×
16.05.2023
223.018.60f8

Результат интеллектуальной деятельности: Термостойкий электропроводный алюминиевый сплав (варианты)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к сплаву на основе алюминия, и может быть использовано при получении изделий электротехнического назначения при производстве кабельно-проводниковой продукции для электропроводки зданий и сооружений. Термостойкий электропроводный алюминиевый сплав содержит легирующие элементы в следующем соотношении, мас. %: по первому варианту скандий 0,05-0,2, иттрий 0,18-0,2, остальное - алюминий; по второму варианту скандий 0,18-0,22, иттрий 0,18-0,22, иттербий 0,28-0,32, остальное - алюминий; по третьему варианту скандий 0,05-0,2, эрбий 0,25-0,32, иттербий 0,25-0,35, остальное - алюминий. Техническим результатом изобретения является повышение прочности и электропроводности сплава, а также значительное повышение термической стабильности до температуры 300 °С. 3 н.п. ф-лы, 3 ил., 3 табл.

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, и может быть использовано при получении изделий электротехнического назначения при производстве кабельно-проводниковой продукции для электропроводки зданий и сооружений.

Известны промышленные алюминиевые сплавы А5Е, А7Е (ГОСТ 11069-2001), ABE (ГОСТ 20967-75) и один из американских аналогов сплав 1350, которые широко применяют при производстве изделий электротехнического назначения. Например, технически чистый алюминий марок А5Е (аналог сплав 1350) и А7Е используют для изготовления токопроводящих кабелей и проводов линий электропередач. Эти сплавы имеют высокую электропроводность и коррозионную стойкость. Сплав ABE, дополнительно легированный магнием для упрочнения закалкой и старением, имеет более высокую прочность.

Недостатками описанных выше сплавов является недостаточная прочность, особенно при повышенных температурах, высокая склонность к разупрочнению при нагревах свыше 100°С.

Известен сплав Al-0.35Sc-0.2Zr (A high-strength, ductile Al-0.35Sc-0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates. J. Mater. Sci. Technol. 33 (2017) 215-223), который имеет высокий предел прочности 210 МПа при удлинении 7,6% и электропроводности 60,2%IACS.

Недостатком данного сплава является очень высокое содержание скандия и относительно невысокая пластичность.

Известен алюминиевый сплав следующего состава в мас. %: по крайней мере один легирующий компонент, выбранный из группы La, Се, Nd, Pr 7,0-9,0, железо 0,05-0,1, кремний 0,05-0,1, алюминий - остальное (RU 2616316, опубл. 14.04.2017) с ультрамелкозернистой структурой и высокой прочностью.

Недостатком этого сплава является очень высокое содержание дорогостоящих металлов и низкая электропроводность не более 52,6%IACS.

Известен термостойкий сплав на основе алюминия (ЕР 0787811, опубл. 06.08.1997), содержащий в мас. %: Zr 0,28-0,50, Si 0,16-0,30, Cu 0,1-0,4, Mn 0,15-0,80, сочетающий неплохую прочность и электропроводность (270 МПа и 55%IACS).

Недостатком является очень высокая склонность к разупрочнению при температурах выше 150°С.

Наиболее близким к предлагаемому изобретению является сплав состава в мас. %: цирконий 0,2-0,32; железо 0,15-0,42; кремний 0,02-0,1; титан, хром, ванадий, марганец в сумме 0,01-0,04; магний, медь, цинк в сумме 0,01-0,07; бор 0,001-0,01; один из редких или редкоземельных металлов из группы: ниобий, церий, иттрий, скандий 0,005-0,2; алюминий -остальное (RU 2639284, опубл. 20.12.2017), имеющий неплохую электропроводность (не менее 58,5%IACS).

Недостатком является весьма небольшая прочность до 160 МПа.

Техническим результатом изобретения является повышение прочности и электропроводности сплава до предела прочности не менее 140 МПа при электропроводности не менее 60%IACS и предел прочности не менее 220 МПа при электропроводности не менее 54%IACS, а также значительное повышение термической стабильности вплоть до 300°С.

