×
14.05.2023
223.018.55a9

Результат интеллектуальной деятельности: Гидропескоструйный перфоратор для поинтервальной перфорации и гидравлического разрыва пласта

Вид РИД

Изобретение

№ охранного документа
0002738059
Дата охранного документа
07.12.2020
Аннотация: Изобретение относится к нефтяной промышленности, в частности к устройствам для поинтервального перфорирования скважин гидроабразивной струей направленного действия с предварительным отсечением интервала перфорации пакер-пробкой и последующим проведением гидроразрыва пласта через проперфорированные отверстия в эксплуатационной колонне, цементном камне и горной породе вертикальной и горизонтальной скважин. Гидропескоструйный перфоратор для поинтервальной перфорации и гидравлического разрыва пласта содержит корпус с двумя отверстиями, расположенными в горизонтальной плоскости под углом 180° по отношению друг к другу. В отверстиях установлены струйные насадки. В корпусе размещена подвижная втулка, снабженная снизу наружной цилиндрической выборкой, в которой размещено разрезное пружинное кольцо, а внутри подвижная втулка оснащена посадочным седлом под запорный элемент. Снизу корпус снабжён присоединительной резьбой для пакерного оборудования, а снаружи в верхней и нижней частях корпуса жёстко установлены центраторы с переточными каналами. Снизу в корпус ввёрнуто стопорное кольцо. В исходном положении ряд отверстий корпуса, оснащённых струйными насадками, герметично изнутри перекрыт подвижной втулкой, закреплённой относительно корпуса срезным элементом. В рабочем положении подвижная втулка имеет возможность осевого ограниченного перемещения относительно корпуса до упора в стопорное кольцо с открытием ряда отверстий, оснащённых струйными насадками, и фиксацией подвижной втулки относительно корпуса с помощью разрезного пружинного кольца. В корпусе выше ряда с отверстиями выполнен ряд радиальных каналов. В исходном положении ряд радиальных каналов в корпусе герметично изнутри перекрыт дополнительной подвижной втулкой, снизу снабжённой наружной кольцевой проточкой, в которой установлено дополнительное разрезное пружинное кольцо, а внутри дополнительная подвижная втулка оснащена посадочным седлом под дополнительный запорный элемент. Дополнительная подвижная втулка закреплена относительно корпуса срезным штифтом. В рабочем положении дополнительная подвижная втулка имеет возможность осевого ограниченного перемещения вниз относительно корпуса с открытием ряда каналов, и фиксацией дополнительной подвижной втулки относительно корпуса с помощью дополнительного разрезного пружинного кольца во внутренней кольцевой проточке, выполненной в корпусе ниже ряда отверстий. Диаметр посадочного седла подвижной втулки меньше диаметра посадочного седла дополнительной подвижной втулки. Центраторы с переточными каналами выполнены сменными с наружным диаметром на 10 мм меньше внутреннего диаметра перфорируемой колонны труб. Центраторы установлены на верхнем и нижнем концах корпуса с помощью резьбового соединения и зафиксированы относительно корпуса винтами. Гидропескоструйный перфоратор для поинтервальной перфорации и гидравлического разрыва пласта обладает высокой эффективностью перфорации в наклонных и горизонтальных скважинах, расширяет функциональные возможности устройства, снижает затраты на изготовление перфоратора, сокращает продолжительность работ по выполнению поинтервальной ГПП с последующим кислотным ГРП и освоения скважины. 4 ил.

Изобретение относится к нефтяной промышленности, в частности к устройствам для поинтервального перфорирования скважин гидроабразивной струей направленного действия с предварительным отсечением интервала перфорации пакер-пробкой и последующим проведением гидроразрыва пласта через проперфорированные отверстия в эксплуатационной колонне, цементном камне и горной породе вертикальной, наклонной и горизонтальной скважин.

Известен гидропескоструйный перфоратор (патент RU № 2312979, опубл. 20.12.2017), содержащий полый корпус с наружными углублениями в виде двух сопряженных плоскостей, в одной из которых выполнено соединенное с полостью корпуса отверстие с установленной в нем струйной насадкой, посадочное седло в нижней части корпуса с запорным элементом, при этом корпус снабжен защитными пластинами, струйные насадки имеют на входе удлиненную коническую часть и установлены в отверстиях посредством насадкодержателей, имеющих выступающие за пределы корпуса конусообразные части, а на другой плоскости углублений расположена твердосплавная сменная площадка отражения.

Недостатками гидропескоструйного перфоратора являются:

- во-первых, снижение эффективности перфорации из-за наклонного расположения сопел, что приводит к резкому уменьшению разрушающего действия выходящих из сопел гидроабразивных струй;

- во-вторых, низкая надёжность конструкции, обусловленная высоким абразивным износом перфоратора вследствие наклонного расположения сопел перфоратора;

- в-третьих, ограниченные функциональные возможности, а именно невозможность проведения поинтервальной перфорации с отсечением предыдущего интервала гидропескоструйной перфорации и гидроразрыва пласта в интервале перфорации сразу после проведения гидропескоструйной перфорации.

