×
15.05.2023
223.018.57fd

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГРАНАТОВЫХ ВОЛОКОН, МОДИФИЦИРОВАННЫХ ХРОМОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения модифицированных хромом гранатовых волокон. Полимерные волокна формуют при 160-200°С из волокнообразующих органохромоксаниттрийоксаналюмоксанов с мольным отношением Al:Y=1,5-2,5 и Al:Cr=100-250. Дальнейшая ступенчатая термообработка при 900°С в атмосфере азота или аргона и 1200-1500°С в атмосфере воздуха приводит к образованию керамических гранатовых волокон, модифицированных хромом, диаметром от 10 до 150 мкм. 1 пр., 5 ил.

Изобретение относится к способам получения модифицированных гранатовых волокон на основе волокнообразующих органохромоксаниттрийок-саналюмоксанов.

Иттрий-алюминиевый гранат (Y3Al5O12) является термодинамически стабильной фазой с высокой температурой плавления и высоким сопротивлением ползучести, высокой прочностью на разрыв, химически инертен, как в восстановительной, так и в окислительной атмосфере, поэтому широко используется в качестве компонентов, в частности керамических волокон (Shojaie-Bahaabad М, Taheri-Nassaj Е, Naghizadeh R. An alumina-YAG nanostructured fiber prepared from an aqueous sol-gel precursor: Preparation, Theological behavior and spinnability. Ceram. Inter. 2008. Vol. 34(8), 1893-902. Pfeifer S, Bischoff M, Niewa R, ClauB B, Buchmeiser MR. Structure formation in yttrium aluminum garnet (YAG) fibers. J. Eur. Ceram. Soc. 2014. Vol. 34(5), 1321-1328. Kim HJ, Fair GE, Hart AM, Potticary SA, Usechak NG, Corns RG, Hay RS. Development of polycrystalline yttrium aluminum garnet (YAG) fibers. J. Eur. Ceram. Soc. 2015. Vol. 35(15), 4251-4258.), для создания высокотемпературных керамокомпозитов функционального и конструкционного назначения (Michalkova М, Kraxner J, Michalek М, Galusek D, Preparation of translucent YAG glass/ceramic at temperatures below 900°C. J. Eur. Ceram. Soc. 2020. Vol. 40(7), 2581-2585. Prnova A, Valuchova J, Parchoviansky M, Wisniewski W, Svancarek P, Klement R, Hric E. Bruneel E, Galusek D. Y3Al5O12-α-Al2O3 composites with fine-grained microstructure by hot pressing of Al2O3-Y2O3 glass microspheres. J. Eur. Ceram. Soc. 2020. Vol. 40(3), 852-860.)

Известно, что оксид хрома Cr2O3 является эффективной спекающей добавкой для повышения плотности керамических материалов на основе α-Al2O3 и Y2O3, значительно увеличивает их тугоплавкость, химическую стабильность, ударную вязкость, механические свойства (Рагуа Т.К., Banerjee S, Sana М.В. Densification of pure alpha alumina ceramics with chromia as dopant. J. Indian. Chem. Soc. 2012. Vol. 89(4), 533-541. Singh B.K., Mondal В., Mandal N. Machinability evaluation and desirability function optimization of turning parameters for Cr2O3 doped zirconia toughened alumina (Cr-ZTA) cutting insert in high speed machining of steel. Ceram. Int. 2016. Vol. 42(2), 3338-3350. Zhang L., Feng J., Pan W. Vacuum sintering of transparent Cr:Y2O3 ceramics. Ceram. Inter. 2015. Vol. 41(7), 8755-8760.) и препятствует росту зерна (Yang X., Shao С, Liu Y. Fabrication of Cr2O3/Al2O3 composite nanofibers by electrospinning. J. Mater. Sci. 2007. Vol. 42(20), 8470-8472).

Необходимо отметить, что фазы Y3Al5O12 и α-Al2O3 имеют одинаковые коэффициенты теплового расширения и высокие температуры плавления (1940 и 2045°С соответственно Y3Al5O12 и Al2O3) и, следовательно, совместимы. Кроме того, Y3Al5O12 сохраняет свою прочность на изгиб до 1400°С и высокую стойкость к ползучести, причем небольшие добавки Cr2O3 улучшают прочность и ползучесть за счет образования твердых растворов Y3(Al1-xCrx)5O12 (Shen Z., Ekstrand A., Nygren M. Oxide/oxide Composites in the System Cr2O3-Y2O3-Al2O3. J. Eur. Ceram. Soc. 2000. Vol. 20, 625-630.).

