×
20.05.2023
223.018.652e

Результат интеллектуальной деятельности: Модулятор потока газа

Вид РИД

Изобретение

Аннотация: Изобретение относится к акустике, в частности к пневматическим излучателям звуковых сигналов. Модулятор потока газа содержит клапанный узел, состоящий из двух коаксиально расположенных полых цилиндров с одинаковой системой щелей. Один цилиндр подвижный, другой неподвижный. Устройство содержит электромагнитный вибропривод, связанный с блоком возбуждения и состоящий из одного или нескольких электромагнитных движителей. На определенных кольцевых участках поверхности подвижного цилиндра расположены обмотки возбуждения, входящие в кольцевые зазоры магнитопроводов электромагнитных движителей. Перфорация этих кольцевых участков металлического подвижного цилиндра клапанного узла позволяет существенно снизить индукционные электромагнитные силы сопротивления, возникающие при их движении в зазорах магнитопроводов. Технический результат - снижение токов возбуждения, уменьшение тепловыделения в электромагнитных движителях, снижение массы подвижного цилиндра, а как итог расширение частотного диапазона модулятора. 3 з.п. ф-лы, 3 ил.

Изобретение относится к технической акустике и предназначено для использования в составе генераторов звука, применяемых в испытаниях конструкций на акустическую прочность.

Известен широкий круг генераторов звука, обеспечивающих испытания на акустическую прочность устройств аэрокосмической и иного рода техники, подверженных интенсивному шумовому воздействию в процессе эксплуатации. К ним можно отнести «Электропневматический преобразователь» типа WAS 3000 фирмы Уайл (см. «Установки для испытаний конструкций аэрокосмических аппаратов на акустическую прочность». Обзоры ЦАГИ №565, стр. 42. М. ЦАГИ, 1979 г. Составители B.C. Николаев, Н.Ф. Каурова), «Устройство для создания акустических волн», а.с. 917193 СССР, МПК G10K 7/06, «Акустический генератор» а.с. 1644210 G10K 7/06 и др.

Электрический привод модуляторов в перечисленных устройствах строится по кондуктивному принципу, т.е. на одном конце полого подвижного цилиндра клапанного узла модулятора наматывается обмотка возбуждения, состоящая из некоторого числа витков медной проволоки.

Эта обмотка входит в кольцевой зазор магнитопровода, передающего магнитный поток от постоянного магнита. Взаимодействие переменного магнитного поля, создаваемого переменным электрическим током, протекающим по обмотке возбуждения, с постоянным магнитным полем в зазоре магнитопровода приводит полый подвижный цилиндр клапанного узла модулятора в возвратно-поступательное движение. Тем самым клапанный узел, состоящий из двух, вложенных друг в друга металлических цилиндров, подвижного и неподвижного, с рядом сквозных поперечных щелей меняет свое проходное сечение и создает пульсирующий поток газа. Это происходит вследствие того, что при перемещении подвижного цилиндра по отношению к неподвижному щелевой клапан то открывается, то закрывается.

Недостатком приведенных выше устройств является относительно невысокое быстродействие, ограниченное тем, что с повышением частоты возвратно-поступательного движения, подвижного цилиндра резко растет ток возбуждения, и как следствие тепловыделение в области размещения обмотки возбуждения. Ток возбуждения пропорционален квадрату частоты, а тепловыделение пропорционально частоте в четвертой степени. Еще одним недостатком является рост электромагнитного сопротивления перемещению подвижного цилиндра с увеличением скорости его движения, что связано с увеличением ЭДС, индуцируемой в той его части, которая находится интенсивном магнитном поле (в кольцевом зазоре магнитопровода под обмоткой возбуждения).

Впервые описанный выше конструктивный принцип построения модулятора газового потока был применен в ранее указанном устройстве «Электропневматический преобразователь» типа WAS 3000 фирмы Уайл (США).

