×
16.05.2023
223.018.63bf

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ПОГЛОТИТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследований физическо-химических свойств поглотителей и предназначено для изучения каталитических, адсорбционных и регенерационных свойств материалов. Способ определения физико-химических свойств поглотителя включает пропускание газовой смеси (ГС) через исследуемый поглотитель, последующее определение физико-химических свойств исследуемого поглотителя, при этом ГС с заданными концентрациями компонентов предварительно формируют в герметичном контейнере, куда направляют индивидуальные газовые компоненты формируемой ГС из индивидуальных источников газов через электромагнитные клапаны регулятора расхода газов и жидких компонентов после прохождения последних через инжектор, сформированная ГС компонентов под давлением направляется сначала в газовую магистраль, а затем в контейнер с поглотителем, в составе которого использованы адсорбенты и материалы на основе палладия или платины, восстановленные из палладий- или платиносодержащих соединений, а определение физико-химических характеристик поглотителя ведут путем анализа состава ГС на выходе из контейнера с палладий или платиносодержащим адсорбентом хромато-масс-спектрометрическим и газохроматографическим методами, при этом адсорбционную емкость определяют как разность концентраций органических компонентов исследуемой ГС, измеренных на входе и на выходе из контейнера с поглотителем и прошедших через него в течение заданного промежутка времени, регенерационную способность поглотителя определяют по количеству выделившегося кислорода при каталитическом окислении водорода, каталитическую активность определяют по времени, в течение которого концентрация водорода в контейнере, объемом не более 40 дм, снижается от 3% до 1,5% при каталитическом окислении. Техническим результатом является возможность определения адсорбционной емкости, регенерационной способности и каталитической активности поглотителя. 1 ил., 1 табл., 3 пр.

Предлагаемое изобретение относится к области исследований физическо-химических свойств поглотителей и предназначено для изучения каталитических, адсорбционных и регенерационных свойств материалов.

Актуальность решаемой проблемы основана на необходимости определения адсорбционной емкости, регенерационной способности и каталитической активности поглотителя, обеспечивающего состав газовой смеси (ГС) гермообъема в заданном концентрационном диапазоне.

Известен из уровня техники способ определения сорбции газов материалами (патент РФ № 2316752 МПК G01N 7/02, публикация 10.02.2008 г.), включающий помещение и герметичную камеру образца, поглотительные свойства которого исследуются, измерение равновесной концентрации газа в камере. После этого камеру вскрывают, размещают в ней адсорбент, поглощающая способность которого определяется законом Генри, и первоначально свободный от этого газа, камеру вновь вакуумируют и повторно определяют равновесную концентрацию газа.

К недостаткам известного способа относиться сложность и сравнительно высокая трудоемкость, сложность математического определения исследуемого показателя.

В качестве прототипа заявляемого выбран способ определения поглотительной способности сорбентов (патент РФ № 2289115 МПК G01N 7/02, публикация 10.12.2006 г.), в котором поглотитель газа располагают в потоке газа с получением при реакции в процессе следования потока газа, который выходит из поглотителя газа через выпускное отверстие, показатели которого регистрируют с помощью датчиков, причем первый датчик температуры установлен у входа поглотителя, а последующие датчики температуры размещены на расстоянии друг от друга по пути следования газового потока.

Недостатком прототипа является то, что в нем не обеспечена возможность определения адсорбционной емкости, регенерационной способности и каталитической активности поглотителя.

Задачей авторов изобретения является разработка эффективного способа определения адсорбционной емкости, регенерационной способности и каталитической активности поглотителя.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа, заключается в возможности определения адсорбционной емкости, регенерационной способности и каталитической активности поглотителя.

