×
14.05.2023
223.018.5676

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ФАКТИЧЕСКИХ НАПРЯЖЕНИЙ ИЗГИБА ТРУБОПРОВОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области мониторинга трубопроводных систем, эксплуатируемых в сложных климатических условиях, в частности к способам оценки технического состояния трубопроводов надземной и подземной прокладки при проведении обследований, ремонте трубопровода, а также для оценки эффективности компенсирующих мероприятий и ремонта на участке с ненормативным напряженно-деформированным состоянием. Сущность: выбирают по меньшей мере две точки установки сканирующего устройства, расположенные по разные стороны от трубопровода, устанавливают по меньшей мере 2 марки на верхнюю образующую по краям измеряемого участка трубопровода и по меньшей мере 2 марки на грунт в прямой видимости от точек сканирования, осуществляют разметку участка трубопровода для идентификации начала и окончания участка, сканируют поверхность трубопровода по меньшей мере с двух точек сканирования, расположенных по разные стороны от трубопровода, копируют результаты сканирования со сканирующего устройства с помощью кабеля или электронного носителя информации и передают на ЭВМ для обработки, обрабатывают данные лазерного сканирования, определяют расчетную оценку изгибных напряжений трубопровода и направления изгиба, определяют поперечное сечение трубопровода по минимальному радиусу изгиба, в котором действуют максимальные изгибные напряжения. Технический результат: повышение качества и достоверности определения фактических напряжений изгиба трубопровода. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области мониторинга трубопроводных систем, эксплуатируемых в сложных климатических условиях, в частности, к способам оценки напряженно-деформированного состояния трубопроводов надземной и подземной прокладки в условиях вечной мерзлоты по значению и направлению радиуса изгиба трубопровода при проведении обследований, ремонте трубопровода, а также для оценки эффективности компенсирующих мероприятий и ремонта на участке с ненормативным напряженно-деформированным состоянием.

Известен способ инструментальных измерений радиуса изгиба трубопровода внутритрубным инспекционным прибором (далее - ВИЛ). Данный способ имеет ограничения измеряемых радиусов изгиба при углах поворота трубопровода менее 1° и длине изгиба трубопровода менее 5 м. Под указанные ограничения попадают участки трубопровода длиной менее 5 м, трубопроводы с изгибом менее 1°.

Известен геодезический метод определения деформаций в трубопроводах объектов магистральных нефтепроводов, который предполагает использование в качестве основных инструментов: нивелира и нивелирной рейки.

Работа с данными инструментами имеет следующие недостатки:

- большая трудоемкость и невысокая точность, связанные с определением (построением) упругой линии деформированного трубопровода по данным геодезической съемки;

- невозможность измерения прогиба трубопровода в плоскости, отличной от вертикальной;

- шаг измерения от 3 до 5 м вдоль секции;

- необходимость одновременной работы двух человек.

Известен метрический метод измерения радиуса изгиба трубопроводов, основанный на использовании специализированных инструментов:

- линейка поверочная длиной L=2000÷3000 мм по ГОСТ 8026-92;

- штангенглубиномер по ГОСТ 162-90 или штангенциркуль с глубиномером по ГОСТ 166-89.

Метод применяется для определения в полевых условиях радиуса изгиба на линейной части магистральных нефтепроводов без снятия с секций антикоррозионного покрытия. Определение радиуса изгиба осуществляется путем измерения стрелы прогиба секции на хорде определенной длины, определяемой длиной поверочной линейки, и последующего расчета. В измерении стрелы прогиба должны участвовать три человека, двое производят установку линейки поверочной, третий проводит измерения. На коротких участках трубопровода (менее 2 м) величина прогиба, подлежащая измерению, может составлять до 2 мм, из-за этого неровности покрытий трубопровода могут быть идентифицированы как изгиб трубопровода, а результаты измерений не соответствовать фактическому радиусу изгиба.

Задачей заявленного изобретения является оценка напряженно-деформированного состояния трубопровода для сравнения с установленными проектно-технической документацией допустимыми напряжениями и для разработки мероприятий, обеспечивающих дальнейшую безопасную эксплуатацию трубопровода (ремонт, изменение планово-высотного положения участка трубопровода, мероприятия, направленные на снижение негативного влияния внешней среды на планово-высотное положение трубопровода).

