканирования пространства лазерным лучом и определения координат обнаруженных объектов с повышенными эксплуатационными характеристиками за счет формирования оптимальной траектории развертки луча в пространстве со строго соответствующими задаваемым параметрами траектории и определения координат обнаруженных пространственных объектов через углы поворота клиньев при одновременном повышении энергетического потенциала обнаружения.

Поставленная задача решается тем, что в известном способе развертывания лазерного луча, включающем формирование спиральной развертки луча двумя одинаковыми оптическими клиньями, последовательно установленными по ходу луча, вращающимися с помощью двух приводов, спиральную развертку луча формируют задавая вращение обоих клиньев в одну сторону путем подачи на входы обоих приводов линейно возрастающих угловых задающих воздействий, одновременно задавая вращение тех же клиньев в разные стороны на угол, равный угловому радиусу поля сканирования, умноженному на величину оптической редукции пары клиньев, путем подачи на входы обоих приводов в противофазе дополнительных линейно возрастающих угловых входных воздействий противоположных знаков, при этом синхронизируют внутри каждого цикла начало задания возвратно-поступательного движения луча с нулевыми показаниями датчиков угла поворота клиньев, в процессе развертки луча осуществляют контроль отработки приводами задающих воздействий по датчикам углов поворота клиньев, а координату обнаруженного объекта в поле сканирования сначала определяют в полярных координатах по показаниям датчиков углов, используя соотношения:

где: ρоб и ϕоб - соответственно полярный радиус и полярный угол объекта относительно центра поля сканирования в полярной системе координат; γк1 и γк2 - показания датчиков углов поворота клиньев в момент обнаружения объекта;

i - оптическая редукция пары клиньев при вращении их в разные стороны на одинаковые углы, равная отношению угла поворота клина к углу поворота луча;

Z - целое число оборотов клиньев внутри одного цикла на момент обнаружения объекта,

после чего переводят полярные координаты объекта в координаты в декартовой системе, используя соотношения:

где: Хоб и Yоб - координаты обнаруженного объекта в декартовой системе координат,

параметры формируемой спирали выбирают из соотношений:

где: R - радиус заданного поля сканирования;

N - число витков спирали;

d - угловой диаметр лазерного луча;

tц - время цикла;

Ω. - угол поворота клиньев при возвратно-поступательном перемещении луча;

ω - угловая скорость вращения клиньев в одну сторону.

Предлагаемый способ сканирования пространства лазерным лучом и определения координат обнаруженных объектов осуществляется в соответствии со структурной схемой системы сканирования лазерным лучом следующим образом. Для поворота клиньев 1 и 2 используются два безредукторных привода 3 и 4 на базе кольцевых электродвигателей (для каждого клина свой двигатель). Углы поворота клиньев контролируются датчиками углов 5 и 6, в качестве которых могут быть использованы кольцевые датчики, например, индуктосины. Значения углов поворота с выходов датчиков угла подаются на входы дискриминаторов ошибок приводов 7 и 8, на другие входы которых поступают задающие воздействия с задатчиков угла 9 и 10, а разностный сигнал дискриминаторов ошибок подается на входы приводов. Выходы обоих датчиков угла также соединены со входами сумматоров 11 и 12, выходы которых, в свою очередь, соединены со входами вычислителей полярных координат обнаруженных объектов 13 и 14.

Система сканирования пространства лазерным лучом и определения координат обнаруженных объектов в соответствии со структурной схемой работает по предлагаемому способу следующим образом. Каждый привод клина отрабатывает в следящем режиме свое входное воздействие, формируемое в задатчиках угла 9 и 10, замыкаясь по собственным датчикам угла 5 и 6. Входное воздействие, складывается из двух слагаемых - первое слагаемое одинаково для обоих приводов и является линейно возрастающим сигналом, отрабатывая который приводы непрерывно поворачивают клинья в одну сторону, тем самым вращая луч по круговой траектории. Второе слагаемое - тоже линейно возрастающий сигнал, по модулю одинаковый для обоих приводов, но противоположный по знаку для каждого привода. В процессе отработки приводами одновременно с первым второго слагаемого входного воздействия луч, поворачиваясь, смещается по радиусу на угол, в i раз меньший угла поворота клиньев (обычно i=50…100), совершая помимо вращательных возвратно-поступательные перемещения, тем самым увеличивая радиус сканирования внутри одного цикла сканирования, показанного на рисунке структурной схемы, при возрастании по модулю второго слагаемого и уменьшая радиус сканирования в следующем цикле при убывании по модулю второго слагаемого. Таким образом формируется расходящаяся -сходящаяся спиральная развертка, параметры которой однозначно связаны со входными воздействиями, что позволяет избежать пропусков при сканировании пространства и добиться, тем самым, повышения эксплуатационных характеристик. Выбирая параметры задающих воздействий по соотношениям 5…7, можно формировать спираль с нужным числом витков - обычно несколько витков (первое слагаемое задающего воздействия) и нужным полем сканирования - обычно в пределах градуса (второе слагаемое задающего воздействия). Подставляя в соотношение 5 уменьшенное значение диаметра луча d, можно задавать желаемое перекрытие витков в процессе формирования спирали. Значение величины угловой скорости клиньев, входящее в выражение 7, при непрерывном характере излучения лазера выбирается из условия обеспечения времени экспозиции, необходимого для обнаружения объекта. При импульсном излучателе, обладающем достаточной для обнаружения объекта импульсной мощностью, скорость выбирается из условия отсутствия пропусков пространства при вращении: ω=d / Т, где Т -период излучения лазера. Поскольку внутри каждого цикла начало задания возвратно-поступательного движения луча синхронизировано с нулевыми показаниями датчиков угла поворота клиньев, угловые координаты сканирующего луча однозначно определяются углами поворота клиньев. Принимая во внимание, что приводы клиньев являются следящими и замкнутомыми по углу, с высокой степенью точности они повторяют свои входные воздействия, показанные на схеме в задатчиках углов 9 и 10, поэтому в момент обнаружения пространственного объекта по показаниям датчиков углов поворота клиньев можно вычислить координаты объекта. Учитывая форму входных воздействий, при сложении показаний датчиков углов поворота клиньев, как видно из схемы, получается удвоенный угол поворота луча (с учетом количества полных оборотов), а при вычитании показаний датчиков получается удвоенный угол линейного смещения луча, увеличенный в i раз. После выполнения элементарных процедур по соотношениям 1 и 2 в вычислителях 13 и 14 полученные координаты будут являться полярными. Перевод полярных координат обнаруженного объекта в декартовы осуществляется по соотношениям 3 и 4.

