×
15.05.2023
223.018.5b29

Результат интеллектуальной деятельности: Способ переработки отходов титанмагнетитовой руды

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии переработки техногенных отходов, в частности титанмагнетитовой руды, с получением продуктов, используемых в промышленности. Отходы титанмагнетитовой руды обрабатывают гидрофторидом аммония с последующей обработкой полученного продукта водным раствором аммиака. При этом добавляют кристаллический гидрофторид аммония при массовом соотношении 1:(1-3). Добавляют дистиллированную воду до получения 5-15%-ного раствора гидрофторида аммония, нагревают до температуры 80-90°С и выдерживают при перемешивании при этой температуре в течение 2,0-2,5 ч, фильтруют и к полученному раствору добавляют 10-25%-ный водный раствор аммиака до получения рН 6-8. Выдерживают при комнатной температуре в течение 8-12 ч. Полученный осадок отделяют, промывают дистиллированной водой и фильтруют в течение 1-1,5 ч при комнатной температуре. Добавляют активную известь СаО, полученную после предварительной прокалки при 1100-1200°С, при массовом соотношении исходного сырья к активной извести (3-4):1. Тщательно перемешивают и сушат при температуре 85-90°С, затем прокаливают при температуре 900-950°С в течение 2-2,5 ч. Способ обеспечивает расширение номенклатуры продукции, используемой в промышленности, а именно получение силиката кальция CaSiO со структурой волластонита. 2 пр.

Изобретение относится к технологии переработки техногенных отходов, в частности титанмагнетитовой руды, с получением продуктов, используемых в промышленности.

Известен способ переработки титаномагнетитового рудного сырья, включающий дробление исходной руды с последующим выделением ванадийсодержащего концентрата. Исходную руду дополнительно измельчают до крупности 3-0 мм. Железный и титанованадиевый концентраты выделяют с помощью кучного и/или агитационного выщелачивания титана и ванадия раствором, содержащим ионы аммония ((NH4)+) и фтора (F-) при варьировании рН и концентрации ионов аммония ((NH4)+) от 0 до 13,62 и фтора (F-) от 0 до 13,62 Оптимальные концентрация ионов аммония и фтора в растворе, уровень рН, температуру и время осуществления процесса выбирают так, чтобы селективность выделения титана из сырья была максимальной. В случае агитационного выщелачивания соотношение Т:Ж варьируют в интервалах от 1:2,5 до 1:4 (патент RU 2649208; МПК С22В 3/04, С22В 34/12, С22В 34/22, С01В 15/00, В03В 7/00; 2018 год).

Известный способ обеспечивает получение железного концентрата с повышенной массовой долей железа за счет более полного выделения из него титано-ванадиевого концентрата, однако переработка не предполагает извлечение и отделения от железного концентрата кремния, содержащегося в титаномагнетитовой руде, который в качестве примеси загрязняет конечный продукт.

Известен способ переработки титаномагнетитовых рудных материалов, включающий стадии: взаимодействия титаномагнетитового сырья с фторирующим агентом для получения фторированного продукта, термообработки указанного фторированного продукта для получения сублимированного продукта, содержащего соединение фтортитаната аммония, соединение фторсиликата аммония и избыток фторирующего агента, а также первый твердый остаток, охлаждение указанного продукта сублимации до первой температуры сублимации для получения первого продукта сублимации, содержащего соединение (соединения) фтортитаната аммония и первый газообразный остаток, охлаждение указанного первого газообразного остатка до второй температуры сублимации ниже указанной первой температуры сублимации для получения второго продукта сублимации, содержащего соединение фторсиликата аммония, и второго газообразного остатка. При этом продукт

сублимации, содержащий соединение фторсиликата аммония, обрабатывают водным раствором аммиака с получением гидратированного диоксида кремния (патент СН 713944; МПК С01В 7/00, C01G 49/00, С22В 34/12; 2019 год) (прототип).

Однако недостатком известного способа является его сложность, связанная с технологическими особенностями процесса сублимации. Кроме того, получаемый в качестве конечного продукта гидратированный диоксид кремния для дальнейшего его масштабного использования в промышленности требует дегидратации.

Таким образом, перед авторами стояла задача разработать простой и технологичный способ переработки отходов титанмагнетитовой руды с получением продуктов, используемых в промышленности, что обеспечивает расширение номенклатуры и ассортимента продукции, получаемой в результате переработки техногенных отходов.