Известен электропневматический преобразователь ЕПТ 200 фирмы ЛИНГ (стр. 31 вышеуказанного обзора ЦАГИ №565). Клапанный узел модулятора преобразователя ЕПТ 200 аналогичен описанным ранее. Однако электромагнитный привод этого модулятора построен по индуктивному принципу. Обмотка возбуждения расположена в кольцевом зазоре магнитопровода и неподвижно прикреплена на поверхности одной из стенок этого зазора. На подвижном цилиндре обмотки нет и его часть, располагаемая в зазоре магнитопровода, представляет собой короткозамкнутое алюминиевое кольцо. Переменный ток, протекающий в неподвижной обмотке возбуждения, индуцирует в короткозамкнутом витке переменный ток, который взаимодействует с постоянным магнитным полем в зазоре магнитопровода, и это приводит в движение подвижный цилиндр. Частота колебаний этого модулятора достигает 1000-1250 Гц. Однако при этом требуются большие токи порядка 60 А, что приводит к очень большому тепловыделению. Для снятия тепла применяется сложная система струйного охлаждения дистиллированной водой, которая громоздка и малонадежна в эксплуатации.

Известен ряд модуляторов французской фирмы C.E.R.E.M.E., в рекламных сведениях о которых утверждается, что они могут генерировать управляемую частоту пульсации потока газа до 2500 Гц. Однако подтверждений этой информации из независимых источников нет, а сведения об их устройстве и принципе работы конфиденциальны.

Аналогом предлагаемого изобретения является приведенное выше техническое решение модулятора «Электропневматического преобразователя» WAS 3000 фирмы Уайл. В конструкцию этого электропневматического преобразователя входят корпус форкамеры, форкамера, горловина, клапанный узел, магнитопровод, постоянный магнит, обмотка возбуждения, находящаяся в кольцевом зазоре магнитопровода, и фильтр. Сжатый газ подается в форкамеру, а затем через горловину поступает на рупор. Клапанный узел модулятора располагается в корпусе электропневматического преобразователя и состоит из двух, вложенных друг в друга цилиндров (подвижного и неподвижного) с рядами сквозных щелей, прорезанных на их поверхности в направлении, перпендикулярном их осям. Щели по своим размерам на том и другом цилиндрах равны между собой и расположены так, что в исходном стационарном положении наполовину перекрывают друг друга и образуют клапанный узел модулятора. На одном из концов подвижного цилиндра за пределами щелей клапанного узла намотана обмотка возбуждения, которая входит в кольцевой зазор магнитопровода, соединенного с постоянным магнитом. Обмотка возбуждения совместно с магнитопроводом и постоянным магнитом представляет собой электромагнитный привод модулятора.

При подаче в обмотку возбуждения переменного электрического тока возникает возвратно-поступательное движение подвижного цилиндра. Щели подвижного и неподвижного цилиндров в зависимости от величины амплитуды переменного тока начинают в той или иной степени перекрывать друг друга (от полного открытия до полного закрытия клапанного узла), создавая пульсацию потока газа. Для пояснения конструкции аналога в Приложении приведена 3D-модель электропневматического преобразователя WAS 3000.

Недостатки аналога перечислены ранее при общем описании модуляторов этого типа.

За прототип изобретения выбран модулятор устройства, приведенного в патенте RU №2707587 «Способ генерации звука для испытаний конструкций и устройство для его реализации».

Модулятор потока газа (щелевой воздушный модулятор), входящий в состав устройства для генерации звука по патенту RU №2707587, содержит корпус, электромагнитный вибропривод, соединенный с блоком возбуждения, и клапанный узел с подвижным и неподвижным коаксиально расположенными перфорированными металлическими цилиндрами. При этом электромагнитный вибропривод включает в себя два пространственно разнесенных электромагнитных движителя, состоящих из обмоток возбуждения, расположенных на противоположных концах подвижного цилиндра клапанного узла модулятора, и магнитных частей, включающих в свой состав постоянные магниты и магнитопроводы с кольцевыми зазорами, в которых перемещаются обмотки возбуждения, приводя в движение подвижный цилиндр, тем самым создавая пульсацию (модуляцию) газового потока.

Недостаток прототипа состоит в том, что он не решает задачу снижения сил электромагнитного сопротивления перемещению подвижного цилиндра клапанного узла и уменьшения тепловыделения в тех частях этого цилиндра, на которых располагаются обмотки возбуждения и которые движутся в кольцевом зазоре магнитопривода.