Данный способ для определения координат обнаруженных объектов использует показания датчиков углов поворота клиньев, при этом обнаружитель (фотоприемник), входящий в состав лазерного комплекса, может быть одноэлементный (не координатный), поэтому повышается энергетический потенциал устройства благодаря возможности концентрации всего принимаемого сигнала на одной чувствительной площадке приемника. Это упрощает конструкцию системы при повышении энергетического потенциала обнаружения.

Источники информации

1. Мирошников М. М. Теоретические основы оптико- электронных приборов. - Л., Машиностроение, 1977, с. 123-126.

2. Патент РФ 2163790.

3. Патент РФ 107409 - прототип.

Источник поступления информации: Роспатент

Showing 1-10 of 71 items.
12.01.2017
№217.015.5ad6

Система регулировки периметра зеемановского лазерного гироскопа

Изобретение относится к гироскопам и измерительной технике и может быть использовано для регулировки периметра зеемановского лазерного гироскопа. Система содержит фотоприемник излучения кольцевого лазера, вход которого является входом излучения кольцевого лазера, оснащенного пьезоприводом и...
Тип: Изобретение
Номер охранного документа: 0002589756
Дата охранного документа: 10.07.2016
25.08.2017
№217.015.bf5e

Устройство для удаления растворенных газов из изоляционного компаунда

Изобретение относится к области герметизирующих составов для электронной техники. Устройство для удаления растворенных газов из изоляционного компаунда состоит из контейнера (3) и соединенных с ним вибраторов (1,2). Вибраторы выполнены с возможностью передачи вибрационных воздействий в...
Тип: Изобретение
Номер охранного документа: 0002617164
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c1e5

Способ упрочнения оптического контакта диэлектрических поверхностей лазерного гироскопа и генератор струи плазмы для его реализации

Изобретение относится к способу и устройству для низкотемпературного упрочнения оптического контакта диэлектрических поверхностей газоразрядных приборов, в частности резонаторов моноблочных газовых лазеров, в процессе их технологической сборки. Заявленное устройство содержит диэлектрический...
Тип: Изобретение
Номер охранного документа: 0002617697
Дата охранного документа: 26.04.2017
25.08.2017
№217.015.cd67

Способ контроля состояния конструкции инженерно-строительного сооружения

Изобретение относится к измерительной технике и может быть использовано для автоматизированного контроля состояния конструкции здания или инженерно-строительного сооружения в процессе его эксплуатации. Согласно способу в местах диагностирования контролируемой конструкции размещают датчики,...
Тип: Изобретение
Номер охранного документа: 0002619822
Дата охранного документа: 18.05.2017
26.08.2017
№217.015.da1b

Лазер с продольной накачкой

Изобретение относится к лазерной технике. Лазер с продольной накачкой содержит источник излучения накачки, активный элемент, установленный внутри резонатора, включающего глухое и полупрозрачное зеркала. Активный элемент выполнен в виде стержня, по крайней мере один из торцов которого скошен...
Тип: Изобретение
Номер охранного документа: 0002623688
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.da32

Лазер

Изобретение относится к лазерной технике. Лазер содержит активный элемент, выполненный в виде стержня, по крайней мере один из торцов которого скошен относительно его продольной оси так, что угол между нормалью к торцу и продольной осью активного элемента превышает предельный угол полного...
Тип: Изобретение
Номер охранного документа: 0002623810
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.ea9f

Способ определения толщины окисной плёнки алюминия в процессе анодного окисления холодного катода в тлеющем разряде кислорода

