×
15.05.2023
223.018.57ec

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002767585
Дата охранного документа
17.03.2022
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.). Сущность заявленного решения заключается в том, что в способе измерения физических свойств диэлектрической жидкости, при котором возбуждают электромагнитные волны в каждом из двух отрезков коаксиальной длинной линии, служащих чувствительными элементами измерительных каналов, рабочего и эталонного, и заполняемых соответственно контролируемой жидкостью и эталонной жидкостью, измеряют значение информативного параметра каждого из чувствительных элементов и по отличию этих значений информативного параметра судят о величине измеряемого физического свойства жидкости, при этом в качестве отрезков коаксиальной длинной линии используют совокупность располагаемых соосно двух металлических цилиндров и соосного с ними центрального проводника, причем внутренняя поверхность внутреннего цилиндра служит наружным проводником одного из отрезков коаксиальной длинной линии, а его наружная поверхность служит внутренним проводником другого отрезка коаксиальной длинной линии, возбуждение электромагнитных волн в каждом из двух отрезков коаксиальной длинной линии производят на фиксированной частоте, в качестве информативного параметра каждого чувствительного элемента используют фазовый сдвиг возбуждаемых электромагнитных волн и электромагнитных волн, распространившихся вдоль соответствующего отрезка коаксиальной длинной линии и принятых на том же или противоположном его конце, и о величине измеряемого физического свойства жидкости судят по отличию значений фазового сдвига в двух отрезках коаксиальной длинной линии. Техническим результатом настоящего изобретения является повышение точности измерения физических свойств диэлектрической жидкости. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.).

Известно техническое решение (RU 2285913 С1, 20.10.2006), которое содержит описание способа, согласно которому производят измерения физических свойств жидкостей с применением двух независимых измерительных каналов, рабочего и эталонного, с чувствительными элементами (измерительными ячейками) в виде отрезков коаксиальной линии. Они являются резонаторами с колебаниями основного типа ТЕМ и заполняются, соответственно, контролируемой жидкостью и эталонной жидкостью. Для реализации данного способа применяют линии связи этих чувствительных элементов с соответствующими электронными блоками, выходы которых подсоединены к входу функционального преобразователя. Информативным параметром каждого измерительных канала является основная резонансная частота электромагнитных колебаний соответствующего резонатора.

Недостатком этого способа является невысокая точность измерения. Это вызвано тем, что чувствительные элементы (коаксиальные резонаторы) измерительного и эталонного каналов содержат, соответственно, контролируемую и эталонную жидкость, находящиеся в разных внешних условиях, в частности при температуре, которая может быть различной в местах расположения этих чувствительных элементов -коаксиальных резонаторов. Это приводит к снижению точности измерения вследствие разных, зависящих от температуры, изменений электрофизических параметров этих жидкостей и, следовательно, значений информативного параметра - резонансной частоты электромагнитных колебаний. Особенно влияние такого отличия на точность измерения сказывается при определении малых значений содержания какой-либо жидкости в смеси жидкостей (растворе).

Известно также техническое решение (RU 2424508 С1, 20.07.2011), которое содержит описание способа, по технической сущности наиболее близкого к предлагаемому способу и принятого в качестве прототипа. Этот способ-прототип заключается в возбуждении электромагнитных колебаний основного типа ТЕМ в двух отрезках коаксиальной длинной линии (коаксиального волновода), заполняемых, соответственно, контролируемой жидкостью и эталонной жидкостью, располагаемых соосно и образованных совокупностью двух соосных металлических цилиндров и соосного с ними центрального проводника, причем внутренняя поверхность внутреннего цилиндра служит наружным проводником одного из отрезков коаксиальной длинной линии, а его наружная поверхность служит внутренним проводником другого отрезка коаксиальной длинной линии. Измеряют резонансные частоты электромагнитных колебаний типа ТЕМ этих отрезков коаксиальной длинной линии с контролируемой жидкостью и эталонной жидкостью и по соотношению (разности) значений измеренных резонансных частот судят об измеряемом физическом свойстве контролируемой жидкости.