Указанные задача и технический результат обеспечены тем, что в отличие от известного способа определения физико-химических свойств поглотителя, включающего пропускание газовой смеси (ГС) через исследуемый поглотитель, заявляемый способ включает последующее определение физико-химических свойств исследуемого поглотителя, отличающийся тем, что ГС с заданными концентрациями компонентов, которую предварительно формируют в герметичном контейнере, куда направляют индивидуальные газовые компоненты формируемой ГС из индивидуальных источников газов через электромагнитные клапаны регулятора расхода газов и жидких компонентов после прохождения последних через инжектор, сформированная ГС под давлением направляется сначала в газовую магистраль, а затем в контейнер с поглотителем, в составе которого использованы адсорбенты и материалы на основе палладия или платины, восстановленные из палладий- или платиносодержащих соединений, а определение физико-химических характеристик поглотителя ведут путем анализа состава ГС на выходе из контейнера с палладий или платиносодержащим адсорбентом хромато-масс-спектрометрическим и газохроматографическим методами, при этом адсорбционную емкость определяют как разность концентраций органических компонентов исследуемой ГС, измеренных на входе и на выходе из контейнера с поглотителем и прошедших через него в течение заданного промежутка времени, регенерационную способность поглотителя определяют по количеству выделившегося кислорода при каталитическом окислении водорода, каталитическую активность определяют по времени, в течение которого концентрация водорода в контейнере, объемом не более 40 дм3, снижается от 3% до 1,5% при каталитическом окислении.

Принципиальная схема и устройство определения адсорбционной емкости, регенерационной способности и каталитической активности поглотителя, содержащего газовую смесь с заданными концентрациями компонентов, представлены на фиг.1, где 1 - температурная камера с терморегулятором, 2 - поглотитель с адсорбентом, 3 - инжектор воды и жидких органических соединений, 4 - датчик давления, 5 - датчик температуры и относительной влажности, 6 - двухходовые краны, 7 - вакуумный насос, 8 - хромато-масс-спектрометр или газовый хроматограф с детектором по теплопроводности (катарометром), 9 - газосмесительная камера, 10 - регулятор расхода газов с электромагнитными клапанами, 11 - газовая линия и 12 - вакуумная линия.

Предлагаемый способ определения физико-химических свойств поглотителя поясняется следующим образом.

Первоначально берут образец исследуемого поглотителя и помещают его внутри температурной камеры. Затем через исследуемый поглотитель пропускают поток предварительно сформированной ГС с заданными концентрациями газовых компонентов. Указанную ГС предварительно формируют в герметичном контейнере, куда направляют индивидуальные газовые компоненты формируемой ГС из индивидуальных источников газов через электромагнитные клапаны регулятора расхода газов и жидких компонентов. После прохождения последних через инжектор сформированная ГС компонентов под давлением направляется сначала в газовую магистраль, а затем в контейнер с многокомпонентным поглотителем.

В составе упомянутых многокомпонентных поглотителей использованы адсорбенты (цеолиты, активный уголь, силикагель) и материалы на основе палладия или платины, восстановленные из палладий- или платиносодержащих соединений.

Определение физико-химических характеристик поглотителя ведут путем анализа (сравнения) состава ГС на входе выходе из контейнера с палладий или платиносодержащим адсорбентом хромато-масс-спектрометрическим и газохроматографическим методами.

Адсорбционную емкость определяют как разность концентраций органических газовых компонентов исследуемой ГС, измеренных на входе и на выходе из контейнера с поглотителем, и прошедших через него в течение заданного промежутка времени.

Регенерационную способность поглотителя определяют по количеству выделившегося кислорода при каталитическом окислении водорода.

Каталитическую активность определяют по времени, в течение которого концентрация водорода в контейнере, объемом не более 40 дм3, снижается от 3% до 1.5% при каталитическом окислении.