Технический результат, достигаемый при использовании заявленного изобретения, заключается в повышении качества и достоверности определения фактических напряжений изгиба трубопровода для определения сроков безаварийной работы трубопроводов надземной и подземной прокладки или разработки мероприятий, обеспечивающих дальнейшую безопасную эксплуатацию трубопровода.

Указанная техническая проблема решается, а технический результат достигается тем, что способ определения фактических напряжений изгиба трубопровода содержит этапы, на которых:

- выбирают по меньшей мере две точки установки сканирующего устройства, расположенные по разные стороны от трубопровода;

- устанавливают по меньшей мере 2 марки на верхнюю образующую по краям измеряемого участка трубопровода и по меньшей мере 2 марки на грунт в прямой видимости от точек сканирования;

- осуществляют разметку участка трубопровода для идентификации начала и окончания участка;

- сканируют поверхность трубопровода по меньшей мере с двух точек сканирования, расположенных по разные стороны от трубопровода;

- копируют результаты сканирования со сканирующего устройства с помощью кабеля или электронного носителя информации и передают на ЭВМ для обработки;

- обрабатывают данные лазерного сканирования, определяют расчетную оценку изгибных напряжений трубопровода и направления изгиба;

- определяют поперечное сечение трубопровода по минимальному радиусу изгиба, в котором действуют максимальные изгибные напряжения.

При этом, сканирование поверхности трубопровода осуществляют с плотностью не менее 5 точек на см2.

Изобретение поясняется графически, где на фиг. 1 и фиг. 2 изображены схемы котлована с трубопроводом, места установки сканирующего устройства и места установки марок.

Позициями на чертежах обозначены:

1 - трубопровод;

2 - котлован;

3 - марка;

4 - сканирующее устройство.

Ниже приводится пример осуществления способа определения фактических напряжений изгиба трубопровода подземной прокладки.

Для использования способа требуется организовать доступ сканирующего устройства 4 к измеряемой поверхности трубопровода 1 в прямой видимости (фиг. 1).

В качестве сканирующего устройства 4 может быть использован лазерный сканер.

Для трубопровода 1 подземной прокладки требуется разработка котлована 2 и очистка поверхности секции от грунта, при необходимости поверхность трубопровода 1 промывается водой.

По обе стороны от участка трубопровода 1 расчищают площадки для установки сканирующего устройства 4 таким образом, чтобы была прямая видимость сканируемой поверхности трубопровода 1.

Охват сканируемой (видимой) поверхности трубопровода 1 должен быть более 180°. Только при этом условии гарантируется определение плоскости изгиба участка трубопровода 1. Это достигается при сканировании не менее чем с двух точек сканирования, расположенных по разные стороны от трубопровода 1 на расстоянии от 3 (в направлении, перпендикулярном к поверхности трубопровода 1) до 10 метров (в направлениях к началу и окончанию сканируемого участка трубопровода 1). При этом обеспечивается сканирование участка трубопровода 1 длиной до 18 метров.

По меньшей мере две марки 3 устанавливают на верхнюю образующую по краям измеряемого участка трубопровода 1 и по меньшей мере две марки 3 на грунт в прямой видимости от точек сканирования.

Не менее трех марок 3, используемых при сканировании со смежных точек сканирования, не должны быть расположены на одной оси, иначе результаты сканирования, выполненные со смежных точек сканирования, невозможно будет совместить с требуемой точностью.

Для сканирования участков трубопровода 1 более 18 метров требуется повторение описанной схемы мест установки сканирующего устройства с шагом до 15 метров вдоль трубопровода 1 (фиг. 2). Для обеспечения непрерывности облака точек лазерного отражения вдоль трубопровода 1 при каждом сканировании со смежных точек сканирования должны использоваться одни и те же марки 3 без изменений их местоположения. При этом должно обеспечиваться условие расположения не менее трех марок 3, используемых при совмещении результатов сканирования, не на одной оси.

Начало участка трубопровода 1 относительно течения транспортируемого продукта помечают с использованием подручных предметов размером не менее 3×3×3 см, хорошо различимых в облаке точек лазерного отражения (результатах сканирования). При сканировании в цвете (при записи координат точек лазерного отражения и цвета) допускается указывать направление течения транспортируемого продукта и начало измеряемого участка трубопровода 1 мелом или краской.