Недостатком данного способа измерения является ограниченность его функциональных возможностей, обусловленная организацией в каждом из измерительных каналов, рабочем и эталонном, радиочастотного резонатора на основе отрезка коаксиальной длинной линии и определении резонансной частоты электромагнитных колебаний резонатора. При невысокой добротности таких резонаторов, что может иметь место при контроле жидкостей, являющимися несовершенными диэлектриками, при наличии потерь электромагнитной энергии в проводниках отрезков коаксиальной длинной линии, точность измерения является невысокой из-за невозможности высокоточного измерения резонансных частот таких резонаторов.

Техническим результатом настоящего изобретения является повышение точности измерения физических свойств диэлектрической жидкости.

Технический результат достигается тем, что в способе измерения физических свойств диэлектрической жидкости возбуждают электромагнитные волны в каждом из двух отрезков коаксиальной длинной линии, служащих чувствительными элементами измерительных каналов, рабочего и эталонного, и заполняемых, соответственно, контролируемой жидкостью и эталонной жидкостью, измеряют значение информативного параметра каждого из чувствительных элементов, и по отличию этих значений информативного параметра судят о величине измеряемого физического свойства жидкости, при этом в качестве отрезков коаксиальной длинной линии используют совокупность располагаемых соосно двух металлических цилиндров и соосного с ними центрального проводника, причем внутренняя поверхность внутреннего цилиндра служит наружным проводником одного из отрезков коаксиальной длинной линии, а его наружная поверхность служит внутренним проводником другого отрезка коаксиальной длинной линии, возбуждение электромагнитных волн в каждом из двух отрезков коаксиальной длинной линии производят на фиксированной частоте, в качестве информативного параметра каждого чувствительного элемента используют фазовый сдвиг возбуждаемых электромагнитных волн и электромагнитных волн, распространившихся вдоль соответствующего отрезка коаксиальной длинной линии и принятых на том же или противоположном его конце, и о величине измеряемого физического свойства жидкости судят по отличию значений фазового сдвига в двух отрезках коаксиальной длинной линии.

На чертеже изображена функциональная схема устройства для реализации способа.

В схему введены обозначения: 1 и 2 - отрезки коаксиальной длинной линии, 3 и 4 - внутренний и внешний цилиндры, 5 - центральный проводник, 6 и 7 - линии связи, генераторы 8 и 9, направленные ответвители 10, 11, 12 и 13, фазовые детекторы 14 и 15, функциональный преобразователь 16, регистратор 17.

Способ реализуется следующим образом.

Согласно данному способу измерения физических свойств диэлектрической жидкости, возбуждают электромагнитные волны в каждом из двух отрезков коаксиальной длинной линии, служащих чувствительными элементами измерительных каналов, рабочего и эталонного, и заполняемых, соответственно, контролируемой жидкостью и эталонной жидкостью. Производят измерение значения информативного параметра каждого из чувствительных элементов, и по отличию этих значений информативного параметра в этих двух чувствительных элементах судят о величине измеряемого физического свойства жидкости. В данном способе возбуждение электромагнитных волн в каждом из двух отрезков коаксиальной длинной линии производят на фиксированной частоте, а в качестве информативного параметра каждого чувствительного элемента используют фазовый сдвиг возбуждаемых электромагнитных волн и электромагнитных волн, распространившихся вдоль соответствующего отрезка коаксиальной длинной линии и принятых на том же или противоположном его конце.

Один из чувствительных элементов - отрезок коаксиальной длинной линии 1 - образован совокупностью внешнего цилиндра 4 и наружной поверхности внутреннего цилиндра 3, а другой чувствительный элемент - отрезок коаксиальной длинной линии 2 - совокупностью центрального проводника 5 и внутренней поверхностью соосного с ним металлического внутреннего цилиндра 3. Пространство между проводниками одного из этих отрезков коаксиальной длинной линии заполняется эталонной жидкостью, имеющей номинальное значение измеряемого физического свойства, а пространство между проводниками другого отрезка коаксиальной длинной линии заполняется контролируемой жидкостью. При этом не имеет принципиального значения, какая из данных жидкостей находится в том или другом чувствительном элементе.

