×
21.05.2023
223.018.684d

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ КОРПУСА ОСКОЛОЧНО-ФУГАСНОГО ЗАРЯДА

Вид РИД

Изобретение

Аннотация: Заявлен способ изготовления корпуса осколочно-фугасного заряда. Техническим результатом является повышение безопасности и процесса изготовления корпуса осколочно-фугасного заряда с системой осколочных элементов, повышение точности изготовления: заданного профиля осколочных элементов. Способ включает формирование системы осколочных элементов ромбического профиля на внутренней поверхности корпуса заряда. Корпус состоит из трех частей, центральной обечайки, фланца и шпангоута. Осколочные элементы ромбического профиля расположены только в двух противоположно расположенных зонах внутренней поверхности центральной обечайки, ограниченных поверхностями с увеличением внутреннего диаметра обечайки на величину, большую, чем глубина канавок, формирующих осколочные элементы. Осколочные элементы ромбического профиля формируют последовательным строганием токарным резцом многозаходных спиральных канавок с определенным шагом, правых и левых, до необходимой глубины в заданных зонах внутренней поверхности при одновременном запрограммированном вращении трубной заготовки и осевом перемещении токарного резца, установленного в инструментальную оправку. Затем формируют внутренние поверхности без осколочных элементов строганием токарным резцом при запрограммированном перемещении токарного резца, установленного в инструментальную оправку по двум осям, и последовательным вращением трубной заготовки. После чего к обечайке с двух сторон приваривают фланец и шпангоут на установке электронно-лучевой сварки в вакууме, после чего выполняют окончательную обработку наружного диаметра корпуса и формируют группы взаимосвязанных переходных отверстий и элементов крепления и ориентации поражающих элементов во фланце и шпангоуте в составе ракеты. 2 ил.

Предлагаемое изобретение относится к осколочным боеприпасам с системой поражающих элементов на внутренней поверхности корпуса заряда,

Технической проблемой, решаемой изобретением, является необходимость создания на внутренней поверхности такой системы осколочных элементов, которая, с одной стороны могла бы обеспечить высокую эффективность поражающего действия заряда и синхронность срабатывания при задействовании, а, с другой стороны, была бы безопасной в процессе центрирования КОФЗ при снаряжении заряда.

Из уровня техники известен способ изготовления корпуса осколочно-фугасного заряда (КОФЗ) (патент РФ №2409803, МПК F42B 12/22, публ. 20.01.2011 г.), согласно которому на внутренней поверхности КОФЗ выполняют осколочную сетку из спиральных и встречно-направленных рифлей, образующих полуготовые осколки по форме усеченных пирамид, сопряженных своими ромбовидными основаниями. Осколки ориентированы большой диагональю своих оснований под заданным относительно образующей оболочки. Известный способ позволяет получить изделия повышенной эффективности осколочного действия снаряда.

К недостаткам известного аналога относится наличие острых кромок полуготовых осколков выполненных по форме усеченных пирамид, из-за чего формируемый профиль осколочных элементов оболочки (корпуса) при последующем снаряжении заряда в процессе центрирования может быть небезопасен из-за риска биения поверхности заряда острыми кромками сформированных осколочных элементов оболочки.

Задачей авторов изобретения является разработка конструкции системы осколочных элементов оптимального профиля и способа ее изготовления.

Новый технический результат, обеспечиваемый предлагаемым изобретением, заключается в повышении безопасности и процесса изготовления КОФЗ с системой осколочных элементов и в повышении точности изготовления: заданного профиля осколочных элементов.