Последовательность определения физико-химических показателей в предлагаемом способе, а именно адсорбционной емкости, регенерационной способности и каталитической активности поглотителя, обеспечивающего состав ГС с заданными концентрациями компонентов, можно описать следующими стадиями:

1) Поглотитель (фиг.1, п. 2) закрепляют внутри температурной камеры (фиг.1, п. 1), оснащенной инжектором воды и жидких органических соединений (фиг.1, п. 3), датчиками давления (фиг.1, п. 4), температуры и относительной влажности (фиг.1, п. 5),

2) Вакуумируют внутреннее пространство температурной (фиг.1, п. 1) и газосмесительной камер (фиг.1, п. 9) с помощью вакуумного насоса (фиг.1, п. 7).

3) Формируют ГС внутри газосмесительной и температурной камер заданного компонентного и концентрационного состава при требуемом давлении, температуре и относительной влажности с помощью регулятора расхода газов (фиг.1. п. 10) и инжектора воды и жидких органических соединений (фиг.1, п. 3).

4) Проводят определение качественного и количественного состава ГС с помощью хромато-масс-спектрометра и газового хроматографа на содержание органических соединений, кислорода и водорода (фиг.1, п. 7). Изменение концентрации органических соединений, кислорода и водорода, позволяет определить адсорбционную емкость, регенерационную способность и каталитическую активность поглотителя.

Предлагаемым способом количественное определение адсорбционной емкости ведут по разности концентраций органических газовых компонентов исследуемой ГС, измеренных на выходе из контейнера с поглотителем и прошедших через него в течение заданного промежутка времени. В прототипе указанный показатель определяют в потоке газа, причем поток газа поступает на вход поглотителя и протекает через поглотитель с получением при реакции в процессе следования потока газа, который выходит из поглотителя газа через выпускное отверстие, для чего множество датчиков температуры размещают вдоль пути следования потока, причем первый датчик температуры установлен у входа поглотителя; датчики температуры размещены на расстоянии друг от друга по пути следования потока, затем измеряют температуру каждым из указанных датчиков температуры и определяют разность температур между каждым из датчиков, размещенных по пути следования потока, и первым датчиком температуры, нормализуют каждую из полученных разностей температур к наибольшей из этих разностей для получения характеристики остаточной абсорбирующей способности поглотителя, которую определяют при сравнении нормализованных разностей температур с калибровочной функцией, что существенно сложнее, более трудоемко и более продолжительно по времени.

Приведенная выше реализация заявляемой последовательности измерений датчиками и регуляторами расхода газов, устанавливаемых на входе в контейнер с поглотителем и на выходе из него, с последующем определением показателей хромато-масс-спектрометра и газового хроматографа, определения показателей концентрации органических соединений, кислорода и водорода в ГС обеспечивает достижение заявленного технического результата, заключающегося в возможности определения адсорбционной емкости, регенерационной способности и каталитической активности поглотителя.

Возможность промышленной реализации предлагаемого способа определения адсорбционной емкости, регенерационной способности и каталитической активности поглотителя, обеспечивающего состав ГС с заданными концентрациями компонентов, может быть подтверждена следующими примерами конкретного исполнения.

Пример 1

В лабораторных условиях проведено последовательное количественное определение адсорбционной емкости, регенерационной способности и каталитической активности поглотителя А, оснащенного, активным углем (АГ-3), силикагелем (КСМГ) и катализатором палладиевым гранулированным (К-ПГ).

Поглотитель А (фиг.1, п. 2) закрепляли внутри температурной камеры (фиг.1, п. 1), оснащенной инжектором воды и жидких органических соединений (фиг.1, п. 3), датчиками давления (фиг.1, п. 4), температуры и относительной влажности (фиг.1, п. 5).

Вакуумировали внутреннее пространство температурной (фиг.1, п. 1) и газосмесительной камер (фиг.1, п. 9) с помощью вакуумного насоса (фиг.1, п. 7), а затем формировали воздушный состав ГС газосмесительной и температурной камер с объемной долей водорода 3,0±0,7%, кислорода 21,0±1,1%, азота - 76±4% и суммарным содержанием органических соединений (ацетона, этанола, бутанола и метана) - 1⋅10-2%. Добавление водорода проводили пять раз по 3% в течение пяти дней. Идентификацию и количественный анализ водорода, кислорода и азота проводили на газовом хроматографе, а органические соединения регистрировали на хромато-масс-спектрометре (фиг.1, п. 7). После окончания эксперимента концентрация кислорода составила 15,5±1,5%, азота - 83±7%, водорода - 0,0001% и органических соединений не более 1⋅10-5%.

