×
16.05.2023
223.018.643c

Результат интеллектуальной деятельности: Способ выделения оптических импульсов

Вид РИД

Изобретение

Аннотация: Изобретение относится к приему оптических сигналов, в частности, к технике приема сигналов с помощью лавинных фотодиодов, и может быть использовано в локации, связи и других фотоэлектронных системах. Способ выделения оптических импульсов с помощью лавинного фотодиода и порогового устройства, включающий пороговую обработку принятых фотодиодом сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, при этом предварительно определяют значения умножаемого и неумножаемого темнового тока фотодиода, шум-фактор лавинного умножения и зависимость частоты микроплазм от коэффициента лавинного умножения М, после чего коэффициент лавинного умножения фотодиода устанавливают так, чтобы величина М была как можно более близка к оптимальному значению М, а частота микроплазм не превышала предельно допустимого значения во всех условиях окружающей среды, при этом порог срабатывания порогового устройства регулируют так, чтобы частота f превышений порогового уровня выбросами шумового процесса находилась в пределах причем, , а величину f=N/T определяют путем подсчета количества N стандартных выходных импульсов за предварительно заданное время Т. Технический результат заключается в обеспечении близкой к предельно достижимой чувствительности во всех режимах, в том числе при наличии микроплазменных пробоев. 3 ил.

Предлагаемое изобретение относится к приему оптических сигналов, в частности, к технике приема сигналов с помощью лавинных фотодиодов, и может быть использовано в системах локации, связи и других фотоэлектронных системах.

Известен способ приема оптических сигналов с помощью лавинных фотодиодов [1]. Известны также способы стабилизации лавинного режима фотодиода, например, путем термокомпенсации рабочей точки напряжения смещения [2].

Наиболее близким к предлагаемому техническому решению является способ приема импульсных оптических сигналов с помощью лавинного фотодиода, напряжение смещения которого поддерживают путем стабилизации частоты шумовых импульсов, возникающих в фотодиоде в процессе лавинного умножения [3].

Недостатком этого способа является возможность введения фотодиода в режим микроплазменного пробоя [4]. Микроплазменные импульсы тока имеют прямоугольную форму и постоянную амплитуду, которая возрастает по мере увеличения обратного напряжения. Увеличение амплитуды сопровождается увеличением длительности импульсов и уменьшением скважности [5]. В таком режиме шум лавинного фотодиода состоит из двух независимых составляющих - нормального шума [6] и «телеграфного» шума микроплазм. Микроплазменная составляющая шума фотодиода не сопоставима по статистическим характеристикам с нормальной составляющей, и ее участие в процессе регулирования смещения фотодиода [3] непредсказуемо. При некоторых температурных условиях регулировка лавинного режима по частоте шумовых выбросов фотодиода включая микроплазмы, может привести к выходу системы на неоптимальный режим лавинного умножения, т.е. к ухудшению пороговой чувствительности фотоприемного устройства или к недопустимой вероятности ложных срабатываний, вызванных микроплазмами.

Задачей изобретения является обеспечение высокой чувствительности во всех условиях эксплуатации.

Указанная задача решается за счет того, что в известном способе выделения оптических импульсов с помощью лавинного фотодиода и порогового устройства, включающем пороговую обработку принятых фотодиодом сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, предварительно определяют значения умножаемого и неумножаемого темнового тока фотодиода, шум-фактор лавинного умножения и зависимость частоты микроплазм от коэффициента лавинного умножения М, после чего коэффициент лавинного умножения фотодиода устанавливают так, чтобы величина М была как можно более близка к оптимальному значению Мопт, а частота микроплазм не превышала предельно допустимого значения во всех условиях окружающей среды, при этом порог срабатывания порогового устройства регулируют так, чтобы частота f превышений порогового уровня выбросами шумового процесса находилась в пределах причем, где - квадрат неумножаемого шумового тока фотодиода, приведенного к его выходу; квадрат умножаемого шумового тока; е - заряд электрона; I1 - первичный обратный ток фотодиода; Δf - полоса пропускания линейного тракта до входа порогового устройства; М - коэффициент лавинного умножения; α - коэффициент, определяемый материалом фотодиода; f1 и f2 - нижняя и верхняя границы допуска на частоту f, а величину f=N/T определяют путем подсчета количества N стандартных выходных импульсов за предварительно заданное время Т.

На фиг. 1 представлена схема фотоприемного устройства, реализующего данный способ. На фиг. 2а), б) - примеры реализации шума на входе порогового устройства при разной величине М. На фиг. 3 показаны графики зависимости η(М) для германиевого (фиг. 3а) и кремниевого (фиг. 3б) лавинных фотодиодов.

Фотоприемное устройство содержит последовательно включенные лавинный фотодиод 1, усилитель 2 и пороговое устройство 3. Напряжение смещения подается на фотодиод 1 от последовательно связанных источника питания 4 и схемы термокомпенсации 5. Пороговое устройство охвачено цепью обратной связи в виде схемы шумовой автоматической регулировки порога 6, включенной между выходом порогового устройства и его управляющим входом. Схема термокомпенсации связана с блоком установки лавинного режима 7. Синхронизация режима осуществляется блоком управления 8, связанным с блоками 6 и 7.