Получение тугоплавких гранатовых волокон (или гранатовых волокон, модифицированных оксидом хрома) путем переработки расплавов соответствующих оксидов затруднено вследствие их высокой температуры плавления, поэтому основные способы получения таких волокон основаны на переработке золей и гелей на основе соответствующих оксидов, либо соединений, содержащих оксидообразующие элементы.

Описан способ получения гранатовых волокон (YAG), модифицированных оксидом хрома, включающий приготовление раствора-предшественника YAG. Порошок оксида иттрия, порошок алюминия и хлорида алюминия растворяли в уксусной кислоте, смесь нагревали при перемешивании, используя магнитную мешалку, и кипятили с обратным холодильником при 80°С. Мольное соотношение AlCl3 ⋅ 6H2O и Al составляло 3:1, мольное отношение A1/Y=5:3, а мольное соотношение уксусной кислоты и Y составляло 1,5:1, мольное соотношение H2O и Al составляло 20:1. В качестве прядильной добавки (22% мac. от массы сырья) использовался поли-винилпирролидон (ПВП). Согласно расчетной массе YAG, в раствор было добавлено 5% мае. CrO3. Затем смешанный раствор концентрировали с получением прядильного золя на водяной бане (60°С). Волокна геля были приготовлены путем погружения тонкого стеклянного стержня в прядильный золь и его медленного вытягивания вручную при комнатной температуре (около 25°С), при этом длина гелевого волокна составляла около 35 см. Длина гелевого волокна составляла около 200 см при температуре 40 и 60°С. Далее гелевые волокна спекали от комнатной температуры до 500°С со скоростью нагрева 1°С/мин., а от 500°С до температуры 1000 и далее 1600°С со скоростью нагрева 5°С/мин. Средний размер зерна волокон составлял 1,38 мкм при спекании при 1600°С в течение 6 часов. (Ma X, Lv Z, Tan Н, Nan J, Wang С, Wang X. Preparation and grain-growth of chromia-yttrium aluminum garnet composites fibers by sol-gel method. J Sol-Gel Sci Technol. 2017. Vol. 83(2), 275-280.).

Способы получения гранатовых волокон, модифицированных хромом из расплава предкерамического полимера из патентной литературы не известны.

Наиболее близким к предлагаемому и принятый нами в качестве прототипа является способ получения модифицированных волокон оксида алюминия, заключающийся в расплавном формовании полимерных волокон при 60-160°С из волокнообразующих органоиттрийоксаналюмоксанов с мольным отношением Al:Y=100-200 или органомагнийоксаниттрийоксаналюмоксанов с мольным отношением Al:Y=160-200 и Al:Mg=160-200 с дальнейшей ступенчатой термообработкой до 1200-1300°С, приводящей к образованию керамических алюмооксидных волокон, модифицированных высокотемпературными соединениями иттрия или иттрия и магния, причем нагрев проводят по следующему режиму: от комнатной температуры до 500°С со скоростью 1°С/мин, от 500°С до 1300°С со скоростью 10°С/мин и последующей выдержкой в течение 10 мин, при этом термообработку осуществляют в атмосфере воздуха. (РФ №2716621 МПК: С04В 35/111, С04В 35/634, D01F 1/07, 2020).

Задачей предлагаемого изобретения является получение гранатовых волокон, модифицированных хромом, формованием из расплава волокнообразующего органохромоксаниттрийоксаналюмоксана с последующим пиролизом полимерных волокон.

Для решения поставленной задачи предложен способ получения модифицированных хромом гранатовых волокон, заключающийся в расплавном формовании полимерных волокон при 160-200°С из волокнообразующих органохромоксаниттрийоксаналюмоксанов с мольным отношением с мольным отношением Al:Y=1.5-2.5 и Al:Cr=100-250 с дальнейшей ступенчатой термообработкой при 1000°С в атмосфере аргона и 1200 - 1500°С в атмосфере воздуха.

Получение модифицированных хромом гранатовых волокон осуществляют следующим образом: волокнообразующие органохромоксаниттрийоксаналюмоксаны, полученные согласно изобретению, описанному в патенте РФ 2668226, формуют на машине расплавного формования при температурах 160-200°С со скоростью намотки приемной шпули 50-150 об/мин. (производительность машины=0,3-0,5 см3/мин.) Далее полимерные волокна снимают с приемной шпули, перекладывают на корундовые маты и подвергают их ступенчатой термообработке сначала с медленным нагревом (1-3°С/мин. в потоке N2) до 900°С (выдержка 30 мин.) для удаления органической составляющей волокна, затем нагревают со скоростью 10°С/мин до 1200-1500°С с выдержкой 10-20 мин. В результате получают высокотемпературные керамические гранатовые волокна, модифицированные оксидом хрома, диаметром от 10 до 150 мкм.