Установлено, что для поглотителя А адсорбционная емкость составила - 0,00999%, регенерационная способность ~ 0% (поглотитель А не обладает регенерационной способностью), каталитическая активность - 60 мин.

В отличие от прототипа в данном примере представлено определение адсорбционной емкости, регенерационной способности и каталитической активности поглотителя.

Пример 2

В лабораторных условиях проведено последовательное количественное определение адсорбционной емкости, регенерационной способности и каталитической активности поглотителя Б, оснащенного активным углем (АГ-3), силикагелем (КСМГ) и катализатором палладисвым на карбонате кальция (катализатор Линдлара).

Поглотитель Б (фиг.1, п. 2) закрепляли внутри температурной камеры (фиг.1, п. 1), оснащенной инжектором воды и жидких органических соединений (фиг.1, п. 3), датчиками давления (фиг.1, и.4), температуры и относительной влажности (фиг.1, п. 5).

Вакуумировали внутреннее пространство температурной (фиг.1, п. 1) и газосмесительной камер (фиг.1, п. 9) с помощью вакуумного насоса (фиг.1, п. 7), а затем формировали воздушный состав ГС газосмесительной и температурной камер с объемной долей водорода 3,0±0,7%, кислорода 21,0±1,1%, азота - 76±4% и суммарным содержанием органических соединений (ацетона, этанола, бутанола и метана) - 1⋅10-2%. Добавление водорода проводили пять раз по 3% в течение пяти дней. Идентификацию и количественный анализ водорода, кислорода и азота проводили на газовом хроматографе, а органические соединения регистрировали на хромато-масс-спектрометре (фиг.1, и.7). После окончания эксперимента концентрация кислорода составила 14,0±1,5%, азота - 85±7%, водорода - 0,0001% и органических соединений не более 1⋅10-5%.

Установили, что для поглотителя Б адсорбционная емкость составила - ~0,00999%, регенерационная способность ~0% (поглотитель Б не обладает регенерационной способностью), каталитическая активность - 25 мин.

В отличие от прототипа в данном примере представлено определение адсорбционной емкости, регенерационной способности и каталитической активности поглотителя.

Пример 3

В лабораторных условиях проведено последовательное количественное определение регенерационной способности поглотителя В, оснащенного активным углем (АГ-3) и силикагелем (КСМГ), катализатором палладиевым гранулированным (К-ПГ) и химическим источником кислорода на основе надпероксида калия.

Поглотитель Б (фиг.1, п. 2) закрепляли внутри температурной камеры (фиг.1, п. 1), оснащенной инжектором воды и жидких органических соединений (фиг.1, п. 3), датчиками давления (фиг.1, п. 4), температуры и относительной влажности (фиг.1, п. 5).

Вакуумировали внутреннее пространство температурной (фиг.1, п. 1) и газосмесительной камер (фиг.1, п. 9) с помощью вакуумного насоса (фиг.1, п. 7), а затем формировали воздушный состав ГС газосмесительной и температурной камер с объемной долей водорода 3,0±0,7%, кислорода 21,0±1,1%, азота - 76±4% и суммарным содержанием органических соединений (ацетона, этанола, бутанола и метана) - 1⋅10-2%. Добавление водорода проводили пять раз по 3% в течение пяти дней. Идентификацию и количественный анализ водорода, кислорода и азота проводили на газовом хроматографе, а органические соединения регистрировали на хромато-масс-спектрометре (фиг.1, п. 7). После окончания эксперимента концентрация кислорода составила 21±1,5%. азота - 79±7%, водорода - 0,007% и органических соединений не более 1⋅10-4%.