Способ осуществляется следующим образом.

Предварительно определяют ход параметров I0, I1, α выбранных лавинных фотодиодов в зависимости от температуры и величины коэффициента лавинного умножения М, в свою очередь определяемого напряжением смещения фотодиода Uсм. Одновременно выявляют зависимость частоты микроплазм от температуры и коэффициента лавинного умножения [7]. Этот подготовительный цикл осуществляют однократно на этапе проектирования.

При изготовлении и отладке фотоприемного устройства с учетом ранее определенных зависимостей настраивают схему термокомпенсации так, чтобы во всех условиях эксплуатации коэффициент лавинного умножения был как можно ближе к своему оптимальному значению и чтобы частота микроплазм при этом не превышала допустимого количества Nм за время приема Т. Характер шумов, включающий нормальную составляющую шума 8 и поток микроплазм 9, приведен на фиг. 2 - при М=Мопт (фиг. 2а) и при коэффициенте соответствующем максимально допустимой частоте микроплазм (фиг. 2б).

После выхода фотодиода на номинальный лавинный режим непосредственно перед приемом сигналов включают шумовую автоматическую регулировку, осуществляемую схемой 6, например, по методике, изложенной в [8]. После выхода шумовой регулировки порога на рабочий режим, включают режим приема сигналов.

Описанный способ обеспечивает максимальное отношение сигнал/шум при наличии микроплазменных пробоев, которые обычно не учитывают, что приводит к ухудшению реальной чувствительности приемных устройств.

Оптимальное значение коэффициента лавинного умножения М можно определить следующим образом. На выходе лавинного фотодиода действует эквивалентный квадрат шумового тока

- квадрат неумножаемого шумового тока

е - заряд электрона;

I1 - первичный обратный ток фотодиода;

Δf - полоса пропускания линейного тракта до входа порогового устройства;

М - коэффициент лавинного умножения;

Мα - шум-фактор лавинного умножения;

α - коэффициент, определяемый материалом фотодиода [6].

Квадрат W отношения шум/сигнал

Условие нуля производной

Или

Пример 1 (Фиг. 3а).

Германиевый фотодиод. I1=10-7 A. Jм2=3,2⋅10-19 А2. α=1. Область микроплазм начинается с М=4. Рабочую точку фотодиода поддерживают при М=1,8…3,5. При этом максимальное отношение сигнал/шум, обеспечиваемое способом, то есть величина отличается от максимального значения, обеспечиваемого при М=Мопт=3, не более, чем на 2%.

Пример 2 (Фиг. 3б).

Кремниевый фотодиод. I1=10-9 A. Jм2=3,2⋅10-21 А2. α=0,5. Область микроплазм начинается с М=25. Рабочую точку фотодиода поддерживают при М=20…25. При этом максимальное отношение сигнал/шум, обеспечиваемое способом, то есть величина отличается от максимального значения, обеспечиваемого при М=Мопт=30, не более, чем на 2%.

Оптимальный коэффициент лавинного умножения М можно устанавливать предварительно путем подачи на фотодиод пробного сигнала, изменения напряжения смещения фотодиода и одновременного измерения отношения η амплитуды выходного сигнала А к среднеквадратическому значению шума σ, причем оптимальным устанавливают такое значение Мопт, при котором отношение максимально, а в процессе приема сигналов фиксируют напряжение смещения фотодиода на уровне, соответствующем установленной величине Мопт.

Таким образом, обеспечивается близкая к предельно достижимой чувствительность во всех режимах, в том числе при наличии микроплазменных пробоев.

Источники информации

1 Росс М. Лазерные приемники. - «Мир», М., 1969 г. - 520 с.

2 Патент РФ №2 248670. Устройство включения лавинного фотодиода в приемнике оптического излучения. 2005 г.

3 US pat. 4,077,718. Receiver for optical radar. 1978. - прототип.

4 Филачев A.M., Таубкин И.И., Тришенков М.А. Твердотельная фотоэлектроника. Физические основы. Москва, Физматгиз. 2007, - С. 345.

Вишневский А.И., Руденко В.С, Платонов А.П. Силовые ионные и полупроводниковые приборы. Учебное пособие для вузов. Под редакцией В.С. Руденко. Москва, Высшая школа, 1975.

6. Вильнер В.Г., Лейченко Ю.А., Мотенко Б.Н. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. Оптико-механическая промышленность, 1981, №9, - С. 59.

7 Шашкина А.С. и др. Лавинный пробой p-n-перехода в задачах радиотехники. - Научно-технический вестник информационных технологий, механики и оптики, 2016, том 16, №5, с. 864-871.

8 Вильнер В.Г. Проектирование пороговых устройств с шумовой стабилизацией порога. - Оптико-механическая промышленность, 1984, №5, с. 39-41.