Сущность изобретения иллюстрируется примером.

Пример.

Перед началом формования производят продувку цилиндра формования инертным газом загружают операционное количество 150 г волокнообразующего органохромоксаниттрийоксаналюмоксана с мольным отношением Al:Y=1.5-2.5 и Al:Cr=100-250. с помощью загрузочной воронки и производят включение трех зон обогрева цилиндра формования.

В держатели машины намотки волокна устанавливают приемную шпулю - картонную гильзу, внешняя поверхность которой была обмотана графитовой фольгой.

Процесс формования волокна осуществляют на машине поршневого типа с приемкой «сырого» волокна на приемную шпулю (∅ 97 × 177 мм) с помощью машины намотки.

При температуре 160-170°С в цилиндре формования происходит транспортировка, уплотнение и плавление органохромоксаниттрийоксаналюмоксана. Образовавшийся расплав направляют в блок формования на фильеру (1 отв., L/D=0,6/0,3 мм) и продавливают через ее отверстие. В результате происходит формирование тонкого расплавленного полимерного волокна, начинающего затвердевать, которое далее поступает в шахту охлаждения. После этого полимерное волокно, вышедшее из шахты охлаждения, направляют к намоточной машине на приемную шпулю (∅ 97 × 177 мм) и осуществляют намотку и раскладку непрерывного волокна.

Затем намотанное полимерное волокно (Фиг. 1) снимают с приемной шпули, укладывают на корундовый мат и помещают в печь для дальнейшей термообработки. Нагрев проводят по следующему режиму: от комнатной температуры до 900°С со скоростью 1-3°С/мин. в потоке N2 или Ar„ выдержка 30 мин., от 900°С до 1200-1500°С со скоростью 10°С/мин с выдержкой в течение 10 мин. в атмосфере воздуха. В результате получают керамические гранатовые волокна, модифицированные оксидом хрома (Фиг. 2).

Элементный и фазовый составы гранатовых волокон, модифицированных хромом, доказаны с помощью СЭМ и РФА.

Изучение морфологии поверхности полимерных и керамических гранатовых волокон, модифицированных хромом, и их элементного состава осуществлялось с использованием сканирующего электронного микроскопа (СЭМ) совмещенного с энергодисперсионным анализатором (ЭДС). Результаты представлены на фиг. 3-4.

По фотографиям СЭМ видно, что полимерные волокна (Фиг. 3а) имеют ровную, гладкую поверхность. Средний диаметр полимерных волокон составляет ≈70-80 мкм (Фиг. 3а), рентгеновский элементный микроанализ представлен на фиг. 3б, а поверхность волокна состоит из наноструктурных элементов размером от 25 до 45 нм (Фиг. 3в).

После высокотемпературной обработки (1200-1500°С) полимерных органохромоксаниттрийоксаналюмоксановых волокон, были получены керамические хромсодержащие алюмоиттриевые волокна гранатового состава. Дифрактограмма порошка из керамических волокон (Фиг. 4) показывает образование двух фаз иттрий-алюминиевого граната с одинаковой структурой и несколько различными параметрами решетки: а=12,086 и а=12,136 А (Фиг. 4). Изменение параметра элементарной ячейки у порошкового образца может быть вызвано только изменением химического состава, в нашем случае, за счет замещения Al+3 на Cr+3 в кристаллической решетке Y3Al5O12 и образования Y3(CrxAl1-x)5O12. Результаты СЭМ: микрофотографии и рентгеновский элементного анализ (Фиг. 5), подтверждают наличие хрома. Средний диаметр керамических волокон составляет ≈ 27 мкм (Фиг. 5а), а поверхность волокна состоит из наноструктурных элементов размером от 45 до 70 нм (Фиг. 5в).

В составе волокон посторонних примесей не обнаружено.

Способ получения модифицированных хромом гранатовых волокон, заключающийся в расплавном формовании полимерных волокон при 160-200°С из волокнообразующих органохромоксаниттрийоксаналюмоксанов с мольным отношением Al:Y=1,5-2,5 и Al:Cr=100-250 с дальнейшей ступенчатой термообработкой при 900°С в атмосфере азота или аргона и 1200-1500°С в атмосфере воздуха, приводящей к образованию керамических гранатовых волокон, модифицированных хромом.
Источник поступления информации: Роспатент

Showing 1-10 of 45 items.
10.08.2015
№216.013.6c4e

Способ получения наноразмерного карбида тантала термотрансформацией пентакис-(диметиламино)тантала