Технический результат предлагаемого изобретения состоит в существенном уменьшении электромагнитных сил, возникающих при движении подвижного цилиндра и препятствующих этому движению, а также в снижении тепловыделения в тех частях подвжного цилиндра, на которых намотаны обмотки возбуждения. Это приводит к повышению частоты работы модулятора и, тем самым, частоты пульсации газового потока, проходящего через клапанный узел.

Технический результат изобретения достигается тем, что в модуляторе потока газа, содержащем корпус, электромагнитный вибропривод, соединенный с блоком возбуждения, и состоящим из одного или нескольких пространственно разнесенных электромагнитных движителей, включающих в свой состав постоянные магниты и магнитопроводы с кольцевыми зазорами, а также обмотки возбуждения, расположенные в этих зазорах, и намотанные на соответствующих кольцевых участках подвижного полого перфорированного металлического цилиндра, который совместно с аналогичным ему коаксиально расположенным неподвижным полым перфорированным цилиндром образуют клапанный узел модулятора, на кольцевых участках подвижного цилиндра клапанного узла в зонах расположения обмоток возбуждения выполнена перфорация.

Перфорация кольцевых участков подвижного цилиндра в зонах расположения обмоток возбуждения наносится в виде щелей (окон), направленных параллельно оси этого цилиндра. Ширина перфорированных кольцевых участков (длина щелей) делается больше ширины обмоток возбуждения и ширины кольцевых зазоров магнитопроводов. Перфорированные кольцевые участки подвижного цилиндра, выступающие за пределы ширины обмоток возбуждения, закрываются неэлектропроводными бандажами.

Описание технического предложения поясняется фиг. 1, 2, 3а, 3б.

Фиг. 1 - 3D-модель модулятора.

Фиг. 2 - схема электрической связи электромагнитного вибропривода с блоком возбуждения.

Фиг. 3а - фрагмент подвижного цилиндра в зоне одного из перфорированных кольцевых участков, предназначенных для размещения обмоток возбуждения.

Фиг. 3б - схематический разрез одного электромагнитного движителя в зоне кольцевого зазора его магнитопровода.

На перечисленных фигурах герметичная форкамера генератора звука, фильтр, горловина и упругая подвеска не приведены.

Модулятор (см. фиг. 1) содержит клапанный узел 1, электромагнитный вибропривод, состоящий из нескольких (двух) электромагнитных движителей, расположенных на противоположных концах модулятора, каждый из которых содержит постоянные магниты 2, магнитопроводы 3 с кольцевыми зазорами. Обмотки возбуждения 4 электромагнитных движителей расположены на соответствующих кольцевых участках поверхности подвижного цилиндра клапанного узла 1. В данном случае эти обмотки расположены на противоположных концах подвижного цилиндра. Все перечисленные элементы располагаются в корпусе модулятора 5. Сам модулятор располагается внутри корпуса генератора звука, который на фиг. 1 не показан, а также на фиг. 1 не показан пружинный узел, обеспечивающий исходное положение подвижного цилиндра по отношению к неподвижному при отсутствии управляющего сигнала на обмотках возбуждения 4.

На фиг. 2 приведена электрическая схема соединения обмоток возбуждения 4 электромагнитных движителей с блоком возбуждения 6. В данной схеме приведено параллельное соединение обмоток возбуждения 4. Однако, может быть использовано и последовательное соединение обмоток возбуждения 4. Схема подключения этих обмоток зависит от электрических характеристик блока возбуждения 6.

На фиг. 3а приведен фрагмент развертки подвижного цилиндра клапанного узла 1. Цифрой 7 указан кольцевой участок этого цилиндра, предназначенный для размещения обмотки возбуждения 4 (см. фиг. 3б), на котором нанесена перфорация в виде прямоугольных щелей (окон). Под номером 8 показана поперечная щелевая перфорация подвижного цилиндра. Часть подвижного цилиндра под номером 8 совместно с коаксиально расположенным аналогичным неподвижным цилиндром образует клапанный узел 1. Неподвижный цилиндр на фиг. 3а не показан.