Известен гидропескоструйный перфоратор (патент RU № 2631947, опубл. 29.09.2017), содержащий корпус с отверстиями, в которых установлены струйные насадки, размещенную в корпусе подвижную втулку, связанную с запорным элементом, соединенным с подвижным стержнем, седло запорного элемента, установленное в патрубке, соединенном с корпусом, подвижный стержень соединен с подпружиненным подвижным стаканом, в торцевой части которого выполнены отверстия, при этом в отверстия подвижного стакана установлены втулки, закрепленные с помощью прижима, струйные насадки расположены вдоль корпуса по спирали, в подвижной втулке выполнен паз, в который заведен конец пробки, установленной в отверстии корпуса, пружина подвижного стакана отделена от подвижного стержня трубчатыми элементами.

Недостатками гидропескоструйного перфоратора являются:

- во-первых, сложность конструкции, обусловленная большим количеством узлов и деталей (подвижный стакан, пружина, втулки, закреплённые с помощью прижима и т.д.);

- во-вторых, низкая надёжность конструкции, обусловленная наличием подпружиненного стакана, так как высока вероятность поломки пружины вследствие знакопеременных нагрузок в процессе гидропескоструйной перфорации, кроме того, отсутствует фиксация подвижной втулки относительно корпуса, что может привести к перекрытию струйных насадок изнутри в процессе проведения гидропескоструйной перфорации, особенно при работе в горизонтальной скважине, что приводит к отказу устройства в работе;

- в-третьих, ограничение притока нефти из призабойной зоны пласта в полость скважины из-за выполнения перфорационных отверстий в эксплуатационной колонне скважины по спирали;

- в-четвёртых, ограниченные функциональные возможности, а именно невозможность поинтервальной перфорации с отсечением предыдущего интервала гидропескоструйной перфорации и гидроразрыва пласта в интервале перфорации сразу после проведения гидропескоструйной перфорации;

- в-пятых, увеличение продолжительности работ из-за невозможности совмещения технологических операций и спуска устройства на колонне гибких труб.

Наиболее близким по технической сущности и достигаемому результату является гидропескоструйный перфоратор для поинтервальной перфорации и гидравлического разрыва пласта (патент RU № 2696035, опубл. 30.07.2017), содержащий корпус с двумя отверстиями, расположенными в горизонтальной плоскости под углом 180° по отношению друг к другу, в отверстиях установлены струйные насадки, в корпусе размещена подвижная втулка, снабженная снизу наружной цилиндрической выборкой в которой размещено разрезное пружинное кольцо, а внутри подвижная втулка оснащена посадочным седлом под запорный элемент, снизу корпус снабжён присоединительной резьбой для пакерного оборудования, а снаружи в верхней и нижней частях корпуса жёстко установлены центраторы с переточными каналами, при этом снизу в корпус ввёрнуто стопорное кольцо, при этом в исходном положении ряд отверстий корпуса, оснащённых струйными насадками, герметично изнутри перекрыт подвижной втулкой, закреплённой относительно корпуса срезным элементом, в рабочем положении подвижная втулка имеет возможность осевого ограниченного перемещения относительно корпуса до упора в стопорное кольцо с открытием ряда отверстий, оснащённых струйными насадками, и фиксацией подвижной втулки относительно корпуса с помощью разрезного пружинного кольца.

Недостатками гидропескоструйного перфоратора для поинтервальной перфорации и гидравлического разрыва пласта являются:

- во-первых, низкая эффективность перфорации в наклонных и горизонтальных скважинах связанная с тем, что наружный диаметр центраторов, жёстко установленных на корпусе не соответствует внутреннему диаметру перфорируемой трубы, что приводит к нарушению соосности перфоратора и перфорируемой колонны труб. В результате из-за различного расстояния от струйных насадок до перфорируемой колонны труб происходит неравномерная гидропескоструйная перфорация и отверстия в перфорированной колонне труб получаются различного диаметра или колонна труб остается неперфорированной (не пробивается отверстие в перфорируемой колонне труб), также различна и глубина проникновения в пласт от каждой струйной насадки;

- во-вторых, ограниченные функциональные возможности устройства, так как невозможно произвести очистку от продуктов реакции кислоты с породой и освоение скважины сразу после проведения кислотного гидравлического разрыва пласта, так как сначала необходимо извлечь устройство из скважины, затем спустить колонну технологических труб и только после этого произвести очистку от продуктов реакции кислоты с породой и освоение скважины;

- в-третьих, высокие затраты на изготовление перфоратора, так как центраторы установлены на корпусе перфоратора жёстко с помощью сварного соединения и не имеют возможности замены в зависимости от внутреннего диаметра перфорируемой колонны труб, то необходимо для каждого типоразмера диаметра перфорируемой колонны труб изготавливать перфоратор;

- в-четвёртых, длительность работ по выполнению поинтервальной гидропескоструйной перфорации с последующим кислотным гидравлическим разрывом пласта и последующего освоения скважины до получения нефти. Это обусловлено тем, что после проведения каждой поинтервальной гидропескоструйной перфорации с последующим кислотным гидравлическим разрывом пласта необходимо каждый раз (в каждом интервале) осваивать скважину.