При заполнении жидкостью пространства между проводниками каждого из отрезков коаксиальной длинной линии 1 и 2 изменяется величина измеряемого информативного параметра - фазового сдвига возбуждаемых электромагнитных волн и электромагнитных волн, распространившихся вдоль соответствующего отрезка коаксиальной длинной линии и принятых на том же или противоположном его конце -в зависимости от значения диэлектрической проницаемости ε и ε0, соответственно, контролируемой и эталонной жидкости. Величины ε(х) и ε00) функционально связаны с соответственно, измеряемым х и номинальным х0 значениями измеряемого физического свойства жидкости. Данные чувствительные элементы (отрезки коаксиальной длинной линии 1 и 2) функционируют независимо друг от друга; их электрические/электромагнитные поля не оказывают взаимовлияния.

Для фазового сдвига Δϕ возбуждаемых на фиксированной частое ƒ в отрезке длинной линии электромагнитных волн и волн, отраженных от противоположного (нижнего) конца отрезка длинной линии и принимаемых на том же конце, где производим возбуждение волны, имеем следующее выражение: (это вытекает, например, из сведений в монографии: Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 280 с. С.73-74):

где ƒ - частота генератора, с - скорость света, l - длина отрезка длинной линии, ε -относительное значение диэлектрической проницаемости жидкости, Δϕ0 - фазовый сдвиг фиксированной величины, обусловленный отражением от нагрузки на конце отрезка длинной линии.

Фазовый сдвиг Δϕ0 обусловлен отражением от нагрузки на конце отрезка длинной линии и имеет следующее значение: Δϕ0=π-2arctg(Xн/W). Для короткозамкнутого на конце отрезка длинной линии имеем Δϕ0=π, для разомкнутого на конце отрезка длинной линии имеем Δϕ0. Здесь ХН - реактивное нагрузочное сопротивление, W - волновое (характеристическое) сопротивление отрезка длинной линии.

Будем для определенности считать, что каждый из двух отрезков коаксиальной длинной линии 1 и 2 разомкнут на его конце; в этом случае Δϕ0. Будем также для определенности считать, что пространство между проводниками отрезка коаксиальной длинной линии 1 заполняется контролируемой жидкостью с диэлектрической проницаемости ε, а пространство между проводниками отрезка коаксиальной длинной линии 2 заполняется эталонной жидкостью с диэлектрической проницаемости ε0.

Тогда с учетом соотношения (1) для отрезка коаксиальной длинной линии 1 будем иметь следующее выражение для фазового сдвига Δϕ1 возбуждаемых и принимаемых электромагнитных волн;

а для отрезка коаксиальной длинной линии 2 - следующее выражение для фазового сдвига Δϕ2 возбуждаемых и принимаемых электромагнитных волн;

В отрезке коаксиальной длинной линии 1 возбуждают электромагнитные волны с применением высокочастотного генератора 8 фиксированной частоты. Отраженные от конца отрезка коаксиальной длинной линии 1 электромагнитные волны, а также прямые волны (часть их мощности) подаются от генератора 8 на фазовый детектор 14. Для этой цели служат направленные ответвители 10 и 11, соответственно, для прямых и отраженных электромагнитных волн. На выходе фазового детектора 14, осуществляющего сравнение фаз прямых и отраженных волн, образуется сигнал, напряжение которого пропорционально разности фаз Δϕ1 этих волн.