На фиг. 3б показан схематический разрез электромагнитного движителя в области кольцевого зазора магнитопровода 3. В этом разрезе показан кольцевой зазор магнитопровода 3, обмотка возбуждения 4, часть перфорированного кольцевого участка 7 подвижного цилиндра клапанного узла 1 и неэлектропроводные бандажи 9.

Из фиг. 3а и 3б видно, что перфорационные щели (окна) направлены параллельно оси подвижного цилиндра и по своей длине (ширине кольцевых перфорированных участков 7) превышают ширину кольцевого зазора магнитопровода 3 и ширину обмотки возбуждения 4. По краям обмотки возбуждения 4 перфорированные кольцевые участки 7 закрываются неэлектропроводными бандажами 9.

Такая конструкция позволяет разместить обмотку возбуждения 4 внутри интенсивного магнитного поля в кольцевом зазоре магнитопровода 3, а неперфорированные части подвижного цилиндра клапанного узла 1 вынести за пределы ширины зазора магнитопровода, т.е. за пределы интенсивного магнитного поля.

Работает устройство следующим образом. Постоянные магниты 2 электромагнитных движителей в кольцевых зазорах магнитопроводов 3 создают интенсивные магнитные поля. В этих магнитных полях находятся обмотки возбуждения 4. При подаче в обмотки возбуждения 4 переменного тока от блока возбуждения 6, подвижный цилиндр клапанного узла 1 совершает возвратно-поступательное движение. При возвратно-поступательном движении подвижного цилиндра щели подвижного и неподвижного цилиндров перекрывают друг друга в разной степени (от полного закрытия до полного открытия) в зависимости от переменной амплитуды тока возбуждения, что приводит к пульсации газового потока, проходящего через клапанный узел 1.

При движении подвижного цилиндра в кольцевых участках 7, находящихся в интенсивном магнитном поле, индуцируются токи (токи Фуко, Э.Д.С, Лоуренса), вызывающие силы электромагнитного сопротивления, которые затрудняют перемещение подвижного цилиндра клапанного узла 1.

Наличие перфорации указанных кольцевых участков 7 подвижного цилиндра уменьшает токи Фуко и суммарное электрическое сопротивление перемычек между щелями кольцевых участков 7. что существенно снижает электромагнитное сопротивление. Это приводит к трем положительным эффектам: уменьшает величину тока возбуждения, снижает тепловыделение в электромагнитных движителях и уменьшает массу подвижного цилиндра, а как следствие позволяет значительно расширить частотный диапазон работы модулятора потока газа.

Преимущество предлагаемого изобретения подтверждается аналитическими зависимостями, представленными ниже.

Влияние токов Фуко определить расчетным путем затруднительно (требуется эксперимент), а токи индукции и выделяемое тепло можно рассчитать.

ЭДС индукции равна

где В - индукция магнитного поля в кольцевом зазоре магнитопрводов;

v - скорость движения подвижного полого цилиндра клапанного узла модулятора;

l - длина внешней окружности полого подвижного цилиндра.

Электрическое сопротивление кольцевого участка подвижного цилиндра под обмоткой возбуждения равно

где ρ - удельное электрическое сопротивление материала подвижного цилиндра;

S - площадь поперечного сечения кольцевого участка, предназначенного для размещения обмотки возбуждения.

Ток индукции I в кольцевом участке подвижного цилиндра равен

Из приведенной формулы следует, что индуцируемый ток в проводнике, движущемся в магнитном поле, не зависит от его длины, т.е. токи, индуцируемые в кольцевых участках 7, предназначенных для размещения обмоток возбуждения, не зависят от того, перфорированы они или нет. Однако тепловыделение зависит не только от тока индукции, но и от сопротивления проводника, движущегося в магнитном поле

Так как в результате перфорации суммарное электрическое сопротивление перемычек между окнами составляет n-ную часть от сопротивления неперфорированного кольцевого участка подвижного цилиндра, то тепловыделение составит

где n=0,4-0,5,

т.е. оно может быть уменьшено не только за счет снижения нагрева от токов Фуко, но и в результате уменьшения суммарной длины (сопротивления R) металлической части кольцевого участка 7 подвижного цилиндра, находящейся в интенсивном магнитном поле.