Указанный технический результат достигается в первом варианте изобретения за счет того, что в термостойком электропроводном алюминиевом сплаве, содержащем легирующие элементы, последние состоят из скандия и иттрия при следующем компонентом составе, масс. %:

скандий 0,05-0,2
иттрий 0,18-0,2
остальное алюминий,

при этом структура сплавов состоит из эвтектических частиц фазы Al3Y, размером до 200 нм и дисперсоидов фазы Al3(Y,Sc), размером до 10 нм.

Указанный технический результат достигается во втором варианте изобретения за счет того, что в термостойком электропроводном алюминиевом сплаве, содержащем легирующие элементы, последние состоят из скандия, иттрия и иттербия при следующем компонентом составе, масс. %:

скандий 0,18-0,22
иттрий 0,18-0,22
иттербий 0,28-0,32
остальное алюминий,

при этом структура сплавов состоит из эвтектических частиц фазы Al3(Y,Yb) размером до 200 нм и дисперсоидов фазы Al3(Y,Yb,Sc), размером до 10 нм.

Указанный технический результат достигается в третьем варианте изобретения за счет того, что в термостойком электропроводном алюминиевом сплаве, содержащем легирующие элементы, последние состоят из скандия, эрбия и иттербия при следующем компонентом составе, масс. %:

скандий 0,05-0,2
эрбий 0,25-0,32
иттербий 0,25-0,35
остальное алюминий,

при этом структура сплавов состоит из эвтектических частиц фазы Al3(Er,Yb) размером до 200 нм и дисперсоидов фазы Al3(Er,Yb,Sc), размером до 10 нм.

Изобретение поясняется чертежом, где:

на фиг. 1 представлена микроструктура слитка сплава AlErYbSc и распределение элементов между фазами (растровая и просвечивающая электронная микроскопия)

на фиг. 2 представлены кинетические кривые твердости слитков сплавов в процессе отжига: а - AlYSc02, б - AlYScYb, в - AlErYbSc.

на фиг. 3 представлена тонкая структура сплава AlErYbSc после отжига при 300°С в течение 1 часа.

Осуществление изобретения состоит в следующем.

Для достижения поставленной задачи предлагается следующая технология получения сплава: в расплав алюминия марки А99 при температуре 750-800°С вводятся последовательно легирующие элементы в виде лигатур Al-Sc, Al-Y, Al-Er, Al-Yb. После введения легирующих элементов расплав перемешивают и заливают при температуре 750-800°С.

Отжиг слитков проводят при температурах 300-370°С в течение 1-8 часов. Далее следует обработка давлением и последующий отжиг. Обработка давление включает горячую прокатку при температурах 300-370°С (степень обжатия 50%) и последующую холодную прокатку (общая степень обжатия до 95%). Отжиг после прокатки проводят при температуре 300°С в течение 1-100 часов.

Исследование структуры сплавов проводили с использованием светового, растрового и просвечивающего электронного микроскопов. Оценку механических свойств проводили по результатам измерения твердости методом Виккерса (HV) и испытаний на одноосное растяжение. Электросопротивление измеряли методом «двойного моста» с использованием миллиомметра.

Составы сплавов в рамках заявленного диапазона представлены в таблице 1.

Литая микроструктура представлена фиг. 1 на примере сплава AlErYbSc. При кристаллизации скандий растворяется в алюминиевом твердом растворе полностью, концентрация иттрия, эрбия и иттербия в твердом растворе составляет 0,1-0,25%. Иттрий, эрбий и иттербий совместно или отдельно образуют с алюминием при кристаллизации эвтектическую фазу Al3M размером от 20 до 200 нм, где М - иттрий и/или эрбий и/или иттербий. Кинетические кривые твердости слитков сплавов в процессе отжига при температурах 300, 370, 400, 440°С на примере сплавов AlYSc02 (a), AlYScYb (б), AlErYbSc (в) показаны на фиг. 2. По кинетическим кривым для каждой композиции выбраны режимы отжига перед прокаткой, обеспечивающие максимальный прирост твердости. Режимы отжига слитков представлены в таблице 2. Упрочнение в процессе отжига слитков происходит за счет выделения дисперсоидов L12 фазы Al3M размером до 10 нм, где М - скандий и/или иттрий и/или эрбий и/или иттербий. На фиг. 3 на примере сплава AlYbErSc02 показана тонкая структура с дисперсоидами L12 фазы Al3(Yb,Er,Sc) размером до 9 нм, полученной после отжига при 300°С в течение 1 часа.