Способ выделения оптических импульсов с помощью лавинного фотодиода и порогового устройства, включающий пороговую обработку принятых фотодиодом сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, отличающийся тем, что предварительно определяют значения умножаемого и неумножаемого темнового тока фотодиода, шум-фактор лавинного умножения и зависимость частоты микроплазм от коэффициента лавинного умножения М, после чего коэффициент лавинного умножения фотодиода устанавливают так, чтобы величина М была как можно более близка к оптимальному значению М, а частота микроплазм не превышала предельно допустимого значения во всех условиях окружающей среды, при этом порог срабатывания порогового устройства регулируют так, чтобы частота f превышений порогового уровня выбросами шумового процесса находилась в пределах причем, где - квадрат неумножаемого шумового тока фотодиода, приведенного к его выходу; квадрат умножаемого шумового тока; е - заряд электрона; I - первичный обратный ток фотодиода; Δf - полоса пропускания линейного тракта до входа порогового устройства; М - коэффициент лавинного умножения; α - коэффициент, определяемый материалом фотодиода; f и f - нижняя и верхняя границы допуска на частоту f, а величину f=N/T определяют путем подсчета количества N стандартных выходных импульсов за предварительно заданное время Т.
Источник поступления информации: Роспатент

Showing 71-71 of 71 items.
17.06.2023
№223.018.819f

Приемный канал лазерного дальномера

Изобретение относится к области лазерной техники и касается приемного канала лазерного дальномера. Приемный канал содержит приемный объектив и два фоточувствительных элемента с усилителями, на выходах которых введены схемы временной фиксации сигнала. Фоточувствительные элементы расположены на...
Тип: Изобретение
Номер охранного документа: 0002756383
Дата охранного документа: 29.09.2021
Showing 91-97 of 97 items.
17.06.2023
№223.018.8049

Приемник импульсных лазерных сигналов

Изобретение относится к лазерной технике, а именно к аппаратуре приема лазерного излучения. Предложен приемник импульсных лазерных сигналов, содержащий герметичный корпус с защитным окном, за которым размещены фоточувствительный элемент и схема обработки сигнала, включающая усилитель и...
Тип: Изобретение
Номер охранного документа: 0002762977
Дата охранного документа: 24.12.2021
17.06.2023
№223.018.813f

Приемное устройство лазерного дальномера

Изобретение относится к лазерной технике, к аппаратуре приема лазерного излучения, преимущественно в лазерных дальномерах. Технический результат изобретения состоит в обеспечении высокой точности временной фиксации принимаемого сигнала в предельно широком динамическом диапазоне. В приемное...
Тип: Изобретение
Номер охранного документа: 0002759262
Дата охранного документа: 11.11.2021
17.06.2023
№223.018.8147

Способ измерения дальности

Использование: изобретение относится к лазерной технике, а именно к лазерной дальнометрии. Сущность: способ измерения дальности путем излучения на цель зондирующего лазерного импульса, приема отраженного целью сигнала U(t), дифференцирования его с постоянной времени дифференцирования τ≤t, где t...
Тип: Изобретение
Номер охранного документа: 0002759300
Дата охранного документа: 11.11.2021
17.06.2023
№223.018.818d

Импульсный лазерный дальномер

Изобретение относится к лазерной локации, а именно к импульсным лазерным дальномерам. Импульсный лазерный дальномер, содержащий основной и пробный излучатели, фотоприемный канал с фотоприемником с объективом, пороговое устройство, включенное на выходе фотоприемника и связанное со схемой...
Тип: Изобретение
Номер охранного документа: 0002756783
Дата охранного документа: 05.10.2021
17.06.2023
№223.018.819d

Лазерный дальномер с пробным излучателем

Изобретение относится к лазерной локации, к импульсным лазерным дальномерам и локаторам. Технический результат изобретения состоит в обеспечении безопасного режима работы фотоприемника при сохранении требуемой вероятности достоверного измерения в широком диапазоне дальностей. Лазерный дальномер...
Тип: Изобретение
Номер охранного документа: 0002756782
Дата охранного документа: 05.10.2021
17.06.2023
№223.018.819e

Лазерный дальномер

Лазерный дальномер, содержащий основной и пробный излучатели разной мощности со схемами питания, фотоприемник с объективом, пороговое устройство с задатчиком переменного порога, включенное на выходе фотоприемника и по выходу связанное со схемой управления и измерителем временных интервалов,...
Тип: Изобретение
Номер охранного документа: 0002756381
Дата охранного документа: 29.09.2021
17.06.2023
№223.018.819f

Приемный канал лазерного дальномера

Изобретение относится к области лазерной техники и касается приемного канала лазерного дальномера. Приемный канал содержит приемный объектив и два фоточувствительных элемента с усилителями, на выходах которых введены схемы временной фиксации сигнала. Фоточувствительные элементы расположены на...
Тип: Изобретение
Номер охранного документа: 0002756383
Дата охранного документа: 29.09.2021
+ добавить свой РИД