Поставленная задача решена в предлагаемом способе переработки отходов титанмагнетитовой руды, включающем обработку исходного сырья гидрофторидом аммония с последующей обработкой полученного продукта водным раствором аммиака, в котором к исходному сырью добавляют кристаллический гидрофторид аммония при массовом соотношении, равном 1:(1-3), соответственно, затем добавляют дистиллированную воду до получения 5-15%-ного раствора гидрофторида аммония, нагревают до температуры 80-90°С и выдерживают при перемешивании при этой температуре в течение 2,0-2,5 часов, фильтруют и к полученному раствору добавляют 10-25%-ный водный раствор аммиака до получения рН, равного 6-8, выдерживают при комнатной температуре в течение 8-12 часов, отделяют полученный осадок, промывают дистиллированной водой и фильтруют в течение 1-1,5 часов при комнатной температуре, после чего добавляют активную известь СаО, полученную после предварительной прокалки при 1100-1200°С, при массовом соотношении исходного сырья к активной извести, равном (3-4):1, тщательно перемешивают и сушат при температуре 85-90°С, затем прокаливают при температуре 900-950°С в течение 2-2,5 часов.

В настоящее время из патентной и научно-технической литературы не известен способ переработки отходов титанмагнетитовой руды путем обработки исходного сырья водными растворами гидрофторида аммония и аммиака при соблюдении определенных условий с последующим добавлением активной извести СаО, полученной после предварительной прокалки при 1100-1200°С, и прокаливании полученной смеси.

Исследования, проводимые авторами предлагаемого технического решения, были направлены не только на разработку способа переработки техногенных отходов, но и на расширение номенклатуры продукции, широко используемой в промышленности. Обработка отходов титаномагнетитовой руды, содержащих кремний, сначала водным раствором гидрофторида аммония, а затем водным раствором аммиака с последующим фильтрованием позволяет получить в качестве промежуточного продукта 85-90%-ный по влажности гидратированный кремнезема, что обусловлено условиями гидрохимической обработки исходного сырья без использования высоких температур и специального оборудования. При этом, увеличение концентрации раствора гидрофторида аммония более 15% приводит к появлению растворимых примесей из состава отходов от переработки титаномагнетитовой руды одновременно осаждающихся при нейтрализации кремнийсодержащего раствора аммиаком, что приведет к значительному загрязнению конечного продукта. Снижение концентрации водного раствора гидрофторида аммония менее 5% приводит к снижению количества извлекаемого из отходов кремния. Обработка 10-25%-ным раствором аммиака при рН 6-8 с последующим фильтрованием в течение 1-1,5 часов при комнатной температуре обеспечивает получение гидратированного кремнезема с влажностью 85-90%. Получение кремнезема определенной влажности связано с тем, что увеличение влажности более 95% приводит к снижению содержания в нем кремния, а при уменьшении влажности менее 80% последующая реакция с известью будет смещена в сторону твердофазного процесса, что требует увеличения температуры последующей прокалки компонентов. Взаимодействие полученного в качестве промежуточного продукта кремнезема с влажностью 80-95% и активной извести, взятых в стехиометрическом соотношении, что обусловлено массовым соотношением исходного сырья к активной извести, равном (3-4):1, обеспечивает с одной стороны отсутствие необходимости введения щелочного компонента, дополнительного фильтрования и промывки конечного продукта от посторонних примесей, а, с другой стороны, позволяет значительно снизить температуру спекания (до 900-950°С с 1300-1400°С при использовании сухого кремнезема) при образовании целевого продукта - силиката кальция со структурой волла-стонита. Силикат кальция со структурой волластонита широко используется, как компонент красок и пигментов, цементов и штукатурных смесей.

Предлагаемый способ может быть осуществлен следующим образом. К отходам титанмагнетитовой руды, содержащим кремний, добавляют кристаллический гидрофторид аммония при массовом соотношении, равном 1:(1-3), соответственно,

затем добавляют дистиллированную воду до получения 5-15%-ного раствора гидрофторида аммония, нагревают до температуры 80-90°С и выдерживают при перемешивании при этой температуре в течение 2,0-2,5 часов, фильтруют и к полученному раствору добавляют 10-25%-ный водный раствор аммиака до получения рН, равного 6-8, выдерживают при комнатной температуре в течение 8-12 часов, отделяют и промывают полученный осадок дистиллированной водой и фильтруют в течение 1-1,5 часов при комнатной температуре, после чего добавляют активную известь СаО, полученную после предварительной прокалки при 1100-1200°С, при массовом соотношении исходного сырья к активной извести, равном (3-4):1, тщательно перемешивают и сушат при температуре 85-90°С до получения неизменного значения массы, затем прокаливают при температуре 900-950°С в течение 2-2,5 часов. Полученный продукт анализируют рентгенофазовым анализом.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Навеску 5 г отходов обогащения титанмагнетитов, содержащих, масс. %: 48,0 SiO2, 20,2 СаО, 14,5 MgO, 6,8 Al2O3, 6,5 Fe общ., 0,7 TiO2 и др. тщательно перемешивают в тефлоновом стакане с 5 г кристаллического гидрофторида аммония, что соответствует массовому соотношению отход: реагент 1:1, затем добавляют 1000 мл дистиллированной воды для получения 5% раствора гидрофторида аммония, нагревают и выдерживают при перемешивании при температуре 90°С в течение 2 часов. Затем фильтруют и в полученный после фильтрации раствор вводят раствор аммиака до рН 6, выдерживают при комнатной температуре в течение 12 ч., затем осадок отделяют, промывают дистиллированной водой и фильтруют в течение 1 часа при комнатной температуре. Затем добавляют активную известь СаО в количестве 1,25 г (что соответствует массовому соотношению исходное сырье: СаО 4:1), сушат при перемешивании при температуре 85°С до получения неизменного значения массы и прокаливают при температуре 900°С в течение 2 часов. Получают силикат кальция CaSiO3 со структурой волластонита, что подтверждено методом РФА.