В таблице 3 представлены результаты испытаний на одноосное растяжение и электропроводность деформированных листов в нагартованном и отожженном при 300°С состояниях.

Таблица 3. Характеристики механических свойств на растяжение и электропроводность

Для достижения предела прочности не менее 140 МПа при электропроводности не менее 60% IACS в отожженном состоянии термостойкий электропроводный алюминиевый сплав содержит следующие компоненты, масс. %: скандий 0,05 и иттрий 0,2 или скандий 0,05 и эрбий 0,25 и иттербий 0,35, остальное алюминий

Для достижения предела прочности не менее 190 МПа при электропроводности не менее 60% IACS в отожженном состоянии термостойкий электропроводный алюминиевый сплав содержит следующие компоненты, масс. %: скандий 0,18 и иттрий 0,18, остальное алюминий.

Для достижения предела прочности не менее 220 МПа при электропроводности не менее 54% IACS в отожженном состоянии термостойкий электропроводный алюминиевый сплав содержит следующие компоненты, масс. %: скандий 0,2 и иттрий 0,2 и иттербий 0,3 или скандий 0,2, эрбий 0,32 и иттербий 0,25, остальное алюминий.

Предлагаемое изобретение представляет новый термостойкий электропроводный алюминиевый сплав, который сочетает высокую прочность и электропроводность при очень высокой термической стабильности вплоть до 300°С. Предлагаемый сплав позволит повысить срок эксплуатации изделий электротехнического назначения, что определяется его вышеуказанными свойствами.

Источник поступления информации: Роспатент

Showing 121-130 of 322 items.
29.12.2017
№217.015.f3eb

Способ измельчения смеси карбоната стронция и оксида железа в производстве гексаферритов стронция

Изобретение относится к технологии магнитотвердых ферритов и может быть использовано при изготовлении гексаферритов стронция. Технический результат - повышение активности при измельчении смеси исходных ферритообразующих компонентов, обеспечивающее снижение температуры синтеза и повышение...
Тип: Изобретение
Номер охранного документа: 0002637705
Дата охранного документа: 06.12.2017
29.12.2017
№217.015.f57e

Полиолефиновый композит, наполненный углеродными нанотрубками, для повышения электропроводности, модифицированный смесью полисилоксанов

Изобретение относится к области полимерных композиционных материалов, предназначенных для изготовления полимерматричных композитов, требующих повышенных значений электропроводности. Теплоэлектропроводный полиолефиновый композит, наполненный углеродными нанотрубками, содержит полиолефиновый...
Тип: Изобретение
Номер охранного документа: 0002637237
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f5e3

Биоактивная полимерная нить для осуществления послойной 3d-печати

Изобретение относится к композиционному материалу, выполненному в форме нити, на основе термопластичного полимера с добавлением биоактивного керамического компонента и может быть использовано для осуществления 3D-печати биорезорбируемых конструкций медицинского назначения методом наплавления...
Тип: Изобретение
Номер охранного документа: 0002637841
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f605

Способ производства чугуна дуплекс-процессом ромелт (варианты)

Изобретение относится к производству жидкого чугуна из бедных железных руд, содержащих 35-52% общего железа с отношением FeO/FeO больше 1,5 последовательно в двух печах барботажного типа, соединенных между собой желобом. В шлаковую ванну первой печи непрерывно загружают железную руду, уголь и...
Тип: Изобретение
Номер охранного документа: 0002637840
Дата охранного документа: 07.12.2017
29.12.2017
№217.015.f664

Способ получения электродов из сплавов на основе алюминида титана

Изобретение относится к области специальной металлургии, в частности к получению электродов из сплавов на основе алюминида титана. Способ включает получение литого интерметаллидного полуфабриката методом центробежного СВС-литья с использованием реакционной смеси при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002630157
Дата охранного документа: 05.09.2017
29.12.2017
№217.015.f66d