Допускается применение способа на трубопроводах с лакокрасочным, антикоррозионным покрытием заводского или трассового нанесения.

С выбранных мест установки сканирующего устройства 4 осуществляют лазерное сканирование поверхности трубопровода 1 с плотностью не менее 5 точек на см2.

При использовании одного сканирующего устройства 4 сканирование осуществляют последовательно, перемещая сканирующее устройство 4 на выбранные точки сканирования. При этом марки 3 не должны изменять свое местоположение до окончания сканирования со смежных точек сканирования для обеспечения точности совмещения (сшивки) результатов сканирования в одно облако точек лазерного отражения.

Результаты сканирования, записывают на внутреннюю память сканирующего устройства 4 с помощью кабеля или внешнего накопителя данных считывают посредством подключения сканирующего устройства 4 к ЭВМ, либо для передачи результатов используют электронный носитель информации.

После совмещения облаков ТЛО (далее - точки лазерного отражения), полученных с выбранных точек сканирования, в единое облако ТЛО, в программном обеспечении автоматически выполняется построение графиков радиуса изгиба всей поверхности секции, определяется сечение трубопровода 1 с минимальным радиусом изгиба и направление изгиба трубопровода 1.

Зная диаметр трубопровода 1, толщину и материал стенки трубопровода 1, полученный минимальный радиус изгиба вычисляют максимальные изгибные напряжения трубопровода 1.

Значения полученных радиусов упругого изгиба используются для принятия решения о дальнейшей эксплуатации трубопровода 1, либо пересчитываются в расчетные изгибные напряжения по формуле (1).

где D - диаметр трубопровода, Е - модуль Юнга материала трубопровода, R - радиус изгиба трубопровода.

По минимальному радиусу изгиба определяют поперечное сечение трубопровода 1, в котором действуют максимальные изгибные напряжения.

Изгибные напряжения трубопровода 1 сравнивают с установленными проектно-технической документацией допустимыми напряжениями и определяют сроки безаварийной работы трубопроводов. В случае необходимости разрабатывают мероприятия, обеспечивающих дальнейшую безопасную эксплуатацию трубопровода (ремонт, изменение планово-высотного положения участка трубопровода, мероприятия, направленные на снижение негативного влияния внешней среды на планово-высотное положение трубопровода).

Заявленный способ позволяет при проведении ремонтных работ и компенсирующих мероприятий оперативно выполнить оценку фактического напряженно-деформированного состояния трубопровода для принятия решения о необходимости дальнейших ремонтных работ или определению сроков дальнейшей эксплуатации.

Источник поступления информации: Роспатент

Showing 11-20 of 153 items.
25.08.2017
№217.015.b904

Способ маркировки трубных изделий, трубное изделие с маркировкой и система идентификации трубных изделий

Изобретение относится к области маркировки и последующей идентификации трубных изделий. Технический результат - обеспечение возможности идентификации завода-изготовителя трубных секций как во время строительства и реконструкции трубопровода, так и в процессе эксплуатации трубопровода подземной...
Тип: Изобретение
Номер охранного документа: 0002615329
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.bc3b

Способ термостабилизации грунтов оснований свайных фундаментов опор трубопровода

Изобретение относится к теплотехнике в области строительства, а именно к термостабилизации грунтовых оснований свайных фундаментов опор трубопровода и трубопроводов подземной прокладки, расположенных на многолетнемерзлых грунтах. Способ термостабилизации грунтов оснований свайных фундаментов...
Тип: Изобретение
Номер охранного документа: 0002616029
Дата охранного документа: 12.04.2017
25.08.2017
№217.015.be09

Способ дистанционного наблюдения за состоянием линейной части магистральных трубопроводов и устройство для его осуществления

Группа изобретений относится к диагностике состояния линейной части магистральных трубопроводов (ЛЧ МТ), в частности к обнаружению и наблюдению за изменением технического состояния объектов магистральных трубопроводов. Заявленное устройство включает, размещенные в корпусе блок приема-передачи...
Тип: Изобретение
Номер охранного документа: 0002616736
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.be59