Пример 2. Навеску 5 г отходов обогащения титанмагнетитов, содержащих, масс. %: 48,0 SiO2, 20,2 СаО, 14,5 MgO, 6,8 Al2O3, 6,5 Fe общ., 0,7 TiO2 и др. тщательно перемешивают в тефлоновом стакане с 15 г кристаллического гидрофторида аммония, что соответствует массовому соотношению отход: реагент 1:3, затем добавляют 1000 мл дистиллированной воды для получения 15% раствора гидрофторида аммония, нагревают и выдерживают при перемешивании

при температуре 80°С в течение 2,5 часов. Затем фильтруют и в полученный после фильтрации раствор вводят раствор аммиака до рН 8, выдерживают при комнатной температуре в течение 8 часов, затем осадок отделяют, промывают дистиллированной водой и фильтруют в течение 1,5 часов при комнатной температуре. Затем добавляют активную известь СаО в количестве 1,7 г (что соответствует массовому соотношению отход: СаО 3:1), сушат при перемешивании при температуре 90°С до получения неизменного значения массы и прокаливают при температуре 950°С в течение 2,5 часов. Получают силикат кальция CaSiO3 со структурой волластонита, что подтверждено методом РФА.

Таким образом, авторами предлагается простой технологически способ переработки техногенных отходов титанмагнетитовой руды, обеспечивающий расширение номенклатуры продукции, используемой в промышленности, а именно получение силиката кальция CaSiO3 со структурой волластонита.

Способ переработки отходов титанмагнетитовой руды, включающий обработку исходного сырья гидрофторидом аммония с последующей обработкой полученного продукта водным раствором аммиака, отличающийся тем, что к исходному сырью добавляют кристаллический гидрофторид аммония при массовом соотношении 1:(1-3), затем добавляют дистиллированную воду до получения 5-15%-ного раствора гидрофторида аммония, нагревают до температуры 80-90°С и выдерживают при перемешивании при этой температуре в течение 2,0-2,5 ч, фильтруют и к полученному раствору добавляют 10-25%-ный водный раствор аммиака до получения рН 6-8, выдерживают при комнатной температуре в течение 8-12 ч, отделяют полученный осадок, промывают дистиллированной водой и фильтруют в течение 1-1,5 ч при комнатной температуре, после чего добавляют активную известь СаО, полученную после предварительной прокалки при 1100-1200°С, при массовом соотношении исходного сырья к активной извести (3-4):1, тщательно перемешивают и сушат при температуре 85-90°С, затем прокаливают при температуре 900-950°С в течение 2-2,5 ч.
Источник поступления информации: Роспатент

Showing 91-99 of 99 items.
15.05.2023
№223.018.5b39

Оптически прозрачный люминесцентный наноструктурный керамический материал

Изобретение относится к области создания оптически прозрачных люминесцентных наноструктурных керамических материалов на основе алюмомагниевой шпинели (MgAlO) и может быть использовано в качестве функционального материала устройств фотоники, оптоэлектроники и лазерной техники. Предлагается...
Тип: Изобретение
Номер охранного документа: 0002763148
Дата охранного документа: 27.12.2021
15.05.2023
№223.018.5b3a

Оптически прозрачный люминесцентный наноструктурный керамический материал

Изобретение относится к области создания оптически прозрачных люминесцентных наноструктурных керамических материалов на основе алюмомагниевой шпинели (MgAlO) и может быть использовано в качестве функционального материала устройств фотоники, оптоэлектроники и лазерной техники. Предлагается...
Тип: Изобретение
Номер охранного документа: 0002763148
Дата охранного документа: 27.12.2021
16.05.2023
№223.018.630b

Композиционный материал на основе гидроксиапатита для костных имплантатов и способ его получения