Указанные задача и новый технический результат обеспечиваются тем, что, в отличие от известного способа изготовления корпуса осколочно-фугасного заряда (КОФЗ), включающего формирование системы осколочных элементов ромбического профиля на внутренней поверхности корпуса заряда упорядоченно располагаемых по поверхности КОФЗ, согласно изобретению, КОФЗ выполнен составным из трех частей - центральной обечайки переменного внутреннего диаметра, фланца и шпангоута, осколочные элементы ромбического профиля расположены только в двух противоположно расположенных зонах внутренней поверхности центральной обечайки КОФЗ, ограниченных поверхностями с увеличением внутреннего диаметра обечайки на величину большую, чем глубина канавок, ограничивающих осколочные элементы, осколочные элементы формируют последовательным строганием токарным резцом многозаходных спиральных канавок с определенным шагом (правых и левых) до необходимой глубины в заданных зонах внутренней поверхности при одновременном запрограммированном вращении трубной заготовки и осевом перемещении токарного резца, установленного в инструментальную оправку, формируют внутренние поверхности без осколочных элементов строганием токарным резцом при запрограммированном перемещении токарного резца установленного в инструментальную оправку по двум осям и последовательным вращением трубной заготовки, после чего к обечайке с двух сторон приваривают фланец и шпангоут на установке методом электронно-лучевой сварки в вакууме.

Заявляемый способ изготовления корпуса осколочно-фугасного заряда поясняется следующим образом.

На фиг. 1 представлен общий вид корпуса осколочно-фугасного заряда, где 1 - шпангоут, являющийся горловиной для заполнения корпуса осколочно-фугасного заряда взрывчатым веществом и местом крепления исполнительного механизма. 2 - центральная обечайка с поражающими элементами, 3 - фланец с ориентированной группой крепежных элементов для крепления системы датчиков на торце корпуса осколочно-фугасного заряда в составе боевой части.

На фиг. 2 показана обечайка со сформированными на ее внутренней поверхности в двух противоположных зонах осколочными профильными элементами.

Первоначально для изготовления КОФЗ формируют систему упорядочении располагаемых осколочных элементов (СОЭ) ромбического профиля на внутренней поверхности корпуса заряда. КОФЗ выполняют составным из трех частей - центральной обечайки переменного внутреннего диаметра, фланца и шпангоута. Осколочные элементы ромбического профиля располагают только в двух противоположно расположенных зонах внутренней поверхности центральной обечайки КОФЗ. Эти зоны ограничены поверхностями с увеличением внутреннего диаметра обечайки КОФЗ на величину большую, чем глубина канавок, ограничивающих осколочные элементы. Осколочные элементы формируют последовательным строганием токарным резцом многозаходных спиральных канавок с определенным шагом (правых и левых) до необходимой глубины в заданных зонах внутренней поверхности при одновременном запрограммированном вращении трубной заготовки и осевом перемещении токарного резца, установленного в инструментальную оправку. Далее формируют внутренние поверхности без осколочных элементов строганием токарным резцом при запрограммированном перемещении токарного резца установленного в инструментальную оправку по двум осям и последовательным вращением трубной заготовки. Затем методом электронно-лучевой сварки в вакууме к обечайке с двух сторон приваривают фланец и шпангоут.

После завершения процесса механической обработки извлекают обечайку из технологической оправки и подвергают ее внутреннюю поверхность очистке в моющем растворе, затем сушат обдувкой сжатым воздухом. Окончательно изготовленную обечайку подвергают контрольным испытаниям, результаты которых подтвердили соответствие подученных изделий требованиям ТЗ.

Таким образом, при использовании предлагаемого способа обеспечены повышение безопасности процесса изготовления КОФЗ с системой осколочных элементов и повышение точности изготовления заданного профиля осколочных элементов.

Возможность промышленной реализации изобретения подтверждается следующим примером конкретного выполнения.

Пример 1.

Предлагаемый способ выполнения системы осколочных поражающих элементов на центральной обечайке корпуса осколочно-фугасного заряда реализован в лабораторных условиях на опытном образце исходной заготовки в виде полой цилиндрической детали.