Использование: для определения толщины окисной пленки алюминия в процессе анодного окисления холодного катода в тлеющем разряде кислорода. Сущность изобретения заключается в том, что способ определения средней толщины окисной пленки в процессе анодного окисления холодного катода в тлеющем...
Тип: Изобретение
Номер охранного документа: 0002627945
Дата охранного документа: 14.08.2017
29.12.2017
№217.015.f680

Твердотельный лазер

Изобретение относится к лазерной технике. Твердотельный лазер содержит источник излучения накачки, активный элемент, установленный внутри резонатора, включающего глухое и полупрозрачное зеркала. Активный элемент выполнен в виде стержня, по крайней мере один из торцов которого скошен так, что...
Тип: Изобретение
Номер охранного документа: 0002635400
Дата охранного документа: 13.11.2017
19.01.2018
№218.016.00cd

Импульсный твердотельный лазер

Изобретение относится к лазерной технике. Импульсный твердотельный лазер содержит активный элемент, выполненный в виде стержня, оба торца которого скошены так, что угол между нормалью к поверхности торца и продольной осью активного элемента превышает предельный угол полного внутреннего...
Тип: Изобретение
Номер охранного документа: 0002629685
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.19ab

Твердотельный лазер с модуляцией добротности

Изобретение относится к лазерной технике. Твердотельный лазер с модуляцией добротности содержит источник излучения накачки в виде лазерной диодной матрицы, активный элемент, первое и второе зеркала резонатора, а также электрооптический элемент и поляризатор, активный элемент выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002636260
Дата охранного документа: 21.11.2017
Showing 1-10 of 49 items.
10.08.2013
№216.012.5df8

Способ лазерной нейтрализации взрывоопасных объектов

Способ может быть применен для нейтрализации взрывоопасных объектов. Способ включает обнаружение взрывоопасного объекта в видимом или инфракрасном диапазоне, выполнение сквозного отверстия в корпусе объекта посредством непрерывного лазерного излучения повышенной мощности и дефлаграцию...
Тип: Изобретение
Номер охранного документа: 0002489677
Дата охранного документа: 10.08.2013
13.01.2017
№217.015.8de8

Электролизер с неподвижными электродами для электрохимической очистки сточных вод и получения нескольких неорганических перекисных соединений

Изобретение относится к электролизеру с неподвижными электродами для электрохимической очистки сточных вод и получения нескольких неорганических перекисных соединений, содержащему коаксиально установленные катод и анод цилиндрической формы, разделенные ионоселективной мембраной. При этом анод...
Тип: Изобретение
Номер охранного документа: 0002605084
Дата охранного документа: 20.12.2016
29.05.2018
№218.016.5701

Приемник импульсных лазерных сигналов

Изобретение относится к лазерной технике, а именно к аппаратуре приема лазерного излучения. Приемник импульсных лазерных сигналов содержит фоточувствительный элемент, схему обработки сигнала, выполненный в виде полупрозрачной шторки оптический затвор, привод шторки и логический модуль. Шторка...
Тип: Изобретение
Номер охранного документа: 0002655006
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.570b

Лазерный дальномер

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит передающий канал, включающий лазерный излучатель с передающим объективом и схемой запуска, и приемный канал, включающий фотоприемное устройство с приемным объективом. Причем...
Тип: Изобретение
Номер охранного документа: 0002655003
Дата охранного документа: 23.05.2018
01.03.2019
№219.016.cdfc

Диод силовой низкочастотный выпрямительный непланарный и способ его изготовления

Изобретение относится к области силовой промышленной электронной техники. Сущность изобретения: диод силовой низкочастотный выпрямительный непланарный на рабочий ток свыше 1000 А и рабочее напряжение не менее 1000 В содержит внутренний контакт, на котором закреплена непланарная...
Тип: Изобретение
Номер охранного документа: 0002411611
Дата охранного документа: 10.02.2011
27.04.2019
№219.017.3d27

Оптический приемник

Изобретение относится к области приема оптического излучения и касается оптического приемника. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с двумя...
Тип: Изобретение
Номер охранного документа: 0002686386
Дата охранного документа: 25.04.2019
27.04.2019
№219.017.3d72

Приемник лазерного излучения

Изобретение относится к области приема оптического излучения и касается приемника лазерного излучения. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с...
Тип: Изобретение
Номер охранного документа: 0002686406
Дата охранного документа: 25.04.2019
24.05.2019
№219.017.5da4

Фотоприемное устройство с затвором

Изобретение относится к области приема оптического излучения и касается фотоприемного устройства с затвором. Фотоприемное устройство включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор...
Тип: Изобретение
Номер охранного документа: 0002688947
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5db0

Приемник оптических импульсов

Изобретение относится к области приема оптического излучения и касается приемника оптических импульсов. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с...
Тип: Изобретение
Номер охранного документа: 0002688906
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.5de4

Фотоприемное устройство

Изобретение относится к области приема оптического излучения и касается фотоприемного устройства. Фотоприемное устройство включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002688907
Дата охранного документа: 22.05.2019
+ добавить свой РИД