В отрезке коаксиальной длинной линии 2 возбуждают электромагнитные волны с применением высокочастотного генератора 9 фиксированной частоты. Отраженные от конца отрезка коаксиальной длинной линии 2 электромагнитные волны, а также прямые волны (часть их мощности) подаются от генератора 9 на фазовый детектор 15. Для этой цели служат направленные ответвители 12 и 13, соответственно, для прямых и отраженных электромагнитных волн. На выходе фазового детектора 15, осуществляющего сравнение фаз прямых и отраженных волн, образуется сигнал, напряжение которого пропорционально разности фаз Δϕ2 этих волн.

Направленный ответвитель 12 соединен с помощью проводников линий связи 6 с отрезком коаксиальной длинной линии 1, а направленный ответвитель 13 соединен с помощью проводников линий связи 7 с отрезком коаксиальной длинной линии 2. На выходе фазового детектора 15, осуществляющего сравнение фаз прямых и отраженных волн, образуется сигнал, напряжение которого пропорционально разности фаз Δϕ2 этих волн.

Выходы фазовых детекторов 14 и 15 подсоединены ко входу функционального преобразователя 16, выходом подключенного ко входу регистратора 17, выходной сигнал которого соответствует значению измеряемого физического свойства жидкости.

Согласно данному способу измерения, в качестве информативного параметра каждого из отрезков коаксиальной длинной линии 1 и 2 может быть использован соответствующие значения Δϕ1 и Δϕ2 фазового сдвига возбуждаемых электромагнитных волн и электромагнитных волн, распространившихся вдоль соответствующего отрезка коаксиальной длинной линии и принятых на противоположном его конце. В этом случае будем иметь: О величине измеряемого физического свойства жидкости судят по отличию значений Δϕ1 и Δϕ2 фазового сдвига в двух отрезках коаксиальной длинной линии 1 и 2.

Поскольку отрезки коаксиальной длинной линии 1 и 2 пространственно-совмещены, то они находятся в одинаковых внешних условиях, в частности, при одной и той же температуре. Следовательно, результат совместной функциональной обработки в функциональном преобразователе 16 значений Δϕ1 и Δϕ2 фазового сдвига в двух отрезках коаксиальной длинной линии 1 и 2, соответствующих измеряемому значению х и номинальному значению хо измеряемого физического свойства жидкости, не зависит от температуры, а только от величины измеряемого параметра.

Отрезки коаксиальной длинной линии 1 и 2 могут иметь одинаковые начальные (в отсутствие жидкостей) значения Δϕ10 и Δϕ20 фазовых сдвигов Δϕ1 и Δϕ2. При равенстве Δϕ10 и Δϕ20 их разность, определяемая в функциональном преобразователе 16, равна нулю как в отсутствие контролируемой и эталонной жидкостей, так и наличии одной и той же жидкости (т.е. при начальных условиях х=х0) в обоих отрезках коаксиальной длинной линии 1 и 2. В этом случае разность значений фазовых сдвигов Δϕ1 и Δϕ2 соответствует только изменению х-х0 значения измеряемого физического свойства жидкости, что особенно важно при проведении высокоточных измерений малых значений содержания одной жидкости в смеси жидкостей (растворе). Для конструкции на фиг. 1 такая идентичность обеспечивается одинаковой длиной l отрезков коаксиальной длинной линии 1 и 2 и выбором соотношения диаметров проводников 3, 4 и 5 отрезков коаксиальной длинной линии 1 и 2. Для отрезков коаксиальной длинной линии 1 и 2, имеющих одинаковую длину l, соотношение Δϕ10=Δϕ20 обеспечивается при равенстве погонных значений электрических емкостей С1 и С2 отрезков коаксиальной длинной линии 1 и 2 (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. С. 125-131). Для конструкции на фиг. 1 электрические емкости С1 и С2 отрезков коаксиальной длинной линии 1 и 2 выражаются следующими соотношениями: где ε0 = 1/36π⋅109 Ф/м - абсолютная диэлектрическая проницаемость вакуума, d1, d2, d3, d4 - соответственно, диаметр внешнего цилиндра, наружный диаметр внутреннего цилиндра, внутренний диаметр внутреннего цилиндра и диаметр центрального проводника. Следовательно, Δϕ10=Δϕ20, если С12, что соответствует следующему соотношению: d1/d2 = d3/d4.