Способ ремонта дефектного участка трубопровода надземной прокладки

Изобретение относится к способу ремонта магистральных трубопроводов надземной прокладки методом вырезки/врезки катушки. Перед вырезкой дефектного участка трубопровода осуществляют подъем корпуса-ложемента с трубопроводом посредством грузоподъемного механизма, установку антифрикционного...
Тип: Изобретение
Номер охранного документа: 0002616735
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.bf81

Способ совмещения диагностических данных отдельных листов днища рвс с целью построения визуального образа днища рвс с привязкой диагностических данных к номерам листов и сварных швов

Использование: для неразрушающего контроля днища резервуаров вертикальных стальных (далее РВС) для хранения нефти и нефтепродуктов. Сущность изобретения заключается в том, что обследование днища резервуара вертикального стального (далее РВС) производят комплексом для диагностики днищ, в котором...
Тип: Изобретение
Номер охранного документа: 0002617175
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c0c9

Способ создания раскладки трубных секций по данным внутритрубного инспекционного прибора определения положения трубопровода

Изобретение относится к способу обработки данных внутритрубных дефектоскопов. Для осуществления способа загружают диагностические данные внутритрубного инспекционного прибора определения положения трубопровода (ВИП ОПТ) через интерфейс передачи входных данных. Затем выполняют предварительную...
Тип: Изобретение
Номер охранного документа: 0002617628
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c155

Способ преобразования диагностических данных внутритрубных обследований магистральных трубопроводов, работающих в реверсном режиме в вид, позволяющий проводить интерпретацию с использованием данных предыдущих инспекций, проведенных при работе нефтепровода в прямом режиме

Изобретение относится к методам неразрушающего контроля трубопроводов и может быть использовано для обработки диагностических данных внутритрубных обследований магистральных трубопроводов. Диагностические данные, полученные при внутритрубном обследовании магистральных трубопроводов, работающих...
Тип: Изобретение
Номер охранного документа: 0002617612
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.c388

Носитель датчиков ультразвукового дефектоскопа

Изобретение относится к устройству и способу контроля технического состояния магистральных нефтепроводов и нефтепродуктопроводов, а также газопроводов путем пропуска внутри трубопровода ультразвукового дефектоскопа с установленными на нем носителями датчиков. Заявленный носитель датчиков...
Тип: Изобретение
Номер охранного документа: 0002617225
Дата охранного документа: 24.04.2017
25.08.2017
№217.015.c4a9

Способ определения инерционности установки подслойного пожаротушения (упп) резервуара для хранения легковоспламеняющихся или горючих жидкостей

Изобретение относится к определению инерционности автоматических резервуаров для легковоспламеняющихся жидкостей. При осуществлении способа определяют для одного линейного ввода установки подслойного пожаротушения суммарные протяженности и внутренние диаметры растворопроводов, проходящих от...
Тип: Изобретение
Номер охранного документа: 0002618199
Дата охранного документа: 02.05.2017
25.08.2017
№217.015.cb92

Двудечная плавающая крыша вертикального стального резервуара для нефти и нефтепродуктов

Изобретение относится к области хранения нефти, в частности к плавающим крышам резервуаров для хранения нефти и/или нефтепродуктов. Двудечная плавающая крыша нефтяного резервуара включает в себя расположенные концентрически сегменты крыши, содержащие соединенные между собой отсеки, при этом...
Тип: Изобретение
Номер охранного документа: 0002620243
Дата охранного документа: 23.05.2017
Showing 11-20 of 28 items.
14.11.2018
№218.016.9d63

Способ определения протяженности и очередности замены участков линейной части магистральных трубопроводов

Изобретение относится к магистральному трубопроводному транспорту углеводородов, в частности к обеспечению надежности транспортировки и безопасности эксплуатации магистральных трубопроводов за счет эффективного планирования работ по капитальному ремонту, в частности, определения протяженности и...
Тип: Изобретение
Номер охранного документа: 0002672242
Дата охранного документа: 12.11.2018
01.03.2019
№219.016.cbca

Многофункциональная гидрофильная эмульсионная система для ремонта скважин (варианты)