В ходе экспериментальных исследований было установлено, что для поглотителя В адсорбционная емкость составила - ~ 0,009%, регенерационная способность - 7%, каталитическая активность - 300 мин.

В отличие от прототипа в данном примере также представлено определение адсорбционной емкости, регенерационной способности и каталитической активности поглотителя.

Результаты измерений в условиях данных, приведенных выше примеров, сведены в таблицу 1.

Как видно из приведенной таблицы, предлагаемым способом обеспечено достижение заявляемого технического результата, заключающегося в возможности определения адсорбционной емкости, регенерационной способности и каталитической активности поглотителя.

Способ определения физико-химических свойств поглотителя, включающий пропускание газовой смеси (ГС) через исследуемый поглотитель, последующее определение физико-химических свойств исследуемого поглотителя, отличающегося тем, что ГС с заданными концентрациями компонентов предварительно формируют в герметичном контейнере, куда направляют индивидуальные газовые компоненты формируемой ГС из индивидуальных источников газов через электромагнитные клапаны регулятора расхода газов и жидких компонентов после прохождения последних через инжектор, сформированная ГС компонентов под давлением направляется сначала в газовую магистраль, а затем в контейнер с поглотителем, в составе которого использованы адсорбенты и материалы на основе палладия или платины, восстановленные из палладий- или платиносодержащих соединений, а определение физико-химических характеристик поглотителя ведут путем анализа состава ГС на выходе из контейнера с палладий или платиносодержащим адсорбентом хромато-масс-спектрометрическим и газохроматографическим методами, при этом адсорбционную емкость определяют как разность концентраций органических компонентов исследуемой ГС, измеренных на входе и на выходе из контейнера с поглотителем и прошедших через него в течение заданного промежутка времени, регенерационную способность поглотителя определяют по количеству выделившегося кислорода при каталитическом окислении водорода, каталитическую активность определяют по времени, в течение которого концентрация водорода в контейнере, объемом не более 40 дм, снижается от 3% до 1,5% при каталитическом окислении.
Источник поступления информации: Роспатент

Showing 81-90 of 796 items.
12.01.2017
№217.015.5d04

Способ контроля хода выполнения программы пользователя, исполняющейся на вычислительных узлах вычислительной системы

Изобретение относится к области вычислительной техники, в частности к организации контроля хода выполнения программы, выполняющейся на вычислительной системе, вычислительном кластере. Технический результат - эффективное использование программы пользователя, что обеспечивает своевременное...
Тип: Изобретение
Номер охранного документа: 0002591020
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e6c

Способ определения характеристик срабатывания детонирующего устройства

Способ определения характеристик срабатывания детонирующего устройства относится к измерительной технике и может быть использован для определения характеристик срабатывания детонирующих устройств, обеспечивающих инициирование зарядов взрывчатого вещества (ВВ), в частности определения момента...
Тип: Изобретение
Номер охранного документа: 0002590960
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6030

Способ определения углового положения подвижного объекта относительно центра масс

Способ определения углового положения подвижного объекта относительно центра масс, т.е определение пространственной ориентации при угловом движении, преимущественно летательных аппаратов (ЛА), относительно какой-либо базовой системы координат, путем аналитического ее вычисления на основе...
Тип: Изобретение
Номер охранного документа: 0002590287
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.605d

Устройство передачи информации для бесконтактного программирования режимов работы инициатора газодинамического импульсного устройства

Устройство передачи информации для бесконтактного программирования режимов работы инициатора газодинамического импульсного устройства относится к взрывным работам, в частности к устройствам бесконтактного программирования и передаче данных инициатору газодинамического импульсного устройства с...
Тип: Изобретение
Номер охранного документа: 0002590270
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.66b3

Излучатель твердотельного лазера без жидкостного охлаждения с термостабилизацией диодной накачки