Таким образом, данный способ реализуется достаточно просто на основе двух отрезков коаксиальной длинной линии с возбуждением в них электромагнитных волн фиксированной частоты. Он не связан с рассмотрением отрезков коаксиальной длинной линии как резонаторов и проведением измерений их соответствующих значений резонансной частоты электромагнитных колебаний. Способ позволяет с высокой точностью измерять различные физические свойства диэлектрических жидкостей за счет возможности контроля одной и той же области контролируемой жидкости, находящейся при одинаковых внешних условиях (температуре, давлении и др.). Его, в частности, целесообразно применять при наличии различных дестабилизирующих факторов, в частности, изменений температуры, имеющей разное значение в разных областях емкости с контролируемой жидкостью.

Способ измерения физических свойств диэлектрической жидкости, при котором возбуждают электромагнитные волны в каждом из двух отрезков коаксиальной длинной линии, служащих чувствительными элементами измерительных каналов, рабочего и эталонного, и заполняемых соответственно контролируемой жидкостью и эталонной жидкостью, измеряют значение информативного параметра каждого из чувствительных элементов и по отличию этих значений информативного параметра судят о величине измеряемого физического свойства жидкости, при этом в качестве отрезков коаксиальной длинной линии используют совокупность располагаемых соосно двух металлических цилиндров и соосного с ними центрального проводника, причем внутренняя поверхность внутреннего цилиндра служит наружным проводником одного из отрезков коаксиальной длинной линии, а его наружная поверхность служит внутренним проводником другого отрезка коаксиальной длинной линии, отличающийся тем, что возбуждение электромагнитных волн в каждом из двух отрезков коаксиальной длинной линии производят на фиксированной частоте, в качестве информативного параметра каждого чувствительного элемента используют фазовый сдвиг возбуждаемых электромагнитных волн и электромагнитных волн, распространившихся вдоль соответствующего отрезка коаксиальной длинной линии и принятых на том же или противоположном его конце, и о величине измеряемого физического свойства жидкости судят по отличию значений фазового сдвига в двух отрезках коаксиальной длинной линии.
Источник поступления информации: Роспатент

Showing 101-110 of 276 items.
27.04.2016
№216.015.37c8

Способ извлечения пресной воды из атмосферного воздуха

Изобретение относится к области сборников атмосферной влаги и может быть использовано для получения пресной воды непосредственно из воздуха. Накапливают воду в емкости (1), выполненной из легкого материала в виде поверхности вращения. Емкость (1) поднимают вверх с помощью аэростата (19)....
Тип: Изобретение
Номер охранного документа: 0002582807
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.37ef

Способ определения расходной характеристики гидравлического тракта и устройство для его осуществления

Группа изобретений относится к способам и устройствам, используемым для расчета пропускной способности проектируемых гидравлических трактов транспортных и дозирующих систем в химической, нефтехимической, авиационной, текстильной, лакокрасочной и других отраслях промышленности, в частности узлов...
Тип: Изобретение
Номер охранного документа: 0002582486
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3801

Устройство для определения концентрации кислорода

Изобретение относится к измерительной технике и аналитическому приборостроению и может быть использовано в системах управления технологическими процессами. Устройство для определения концентрации кислорода содержит первичный преобразователь, представляющий собой магнитную систему с рабочим и...
Тип: Изобретение
Номер охранного документа: 0002582487
Дата охранного документа: 27.04.2016
27.05.2016
№216.015.42c1

Устройство для измерения массового расхода жидких и сыпучих сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода жидких и сыпучих сред в трубопроводах. В частности, при трубопроводной транспортировке нефтепродуктов и сжиженных газов. Устройство для измерения расхода жидких и...
Тип: Изобретение
Номер охранного документа: 0002585320
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.46ea