Изобретение относится к получению нанодисперсного тугоплавкого карбида тантала, используемого в качестве наполнителя композиционных материалов, керамического теплозащитного покрытия, химически стойкого материала, материала для высокотемпературных керамоматричных композитов, и может быть...
Тип: Изобретение
Номер охранного документа: 0002559284
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6e3d

Вещество, стимулирующее экспрессию гена коактиватора pgc-1α

Изобретение относится к биологии и медицине, а именно к биохимии и фармакологии, и касается применения комплекса трис-(2-гидроксиэтил)амина с бис-(2-метилфеноксиацетатом) цинка (цинкатрана) в качестве стимулятора экспрессии гена коактиватора PGC-1α, использование которого приводит к увеличению...
Тип: Изобретение
Номер охранного документа: 0002559779
Дата охранного документа: 10.08.2015
20.09.2015
№216.013.7ad0

Способ получения полиорганосилоксанов на основе органоалкоксисиланов

Изобретение относится к термостойким полиорганосилоксанам и к способам их получения. Предложенный способ получения полиорганосилоксанов включает ацидолиз органоалкоксисиланов и/или их смесей в присутствии кислотных катализаторов при 75-85°C, отличается тем, что для получения...
Тип: Изобретение
Номер охранного документа: 0002563037
Дата охранного документа: 20.09.2015
27.04.2016
№216.015.3846

Способ получения ферромагнитных металлических наночастиц с твердой изоляционной оболочкой

Изобретение относится к получению наночастиц с ядром из ферромагнитного металла и диэлектрической оболочкой из оксида алюминия. В способе по варианту 1 проводят плазменную переконденсацию в токе инертного газа частиц порошка оксида алюминия с нанесенным на их поверхность покрытием из...
Тип: Изобретение
Номер охранного документа: 0002582870
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.9da1

Способ получения декаборана

Изобретение относится к химической промышленности и может быть использовано в синтезе и производстве незамещенных и замещенных карборанов общей формулы RCBHCR. Сначала нагревают раствор диглима и боргидрида натрия до 105°С, прикапывая алкилгалогенид. После добавления всего алкилгалогенида...
Тип: Изобретение
Номер охранного документа: 0002610773
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.abb7

Способ получения метакрилоксиметилалкоксисиланов

Изобретение относится к способам получения кремнийорганических эфиров метакриловой кислоты, содержащих алкоксигруппы у атома кремния. Предложен способ получения метакрилоксиметилалкоксисиланов формулы (I) по реакции метакрилата калия с хлорметилалкоксисиланами в среде N,N-диметилформамида в...
Тип: Изобретение
Номер охранного документа: 0002612252
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.b97d

Способ получения органомагнийоксаналюмоксанов, связующие и пропиточные материалы на их основе

Изобретение относится к способу получения органомагнийоксаналюмоксанов. Способ включает взаимодействие полиалкоксиалюмоксанов с ацетилацетонатом магния [CH(O)CCH=C(CH)O]Mg в среде органического растворителя при температуре 20°С-70°С с последующей отгонкой растворителя сначала при атмосферном...
Тип: Изобретение
Номер охранного документа: 0002615147
Дата охранного документа: 04.04.2017
26.08.2017
№217.015.dd93

Способ получения олигоборсилазанов

Изобретение относится к области химической технологии азотсодержащих соединений кремния. Предложен способ получения олигоборсилазанов взаимодействием олигосилазанов, содержащих N-H и Si-H группы, в качестве которых используют кремнийорганические соединения класса силазанов, не содержащие при...
Тип: Изобретение
Номер охранного документа: 0002624442
Дата охранного документа: 04.07.2017
29.12.2017
№217.015.f123

Гипергольное ракетное топливо

Изобретение относится к ракетно-комической технике, а именно к самовоспламеняющимся (гипергольным) топливным системам, которые применяются для решения широкого спектра задач, например в маршевых двигателях, для ориентации космических аппаратов. Гипергольное ракетное топливо,...
Тип: Изобретение
Номер охранного документа: 0002638989
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f168

Композиция для высокоэнергетического пиротехнического зажигательного элемента

Изобретение относится к пиротехническим составам, содержащим в качестве горючего активные металлы, а в качестве окислителя фторпласты. Описана композиция высокоэнергетического пиротехнического зажигательного элемента в кумулятивных осколочных боевых изделиях, содержащая фторполимер и порошки...
Тип: Изобретение
Номер охранного документа: 0002631821
Дата охранного документа: 26.09.2017
Showing 1-10 of 119 items.
10.01.2013
№216.012.18b6