Изобретение относится к лазерной технике. Излучатель твердотельного лазера без жидкостного охлаждения с термостабилизацией диодной накачки содержит активный элемент, установленный в кольцах, термоинтерфейс и блок диодной накачки, состоящий из теплораспределителя с выступами, установленного...
Тип: Изобретение
Номер охранного документа: 0002592056
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66bb

Лазерное средство инициирования

Изобретение относится к лазерным средствам инициирования, изготовленным с использованием вторичных взрывчатых веществ (ВВ). Лазерное средство инициирования содержит установленные соосно в корпусе 1 источник излучения 2, заряд ВВ, оптический подпор 3, размещенный между источником излучения 2 и...
Тип: Изобретение
Номер охранного документа: 0002592014
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66ca

Термочувствительный датчик

Изобретение относится к электротехнике, а именно к тепловым устройствам для контроля температуры деталей и узлов машин, защиты от температурных перегрузок электротехнических объектов. Техническим результатом является повышение надежности, быстродействия срабатывания, повышение удобства...
Тип: Изобретение
Номер охранного документа: 0002592081
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66d5

Универсальный излучатель твердотельного лазера

Изобретение относится к лазерной технике. Универсальный излучатель твердотельного лазера с безжидкостным охлаждением содержит резонатор, установленный жестко на основание, устройство накачки и теплообменный блок, содержащий термоэлектрические модули и теплообменники. Устройство накачки...
Тип: Изобретение
Номер охранного документа: 0002592057
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.66e1

Способ настройки зеркал резонатора

Способ настройки зеркал резонатора заключается в том, что устанавливают оправы с зеркалами с прижатием в трех точках на несущую часть резонатора и совмещают рабочие поверхности зеркал. Настройка проводится в два этапа. На первом этапе - при настройке резонатора, измеряют угол отклонения между...
Тип: Изобретение
Номер охранного документа: 0002592051
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.680e

Способ извлечения микроконцентраций урана из водных растворов

Изобретение относится к области сорбционной технологии извлечения радионуклидов, а именно к способу извлечения микроконцентраций урана из водных растворов. Способ проводят путем сорбции с использованием тонкослойного неорганического сорбента на основе гидроксида металла, осажденного на...
Тип: Изобретение
Номер охранного документа: 0002591956
Дата охранного документа: 20.07.2016
Showing 1-3 of 3 items.
29.02.2020
№220.018.072d

Способ количественного определения галогенидов лития в литиевом электролите для тепловых химических источников тока

Изобретение относится к аналитической химии, а именно к методам определения концентрации компонентов электролитов для тепловых химических источников тока (ТХИТ), и может быть использовано для определения галогенидов щелочных металлов при их совместном присутствии в твердых литиевых...
Тип: Изобретение
Номер охранного документа: 0002715225
Дата охранного документа: 26.02.2020
29.05.2020
№220.018.21c9

Система регулирования многокомпонентной кислородсодержащей газовой среды в герметичном контейнере и способ задействования системы

Изобретение относится к технологии регулирования состава многокомпонентной газовой среды (ГС) и систем безопасного хранения химически активных или агрессивных материалов и может быть использовано для мониторинга взрыво- и пожароопасных систем. Система регулирования многокомпонентной...
Тип: Изобретение
Номер охранного документа: 0002722135
Дата охранного документа: 26.05.2020
14.05.2023
№223.018.56c9

Электролитная масса и способ изготовления электролита для тепловых химических источников тока

Изобретение относится к технологии изготовления электролитов для тепловых (твердотельных) химических источников тока (ТХИТ) и может быть использовано для получения электролитов на основе соединений лития. Согласно изобретению электролитная масса для ТХИТ содержит смесь галогенидов лития и...
Тип: Изобретение
Номер охранного документа: 0002732080
Дата охранного документа: 11.09.2020
+ добавить свой РИД