Системная сеть передачи сообщений многомерного тора с хордовыми связями

Изобретение относится к вычислительной технике, в частности к построению системных сетей для суперкомпьютеров в виде многомерных торов. Технический результат изобретения заключается в возможности существенного уменьшения времени доставки сообщений за счет сокращения диаметра сети (расстояния...
Тип: Изобретение
Номер охранного документа: 0002586835
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.5348

Способ определения малого влагосодержания нефтепродукта в диэлектрическом сосуде

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого технического решения является повышение точности измерения малого влагосодержания. Технический результат достигается тем, что в способе определения малого влагосодержания нефтепродукта в...
Тип: Изобретение
Номер охранного документа: 0002594176
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.53e0

Струйно-оптический триггер с раздельными входами и с постоянной памятью

Устройство относится к области автоматики и может быть использовано для преобразования газоструйного сигнала в оптический, а затем в электрический. Струйно-оптический триггер содержит источник и приемник светового потока, проходящего через щелевой канал. В канале располагается вдоль него...
Тип: Изобретение
Номер охранного документа: 0002593934
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.655f

Свч-устройство для защиты кровли от наледей и сосулек

Изобретение относится к области строительства, в частности к устройствам для защиты кровли от наледей и сосулек. Техническим результатом заявляемого технического решения является повышение работоспособности устройства и уменьшение потери СВЧ-мощности при подогреве края кровли с наледями и...
Тип: Изобретение
Номер охранного документа: 0002592312
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6585

Устройство для извлечения пресной воды из атмосферного воздуха

Устройство для извлечения пресной воды из атмосферного воздуха содержит емкость для сбора влаги, выполненную из легкого материала (полипропилена) в виде поверхности вращения, аэростат, поднимающий емкость. Емкость для сбора влаги выполнена из нескольких последовательно расположенных друг над...
Тип: Изобретение
Номер охранного документа: 0002592116
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.676e

Струйно-оптический преобразователь

Изобретение относится к области автоматики и может быть использовано для преобразования газоструйного сигнала в электрический. Устройство преобразования газоструйного сигнала в оптический содержит источник и приемник светового потока, проходящего через щелевой канал, в котором располагается...
Тип: Изобретение
Номер охранного документа: 0002591876
Дата охранного документа: 20.07.2016
Showing 81-86 of 86 items.
20.04.2023
№223.018.4bcd

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств Устройство для измерения физических свойств жидкости содержит волноводный резонатор в виде отрезка коаксиальной длинной линии с двумя, рабочим и эталонным,...
Тип: Изобретение
Номер охранного документа: 0002760641
Дата охранного документа: 29.11.2021
20.04.2023
№223.018.4c18

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб. Техническим результатом изобретения является упрощение процесса измерения. Технический результат достигается тем, что в способе измерения длины металлической трубы, при...
Тип: Изобретение
Номер охранного документа: 0002765897
Дата охранного документа: 04.02.2022
15.05.2023
№223.018.57ee

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного измерения внутреннего диаметра металлических труб. Техническим результатом является расширение функциональных возможностей устройства. Технический результат достигается тем, что устройство, содержащее...
Тип: Изобретение
Номер охранного документа: 0002767586
Дата охранного документа: 17.03.2022
21.05.2023
№223.018.6913

Устройство для измерения уровня диэлектрической жидкости в емкости

Изобретение относится к измерительной технике и служит для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. Технический результат - повышение точности измерений. Результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости...
Тип: Изобретение
Номер охранного документа: 0002794447
Дата охранного документа: 18.04.2023
29.05.2023
№223.018.7271

Способ определения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Технический результат – повышение точности определения длины...
Тип: Изобретение
Номер охранного документа: 0002796388
Дата охранного документа: 22.05.2023
05.06.2023
№223.018.76c3

Способ измерения физической величины

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение...
Тип: Изобретение
Номер охранного документа: 0002786526
Дата охранного документа: 21.12.2022
+ добавить свой РИД