Система автоматического управления электрическим режимом плавильного агрегата с двумя источниками электронагрева с использованием интеллектуального датчика контроля агрегатного состояния расплавляемого металла

Изобретение относится к электрометаллургии и решает задачу управления режимом работы печного агрегата, содержащего два источника нагрева: сопротивлением и дугой постоянного тока. Технический результат - улучшение качества регулирования при нагреве материала в печи. Система автоматического...
Тип: Изобретение
Номер охранного документа: 0002630160
Дата охранного документа: 05.09.2017
29.12.2017
№217.015.f714

Манипулятор для замены погружного стакана на слябовой машине непрерывного литья заготовок

Изобретение относится к металлургии. Манипулятор содержит механизмы замены и уборки отработанного погружного стакана. Кинематическая схема механизма замены обеспечивает перемещение сменного погружного стакана по заданной траектории к разливочному устройству промежуточного ковша. Смена стаканов...
Тип: Изобретение
Номер охранного документа: 0002639089
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f732

Композиционный материал на основе алюминиевого сплава, армированный карбидом бора, и способ его получения

Изобретение относится к области металлургии, преимущественно к плавке и литью сплавов цветных металлов, и предназначено для изготовления композиционных материалов на основе алюминиевого сплава с низким коэффициентом термического расширения для деталей автомобилестроения. Композиционный материал...
Тип: Изобретение
Номер охранного документа: 0002639088
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.fa36

Способ получения постоянных магнитов на основе сплавов редкоземельных металлов с железом и азотом

Изобретение относится к порошковой металлургии, а именно к способам изготовления постоянных магнитов из магнитотвердых материалов на основе сплавов редкоземельных металлов с железом и азотом, и может быть использовано в электротехнической, автомобильной, приборостроительной и других областях...
Тип: Изобретение
Номер охранного документа: 0002639889
Дата охранного документа: 25.12.2017
29.12.2017
№217.015.fb13

Способ пирометаллургической переработки оксидных материалов

Изобретение относится к области черной металлургии. Способ включает подачу шихты, состоящей из перерабатываемого сырья, флюсов и углеродсодержащего материала, в плавильную зону двухзонной барботажной печи в предварительно расплавленные материал и флюс. Расплав передают в восстановительную зону,...
Тип: Изобретение
Номер охранного документа: 0002640110
Дата охранного документа: 26.12.2017
Showing 1-3 of 3 items.
27.01.2015
№216.013.20f6

Способ получения лигатуры алюминий-фосфор

Изобретение относится к цветной металлургии и может быть использовано для получения сплавов на основе алюминия. Способ включает получения лигатуры алюминий-фосфор в виде таблеток состава, мас.%: фосфор 1,5-3,5, железо 6,0-16, алюминий остальное. При этом осуществляют перемешивание алюминиевых...
Тип: Изобретение
Номер охранного документа: 0002539886
Дата охранного документа: 27.01.2015
29.12.2017
№217.015.f732

Композиционный материал на основе алюминиевого сплава, армированный карбидом бора, и способ его получения

Изобретение относится к области металлургии, преимущественно к плавке и литью сплавов цветных металлов, и предназначено для изготовления композиционных материалов на основе алюминиевого сплава с низким коэффициентом термического расширения для деталей автомобилестроения. Композиционный материал...
Тип: Изобретение
Номер охранного документа: 0002639088
Дата охранного документа: 19.12.2017
11.10.2018
№218.016.8fcd

Коррозионно-стойкий материал с повышенным содержанием бора

Изобретение относится к области металлургии, а именно к коррозионно-стойким нейтроно-поглощающим сплавам на основе железа, используемым для изготовления стеллажей уплотненного хранения топлива. Сплав содержит углерод, марганец, кремний, хром, бор, титан, цирконий и железо при следующем...
Тип: Изобретение
Номер охранного документа: 0002669261
Дата охранного документа: 09.10.2018
+ добавить свой РИД