Изобретение относится к получению материала для костных имплантатов, используемых в ортопедической хирургии при восстановлении и лечении костной ткани. Способ получения композиционного материала для костных имплантатов включает получение исходной порошковой смеси, содержащей (мас.%):...
Тип: Изобретение
Номер охранного документа: 0002771382
Дата охранного документа: 04.05.2022
21.05.2023
№223.018.68c2

Способ получения ванадата металла

Изобретение относится к химической технологии и может быть использовано для промышленного синтеза пигментов, диэлектрических и электродных материалов, а также катализаторов. Сначала готовят раствор источника ванадия путем растворения оксида ванадия в лимонной кислоте в мольном соотношении...
Тип: Изобретение
Номер охранного документа: 0002794821
Дата охранного документа: 25.04.2023
21.05.2023
№223.018.6af4

Оптическая матрица для термолюминесцентного материала и способ ее получения

Группа изобретений относится к области дозиметрии. Технический результат – расширение номенклатуры материалов, используемых в качестве оптических матриц в дозиметрии. Технический результат достигается применением литий-магниевого фторфосфата состава LiMg(PO)F в качестве оптической матрицы для...
Тип: Изобретение
Номер охранного документа: 0002795672
Дата охранного документа: 05.05.2023
23.05.2023
№223.018.6c03

Способ активации порошка алюминия

Изобретение относится к порошковой металлургии и предназначено для получения порошка активированного алюминия, используемого в качестве энергетической добавки в различных композициях. Способ активации порошка алюминия, включающий пропитку исходного порошка алюминия гелем, полученным путем...
Тип: Изобретение
Номер охранного документа: 0002737950
Дата охранного документа: 07.12.2020
30.05.2023
№223.018.7382

Способ получения микросфер оксида железа feo

Изобретение относится к металлургии, в частности к способу получения микросфер оксида железа FeO, который может быть использован в качестве эффективного анодного материала химических источников тока, цианобактерицидного реагента, предотвращающего размножение сине-зеленых водорослей, сенсорного...
Тип: Изобретение
Номер охранного документа: 0002762433
Дата охранного документа: 21.12.2021
16.06.2023
№223.018.7aab

Способ получения монокристалла оксида ниобия

Изобретение относится к области технологии материалов, которые могут применяться в электронике в качестве контактов для конденсаторов. Cпособ получения монокристалла оксида ниобия включает бестигельную зонную плавку в оптической системе с использованием в качестве исходного материала...
Тип: Изобретение
Номер охранного документа: 0002734936
Дата охранного документа: 26.10.2020
16.06.2023
№223.018.7d52

Способ извлечения ванадия

Изобретение относится к металлургической промышленности, в частности к способам извлечения ванадия из производственных растворов, и может быть использовано в технологии получения ванадия и аналитической химии. Извлечение ванадия проводят путем экстракции ванадия из водного раствора соединением...
Тип: Изобретение
Номер охранного документа: 0002748195
Дата охранного документа: 20.05.2021
Showing 11-14 of 14 items.
21.02.2019
№219.016.c51a

Способ получения лигатуры на основе алюминия

Изобретение относится к области металлургии и может быть использовано для производства алюминиевых лигатур, применяемых для модифицирования сплавов. Способ включает приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла и алюминий,...
Тип: Изобретение
Номер охранного документа: 0002680330
Дата охранного документа: 19.02.2019
21.03.2019
№219.016.eb67

Комплекс для переработки бокситов

Изобретение относится к комплексу для переработки бокситов с получением из них глинозема. Комплекс содержит последовательно расположенные мельницу для размола боксита в оборотном растворе, сушилку, первую мешалку для выщелачивания, сгуститель, промыватель, вторую мешалку для обескремнивания,...
Тип: Изобретение
Номер охранного документа: 0002682359
Дата охранного документа: 19.03.2019
29.03.2019
№219.016.ede3

Способ получения магнетита

Изобретение относится к области металлургии и может быть использовано для получения магнетита в целях повышения эффективности переработки красных шламов, являющихся отходами глиноземного производства. Способ получения магнетита включает обработку красного шлама в присутствии гидроксида кальция,...
Тип: Изобретение
Номер охранного документа: 0002683149
Дата охранного документа: 26.03.2019
21.12.2019
№219.017.f05d

Способ получения фотокатализатора на основе диоксида титана, допированного скандием

Изобретение относится к способу получения фотокаталитического диоксида титана, допированного скандием, который, в частности, может быть использован в производстве фотокатализаторов для разложения стойких органических загрязнителей при очистке воды. Заявленный способ включает смешивание...
Тип: Изобретение
Номер охранного документа: 0002709506
Дата охранного документа: 18.12.2019
+ добавить свой РИД