Первоначально полую цилиндрическую заготовку корпуса из стали 30ХГСА подвергают механической обработке до заданных размеров на универсальном токарном станке по внутренней и наружной стороне цилиндрической заготовки корпуса, термообрабатывают до получения твердости 27…35 HRC. Затем к планшайбе токарного станка с ЧПУ крепят цилиндрическую технологическую оправку с многочисленными винтовыми прижимами через «тело» оправки, с помощью которых внутри оправки выставляют заготовку корпуса с минимальным радиальным биением внутренней поверхности заготовки корпуса относительно оси привода станка (контролируют с помощью индикаторных часов). В револьверную головку токарного с ганка с ЧПУ устанавливают 3 инструментальные оправки (борштанги) длиной, необходимой для обработки внутренней поверхности заготовки корпуса на всю глубину. К борштангам крепят токарные резцы: к борштанге №1 резец, задающий профиль «правых» канавок, к борштанге №2 резец, задающий профиль «левых» канавок, к борштанге №3 резец для формирования зон, свободных от винтовых канавок с увеличением внутреннего диаметра заготовки корпуса, при этом выставляют пространственное положение инструмента и фиксируют в «памяти» системы управления станка. По разработанной управляющей программе, установленной в «памяти» системы управления станка после ввода команды оператора автоматически борштанга №1 перемещается внутрь заготовки корпуса для подведения режущей части токарного резца в зону обработки, затем происходит строгание (одновременное вращение заготовки корпуса с заданной скоростью и перемещение токарного резца вдоль оси заготовки корпуса с заглублением в тело заготовки и повторением данных циклов с шагом 0,6 мм до обеспечения необходимой глубины канавки) «правых» многозаходных спиральных канавок с заданным шагом. После этого автоматически борштанга п.1 отводится в сторону, а борштанга п.2 перемещается внутрь заготовки корпуса и происходит строгание «левых» многозаходных спиральных канавок с заданным шагом по тому же принципу, что и «правых». Затем борштанга п.2 отводится в сторону, а борштанга п.3 перемещается внутрь заготовки корпуса и происходит строгание зон, свободных от винтовых канавок (перемещение токарного резца вдоль оси заготовки корпуса с заглублением в тело заготовки на всю глубину с припуском 0,05 мм и повторением данного цикла с последовательным вращением заготовки с шагом 0,1 мм до обработки всех заданных зон). Далее проводится чистовая обработка зон, свободных от винтовых канавок по тому же алгоритму, но без припуска.

После завершения процесса механической обработки извлекают обечайку из технологической оправки и подвергают ее внутреннюю поверхность очистке в моющем растворе, затем сушат обдувкой сжатым воздухом. Окончательно изготовленную обечайку подвергают контрольным проверкам с использованием контрольно-измерительной машины на соответствие требованиям КД по овальности и параметрам профиля сформированных канавок.

Пример 2

Предлагаемый способ изготовления корпуса осколочно-фугасного заряда с использованием технологии электронно-лучевой сварки был реализован в лабораторных условиях следующим образом.

Предварительно методом механической обработки с использованием токарного и фрезерного станков с ЧПУ изготавливаются фланец, шпангоут и центральная обечайка с системой осколочных поражающих элементов. На торцах деталей при обработке наносятся технологические риски, совмещение которых при сборке обеспечит в дальнейшем заданное по КД расположение поражающих элементов в составе ракеты.

В технологической оправке собирается корпус осколочно-фугасного заряда с совмещением технологических рисок и устанавливается внутрь камеры установки электронно-лучевой сварки. Из камеры откачивается воздух до давления остаточных газов порядка 10-4 мм рт.ст. После этого выполняется электронно-лучевая сварка двух стыков деталей: обечайки с фланцем, обечайки со шпангоутом на следующих предварительно отработанных режимах сварки:

- скорость вращения корпуса осколочно-фугасного заряда внутри камеры - Т=70 с/об.

- ускоряющее напряжение - U=40kV

- сварочный ток - Iсв=25 mA

- фокусное расстояние Нф=100 мм.

Указанные режимы сварки обеспечивают глубину проплавления 4,7-5,3 мм. отношение твердости материала сварного шва к твердости основного материала деталей корпуса К=1,51. Для снижения твердости сварного шва. производится отжиг места сварки расфокусированным электронным лучом, при этом снижается отношение твердости материала сварного шва к твердости основного материала деталей корпуса до К=1,26.

На этапе отработки проведены механические испытания сваренных образцов на разрыв и изгиб, металлографические исследования сварного шва. Разрушение образцов на разрыв произошло по основному металлу, разрушение образцов на изгиб произошло по металлу околошовной зоны, ширина сварного шва 3-4 мм, глубина проплавления 4,7-5,3 мм, пор, раковин, трещин, свищей в сварном шве не обнаружено.