Еще одним преимуществом наличия перфорации является уменьшение силы электромагнитного сопротивления движению подвижной части модулятора, так как

Предлагаемая конструкция перфорированного кольцевого участка подвижного цилиндра в месте расположения обмоток возбуждения решает три задачи: уменьшает силы электромагнитного сопротивления при движении подвижной части модулятора, снижает тепловыделение в электромагнитных движителях и массу полого подвижного цилиндра клапанного узла модулятора.

Перечисленные выше преимущества технического решения обеспечивают возможность увеличения частоты работы модулятора потока газа. т.е. достижение заявленного технического результата.

Источник поступления информации: Роспатент

Showing 181-190 of 255 items.
29.03.2019
№219.016.f76c

Способ измерения температуры режущей кромки лезвийного инструмента при высокоскоростном фрезеровании металла

Изобретение относится к измерительной технике, в частности к измерениям температуры в зоне резания лезвийным инструментом с использованием термопары. Техническим результатом является определение температуры детали в фактической точке резания (на режущей кромке инструмента) с максимальной...
Тип: Изобретение
Номер охранного документа: 0002445588
Дата охранного документа: 20.03.2012
04.04.2019
№219.016.fcf9

Термомолекулярный насос (варианты)

Изобретение относится к области физики, в частности к устройствам для прокачки газа. Предлагается термомолекулярный насос, насос без движущихся частей и без рабочих жидкостей. Предлагается двухслойная мембрана, слои которой изготовлены из различных или одинаковых термоэлектрических материалов....
Тип: Изобретение
Номер охранного документа: 0002441174
Дата охранного документа: 27.01.2012
04.04.2019
№219.016.fd13

Способ коррекции результатов измерения тензометрическим мостовым датчиком с инструментальным усилителем

Изобретение относится к области измерительной техники и может быть использовано для измерения неэлектрических величин при помощи тензометрического мостового датчика с инструментальным усилителем, запитанных постоянным током. Технический результат: исключение систематических аддитивных и...
Тип: Изобретение
Номер охранного документа: 0002468334
Дата охранного документа: 27.11.2012
10.04.2019
№219.017.0333

Прямоточный воздушно-реактивный двигатель с распределенным по длине тепломассоподводом

Прямоточный воздушно-реактивный двигатель содержит воздухозаборник, газогенератор с топливом, камеру сгорания с блоком горючего и выходное сопло. В камере сгорания установлены подсоединенные к блоку управления топливонесущие секции с соплами для истечения топливных струй из внутренних полостей...
Тип: Изобретение
Номер охранного документа: 0002315193
Дата охранного документа: 20.01.2008
10.04.2019
№219.017.035d

Магнитогазодинамический канал

Изобретение относится к технической физике, к технологии эксплуатации магнитогазодинамических каналов, как МГД-генераторов, так и МГД-ускорителей, и может быть использовано в электротехнической и авиационно-космической промышленности, а также и в других областях техники. В предлагаемом...
Тип: Изобретение
Номер охранного документа: 0002387067
Дата охранного документа: 20.04.2010
10.04.2019
№219.017.0560

Гофрированный газопровод с подавлением шума и вибрации (варианты)

Изобретение относится к гофрированным трубам (в том числе к шлангам), предназначенным для транспортирования газов и газожидкостных смесей. Технический результат, достигаемый при использовании изобретения, - подавление шума и вибрации, возникающих за счет турбулентности внутреннего потока среды...
Тип: Изобретение
Номер охранного документа: 0002369798
Дата охранного документа: 10.10.2009
19.04.2019
№219.017.2d2d

Гидропресс для соединения частей камеры высокого давления

Изобретение относится к области техники высоких давлений и может быть использовано при разработке крупногабаритного оборудования. Гидропресс содержит две поперечины, скрепленные между собой, и гидропривод с поршнем. Он снабжен дополнительным цилиндром с поршнем, диаметр которого равен диаметру...
Тип: Изобретение
Номер охранного документа: 0002250826
Дата охранного документа: 27.04.2005
25.04.2019
№219.017.3b27