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам, используемым при капитальном ремонте скважин. Технический результат - создание экологически чистого и негорючего гидрофильного состава, снижение его стоимости. Многофункциональная гидрофильная эмульсионная...
Тип: Изобретение
Номер охранного документа: 0002313557
Дата охранного документа: 27.12.2007
01.03.2019
№219.016.cc2f

Способ изготовления сепаратора газожидкостной смеси высокого давления

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам изготовления трехслойного сепаратора газожидкостной смеси. Способ изготовления сепаратора газожидкостной смеси высокого давления, состоящего из корпуса, крышки и днища с двойными металлическими стенками и жидкого...
Тип: Изобретение
Номер охранного документа: 0002359734
Дата охранного документа: 27.06.2009
01.03.2019
№219.016.cc46

Устройство для сепарации газа от жидкой и твердой фаз

Изобретение относится к нефтегазодобывающей промышленности и предназначено для использования при разработке нефтяных месторождений путем газового или водогазового воздействия на нефтенасыщенный пласт с высоким пластовым давлением при использовании природного газа высокого давления. Устройство...
Тип: Изобретение
Номер охранного документа: 0002355463
Дата охранного документа: 20.05.2009
01.03.2019
№219.016.cc58

Устройство для доставки приборов в горизонтальную скважину

Устройство для доставки приборов в горизонтальную скважину относится к бурению горизонтальных и сильнонаклонных нефтяных и газовых скважин, в частности к устройствам для доставки приборов в скважину. Устройство содержит внешний неподвижный корпус, в котором установлены электродвигатель с...
Тип: Изобретение
Номер охранного документа: 0002378487
Дата охранного документа: 10.01.2010
11.03.2019
№219.016.d812

Устройство для доставки приборов в горизонтальную скважину

Изобретение относится к исследованию горизонтальных и сильнонаклоненных нефтяных и газовых скважин, в частности к устройствам для доставки приборов в скважину. Устройство содержит цилиндрический корпус с электродвигателем и понижающим редуктором, расклинивающие опоры и движитель, выполненный в...
Тип: Изобретение
Номер охранного документа: 0002345210
Дата охранного документа: 27.01.2009
11.03.2019
№219.016.d97d

Устройство контроля состояния работающей газовой или нефтяной скважины

Изобретение относится к нефтегазовой промышленности, в частности к устройствам контроля состояния работающей газовой или нефтяной скважины. Техническим результатом является обеспечение оперативного контроля и повышение точности измерений устьевых параметров скважин, расположенных в...
Тип: Изобретение
Номер охранного документа: 0002378507
Дата охранного документа: 10.01.2010
11.03.2019
№219.016.da06

Реагент для подъема пластовых жидкостей из газовых, газоконденсатных скважин и нефтяных скважин с низким газовым фактором в условиях анпд

Изобретение относится к области добычи нефти, газа и газового - углеводородного конденсата, а именно к химическим реагентам для подъема жидкостей из скважин газовых месторождений, газоконденсатных месторождений, нефтегазоконденсатных и скважин нефтяных месторождений с низким газовым фактором....
Тип: Изобретение
Номер охранного документа: 0002337937
Дата охранного документа: 10.11.2008
11.03.2019
№219.016.dace

Способ подъема жидкости с забоя газоконденсатных скважин с низким газовым фактором в условиях аномально низких пластовых давлений

Изобретение относится к области добычи нефти, газа и газового (углеводородного) конденсата, а именно к технологии подъема жидкости из скважин газоконденсатных месторождений с низким газовым фактором в условиях аномально низких пластовых давлений. Технический результат изобретения состоит в...
Тип: Изобретение
Номер охранного документа: 0002363836
Дата охранного документа: 10.08.2009
11.03.2019
№219.016.db00

Технологическая смесь для удаления жидкого пластового флюида из газоконденсатных скважин с аномально низкими пластовыми давлениями

Изобретение относится к области добычи нефти, газа и конденсата, а именно, к реагентам для удаления жидкости с забоя газоконденсатных скважин. Технический результат - обеспечение выноса жидкого пластового флюида из газоконденсатных скважин с аномально низкими пластовыми давлениями - АНПД,...
Тип: Изобретение
Номер охранного документа: 0002328515
Дата охранного документа: 10.07.2008
+ добавить свой РИД