Данный вид сварки обеспечивает сконцентрированность термического воздействия электронного луча на свариваемые детали, высокую скорость сварки, отсутствие присадочного материала и флюсов, неизменность поддержания технологических режимов сварки, подобранных на этапе отработки, возможность сварки термообработанных деталей и, как следствие, отсутствие коробления.

Далее производится окончательная механическая обработка корпуса осколочно-фугасного заряда на универсальном токарном станке по наружной поверхности до заданного по КД диаметра, а на токарном станке с ЧПУ с торцов корпуса выполняются группы взаимосвязанных переходных отверстий и других конструктивных элементов для крепления и ориентации поражающих элементов в составе ракеты. Также для повышения стойкости к несанкционированному срабатыванию при снаряжении ОФЗ канавки, формирующие систему осколочных поражающих элементов на центральной обечайке корпуса, заполняются герметиком, и вся внутренняя поверхность корпуса осколочно-фугасного заряда покрывается лаком.

Способ изготовления корпуса осколочно-фугасного заряда, включающий формирование системы осколочных элементов ромбического профиля на внутренней поверхности корпуса заряда, отличающийся тем, что корпус состоит из трех частей, центральной обечайки, фланца и шпангоута, при этом осколочные элементы ромбического профиля расположены только в двух противоположно расположенных зонах внутренней поверхности центральной обечайки, ограниченных поверхностями с увеличением внутреннего диаметра обечайки на величину, большую, чем глубина канавок, формирующих осколочные элементы, осколочные элементы ромбического профиля формируют последовательным строганием токарным резцом многозаходных спиральных канавок с определенным шагом, правых и левых, до необходимой глубины в заданных зонах внутренней поверхности при одновременном запрограммированном вращении трубной заготовки и осевом перемещении токарного резца, установленного в инструментальную оправку, затем формируют внутренние поверхности без осколочных элементов строганием токарным резцом при запрограммированном перемещении токарного резца, установленного в инструментальную оправку по двум осям, и последовательным вращением трубной заготовки, после чего к обечайке с двух сторон приваривают фланец и шпангоут на установке электронно-лучевой сварки в вакууме, после чего выполняют окончательную обработку наружного диаметра корпуса и формируют группы взаимосвязанных переходных отверстий и элементов крепления и ориентации поражающих элементов во фланце и шпангоуте в составе ракеты.
Источник поступления информации: Роспатент

Showing 301-310 of 796 items.
10.05.2018
№218.016.4a28

Способ управления газоприходом в пороховой баллистической установке и установка для его осуществления

Группа изобретений относится к пороховым баллистическим установкам (ПБУ), используемым в качестве разгонных устройств в стендах для испытаний конструкций на воздействие интенсивных механических нагрузок. Управление газоприходом в ПБУ включает инициирование порохового заряда, установленного в...
Тип: Изобретение
Номер охранного документа: 0002651327
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4aa0

Генератор высокочастотных импульсов на основе разряда с полым катодом

Изобретение относится к области высокочастотной техники и может быть использовано при создании генераторов высокочастотного (ВЧ) излучения. Генератор высокочастотного излучения на основе разряда с полым катодом содержит газоразрядную камеру, образованную целым катодом и анодом, к электродам...
Тип: Изобретение
Номер охранного документа: 0002651580
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4aa9

Газоразрядный источник света

Изобретение относится к газоразрядным излучателям, предназначено для использования в области светотехники и может быть использовано для фотограмметрических исследований. Заявляемый газоразрядный источник света содержит заполненную рабочим газом газоразрядную камеру, образованную установленными...
Тип: Изобретение
Номер охранного документа: 0002651579
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4b6c

Высоковольтная система электропитания сверхвысокочастотного генератора

Изобретение относится к области импульсной техники, а именно к высоковольтным импульсным источникам электропитания сверхвысокочастотных (СВЧ) прямопролетных генераторов и усилителей. Высоковольтная система электропитания сверхвысокочастотного генератора клистронного типа с рекуперацией энергии...
Тип: Изобретение
Номер охранного документа: 0002651578
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4d89