Способ получения α,ω-бис(метилдифенилсилил)олигодиорганосилоксанов

Изобретение относится к способам получения олигодиорганосилоксанов, используемых в качестве рабочих жидкостей паромасляных вакуумных насосов для создания умеренного и сверхглубокого вакуума; в качестве рабочих тел капельных холодильников-излучателей бескаркасных систем отвода...
Тип: Изобретение
Номер охранного документа: 0002471818
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.18f9

Устройство для получения карбидокремниевых волокон

Изобретение относится к устройствам для получения пиролизом монофиламентных карбидокремниевых волокон. Устройство для получения карбидокремниевых волокон состоит из одной или более камер. Каждая камера выполнена в виде стеклянной трубки с двумя штуцерами для подачи газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002471885
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1c29

Способ получения β-карбида кремния

Изобретение может быть использовано в химической промышленности. Шунгит III-й разновидности, порошкообразное фенольное связующее и смазку смешивают. Полученную шихту вальцуют. Вальцованную массу измельчают, просеивают. Изготавливают заготовки методом компрессионного прессования. Заготовки...
Тип: Изобретение
Номер охранного документа: 0002472703
Дата охранного документа: 20.01.2013
27.02.2013
№216.012.2a9c

Способ получения триэтоксисилана

Изобретение относится к способам получения триэтоксисилана, пригодного для производства моносилана для полупроводниковой техники и солнечной энергетики, а также для различных кремнийорганических жидкостей и полимеров. Предложен способ получения триэтоксисилана прямым взаимодействием...
Тип: Изобретение
Номер охранного документа: 0002476435
Дата охранного документа: 27.02.2013
10.03.2013
№216.012.2e1f

Устройство для получения борных волокон

Изобретение относится к устройствам для получения борных волокон. Устройство для получения борных волокон содержит сборный корпус, состоящий из стеклянных неразборных камер. Каждая камера содержит два ртутных и два газовых штуцера, выполненных в виде стеклянных трубок. Внутри каждой камеры...
Тип: Изобретение
Номер охранного документа: 0002477338
Дата охранного документа: 10.03.2013
20.04.2013
№216.012.35e5

Способ получения силанов типа rsih диспропорционированием гидридалкоксисиланов типа rsih(or') (где n=0; 1; r=me; r'=me, et) и катализаторы для его осуществления

Изобретение может быть использовано в химической промышленности. Силаны типа RSiH получают диспропорционированием гидридалкоксисиланов типа RSiH(OR') (где n=0; 1; R=Me; R'=Me, Et) в присутствии гетерогенного катализатора - анионообменной смолы. Анионообменную смолу однократно обрабатывают сухим...
Тип: Изобретение
Номер охранного документа: 0002479350
Дата охранного документа: 20.04.2013
20.06.2013
№216.012.4c2b

Композиция пастообразного ракетного горючего для прямоточных воздушно-реактивных двигателей с камерой дожигания

Изобретение относится к ракетной технике, а именно к области получения пастообразных горючих для прямоточных воздушно-реактивных двигателей с камерой дожигания. Предлагается композиция, содержащая нанодисперсные порошки металлов. В качестве нанодисперсных порошков применяют порошок бора или...
Тип: Изобретение
Номер охранного документа: 0002485081
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.5077

Способ получения органохлорсиланов методом газофазной термической конденсации и реактор для его осуществления

Изобретение относится к технологии получения органохлорсиланов. Предложен способ получения органохлорсиланов методом газофазной термической конденсации гидридхлорсиланов с хлорпроизводными олефинов и ароматических углеводородов, включающий подогрев исходных реагентов до температуры 100-300°С,...
Тип: Изобретение
Номер охранного документа: 0002486192
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.5078

Способ разделения смеси метилхлорсиланов и хлористого метила

Изобретение относится к способам разделения смеси хлористого метила (ХМ) и метилхлорсиланов (МХС), получаемой в процессе синтеза метилхлорсиланов из кремния и хлористого метила. Предложен способ, при котором конденсат хлористого метила и метилхлорсиланов собирают раздельно с высокотемпературной...
Тип: Изобретение
Номер охранного документа: 0002486193
Дата охранного документа: 27.06.2013
20.01.2014
№216.012.97b3

Способ получения метилхлорида

Изобретение относится к способу получения метилхлорида, включающему взаимодействие метанола с хлористым водородом в реакторе синтеза с получением парогазовой смеси, ее парциальную конденсацию, при которой метилхлорид выводят из системы в виде паров. Конденсат направляют в ректификационную...
Тип: Изобретение
Номер охранного документа: 0002504534
Дата охранного документа: 20.01.2014
+ добавить свой РИД