Устройство для испытания панелей

Изобретение относится к области испытаний летательных аппаратов на прочность при сложном многокомпонентном нагружении, в частности к испытаниям подкрепленных панелей силового каркаса планера самолета, для определения фактической прочности и устойчивости, а также для выбора их рациональной...
Тип: Изобретение
Номер охранного документа: 0002685792
Дата охранного документа: 23.04.2019
24.05.2019
№219.017.5d97

Способ изготовления маложестких лопаток роторов при одноопорном закреплении на станках с чпу

Изобретение относится к машиностроению и может быть использовано при обработке профиля пера лопаток роторов концевыми фрезами на фрезерных станках с числовым программным управлением (ЧПУ). Способ включает обработку концевой торовой фрезой, перемещаемой эквидистантно обрабатываемой поверхности...
Тип: Изобретение
Номер охранного документа: 0002688987
Дата охранного документа: 23.05.2019
24.05.2019
№219.017.5dc6

Способ регулирования давления в замкнутом объеме и устройство для его реализации

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Предлагается способ и устройство для его реализации, в ходе определения разницы между заданным и измеренным давлением могут рассчитывать фиктивную или реальную площадь сечения щели...
Тип: Изобретение
Номер охранного документа: 0002688950
Дата охранного документа: 23.05.2019
Showing 31-36 of 36 items.
09.06.2019
№219.017.7c10

Полумостовой преобразователь приращения сопротивления в напряжение

Изобретение относится к измерительной технике и может быть использовано, в частности, в тензометрии. Полумостовой преобразователь приращения сопротивления в напряжение содержит полумост, два операционных усилителя, источник напряжения, три резистора, дифференциальный усилитель и сумматор....
Тип: Изобретение
Номер охранного документа: 0002366965
Дата охранного документа: 10.09.2009
09.06.2019
№219.017.7c24

Устройство для преобразования изменения сопротивления в напряжение

Устройство относится к измерительной технике и может быть использовано в авиационной промышленности, машиностроении, строительстве и т.д. для исследования прочности конструкций с помощью тензорезисторов. Устройство содержит тензорезистор, резистор и источник тока, соединенные последовательно, а...
Тип: Изобретение
Номер охранного документа: 0002366966
Дата охранного документа: 10.09.2009
10.08.2019
№219.017.bdea

Электропневматический генератор звука

Изобретение относится к технической акустике и может быть использовано для испытаний конструкций на акустическую усталостную прочность. Электропневматический генератор звука содержит корпус, форкамеру, постоянные магниты, обмотки возбуждения, упругие элементы, неподвижную и подвижную...
Тип: Изобретение
Номер охранного документа: 0002696946
Дата охранного документа: 07.08.2019
17.08.2019
№219.017.c168

Устройство для исследования ближнего поля давления модели в аэродинамической трубе

Изобретение относится к области аэродинамики и предназначено для исследования ближнего поля давления модели при сверхзвуковом обтекании в аэродинамической трубе. Устройство содержит генератор ударной волны (модель), поверхность с нанесенным барочувствительным покрытием, расположенную...
Тип: Изобретение
Номер охранного документа: 0002697569
Дата охранного документа: 15.08.2019
01.12.2019
№219.017.e990

Способ генерации звука для испытаний конструкций и устройство для его реализации

Изобретение относится к области испытательной техники, в частности, к технической акустике. Способ генерации звука основан на модулировании потока сжатого воздуха, дросселируемого через клапанный узел с изменяемой собственной частотой колебаний, состоящий из коаксиально расположенных...
Тип: Изобретение
Номер охранного документа: 0002707587
Дата охранного документа: 28.11.2019
20.05.2023
№223.018.6657

Предохранительное устройство

Изобретение относится к испытаниям летательных аппаратов на прочность. Предохранительное устройство содержит мембранный узел, который выполняется в виде гибкого торообразного сильфона (5), одно основание которого герметично соединено с затвором (4) рабочего клапана, а другое с крышкой (2)....
Тип: Изобретение
Номер охранного документа: 0002767086
Дата охранного документа: 16.03.2022
+ добавить свой РИД