Бронезащитная преграда

Изобретение относится к области вооружений и военной техники, в частности к броневым конструкциям. Бронезащитная преграда содержит гофрированный слой, выполненный из рессорно-пружинной стали, и фронтальный слой из керамического материала. На тыльную сторону гофрированного слоя устанавливается...
Тип: Изобретение
Номер охранного документа: 0002652416
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4d8e

Устройство защиты от кумулятивной струи и осколков взрыва

Изобретение относится к области броневых конструкций, устанавливаемых в частности в камерах специального назначения. Устройство защиты от кумулятивной струи и осколков взрыва содержит установленный в направлении поражающего воздействия перед защищаемым объектом защитный блок, выполненный в виде...
Тип: Изобретение
Номер охранного документа: 0002652323
Дата охранного документа: 25.04.2018
18.05.2018
№218.016.5072

Способ электроэрозионной обработки

Изобретение относится к области машиностроения и может быть использовано при проектировании технологической оснастки для электроэрозионной обработки поверхностей. В способе электроэрозионную обработку осуществляют при вращении двух соединенных с токоподводами электродов, один из электродов...
Тип: Изобретение
Номер охранного документа: 0002653041
Дата охранного документа: 04.05.2018
18.05.2018
№218.016.51b1

Система охранной сигнализации на основе излучающего кабеля

Изобретение относится к охранной сигнализации. Технический результат заключается в обеспечении выравнивания чувствительности вдоль рубежа обнаружения, повышении помехоустойчивости и уровня обнаружения. Система на основе излучающего кабеля включает передающий излучающий кабель и приемный...
Тип: Изобретение
Номер охранного документа: 0002653307
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.51f6

Стенд для исследования высокоскоростных соударений

Изобретение относится к метательным установкам для исследования высокоскоростных соударений. Стенд для исследования высокоскоростных соударений содержит метательную установку, устройство отделения поддона от метаемого тела и вакуумную трассу, состоящую из последовательно расположенных и...
Тип: Изобретение
Номер охранного документа: 0002653107
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.5325

Ампульный химический источник тока и способ его сборки

Изобретение относится к области электротехники, а именно к резервному химическому источнику тока ампульного типа, запускаемому в работу при подаче электролита из ампулы в электродный отсек блока электрохимических элементов (ЭХЭ). Ампульный химический источник тока (АХИТ) включает расчетное...
Тип: Изобретение
Номер охранного документа: 0002653860
Дата охранного документа: 15.05.2018
Showing 1-3 of 3 items.
10.04.2016
№216.015.2c1d

Подъемно-транспортная система для обслуживания фасадов зданий

Изобретение относится к подъемникам для жилых, общественных, промышленных зданий и сооружений, а более конкретно к подъемно-транспортным системам для обслуживания фасадов зданий, включающим в себя расположенные на наружной стене здания рельсовые или мачтовые направляющие, снабженные зубцами, и...
Тип: Изобретение
Номер охранного документа: 0002579376
Дата охранного документа: 10.04.2016
10.10.2019
№219.017.d467

Система для очистки фасадов высотных зданий

Настоящее изобретение относится к системам для очистки фасадов зданий, в том числе высотных. Система для очистки фасадов зданий, в том числе высотных, включающая в себя закрепленные неподвижно к поверхности фасада первые направляющие, по которым может перемещаться аппарат очистки фасада,...
Тип: Изобретение
Номер охранного документа: 0002702435
Дата охранного документа: 08.10.2019
12.04.2023
№223.018.4808

Система профилей для закрепления панели на фасаде здания и способ ее установки

Данная группа изобретений относится к системам профилей для закрепления панели на фасаде здания, а также к соответствующим способам их установки. Изобретение может быть использовано при строительстве зданий. Согласно изобретению система включает в себя закрепляемый на внутренней стороне...
Тип: Изобретение
Номер охранного документа: 0002741424
Дата охранного документа: 26.01.2021
+ добавить свой РИД