Техническими задачами изобретения являются повышение эффективности гидропескоструйной перфорации в наклонных и горизонтальных скважинах, расширение функциональных возможностей устройства, снижение затрат на изготовление перфоратора и сокращение продолжительности поинтервальной гидропескоструйной перфорации с последующим кислотным гидравлическим разрывом пласта с последующим освоением данного интервала до получения нефти.

Технические задачи решаются гидропескоструйным перфоратором для поинтервальной перфорации и гидравлического разрыва пласта, содержащим корпус с двумя отверстиями, расположенными в горизонтальной плоскости под углом 180° по отношению друг к другу, в отверстиях установлены струйные насадки, в корпусе размещена подвижная втулка, снабженная снизу наружной цилиндрической выборкой в которой размещено разрезное пружинное кольцо, а внутри подвижная втулка оснащена посадочным седлом под запорный элемент, снизу корпус снабжён присоединительной резьбой для пакерного оборудования, а снаружи в верхней и нижней частях корпуса жёстко установлены центраторы с переточными каналами, при этом снизу в корпус ввёрнуто стопорное кольцо, при этом в исходном положении ряд отверстий корпуса, оснащённых струйными насадками, герметично изнутри перекрыт подвижной втулкой, закреплённой относительно корпуса срезным элементом, в рабочем положении подвижная втулка имеет возможность осевого ограниченного перемещения относительно корпуса до упора в стопорное кольцо с открытием ряда отверстий, оснащённых струйными насадками, и фиксацией подвижной втулки относительно корпуса с помощью разрезного пружинного кольца.

Новым является то, что в корпусе выше ряда с отверстиями выполнен ряд радиальных каналов, при этом в исходном положении ряд радиальных каналов в корпусе герметично изнутри перекрыт дополнительной подвижной втулкой, снизу снабжённой наружной кольцевой проточкой, в которой установлено дополнительное разрезное пружинное кольцо, а внутри дополнительная подвижная втулка оснащена посадочным седлом под дополнительный запорный элемент, причём дополнительная подвижная втулка закреплена относительно корпуса срезным штифтом, а в рабочем положении дополнительная подвижная втулка имеет возможность осевого ограниченного перемещения вниз относительно корпуса с открытием ряда каналов, и фиксацией дополнительной подвижной втулки относительно корпуса с помощью дополнительного разрезного пружинного кольца во внутренней кольцевой проточке, выполненной в корпусе ниже ряда отверстий, при этом диаметр посадочного седла подвижной втулки меньше диаметра посадочного седла дополнительной подвижной втулки, при этом центраторы с переточными каналами выполнены сменными с наружным диаметром на 10 мм меньше внутреннего диаметра перфорируемой колонны труб, при этом центраторы установлены на верхнем и нижнем концах корпуса с помощью резьбового соединения и зафиксированы относительно корпуса винтами.

На фиг. 1-4 схематично изображён гидропескоструйный перфоратор (ГП) для поинтервальной гидропескоструйной перфорации (ГПП) и гидравлического разрыва пласта (ГРП).

ГП содержит корпус 1 (фиг. 1). В корпусе 1 изготовлен ряд 2 отверстий. В ряду 2 выполнено два отверстия 3' и 3", расположенных в горизонтальной плоскости под углом 180° по отношению друг к другу.

Оба отверстия 3' и 3" ряда 2 ГП оснащены соответствующими струйными насадками 4' и 4", например, диаметром dн = 6,0 мм.

Снизу на корпусе 1 имеется присоединительная резьба 5 для пакерного оборудования, например, для присоединения к нижнему концу ГП пакер-пробки 6 с посадочным устройством (на фиг. 1 показано условно).

Снаружи в верхней и нижней частях корпуса 1 (фиг. 1) жёстко, например, с помощью резьбового соединения или сваркой по контуру установлены центраторы 7' и 7" (фиг. 1 и 3) с соответствующими переточными каналами 8' и 8".

Снизу в корпус 1 (см. фиг. 1) ввёрнуто стопорное кольцо 9. Подвижная втулка 10, размещенная в корпусе 1, снабжена снизу наружной цилиндрической выборкой 11, в которой размещено разрезного пружинное кольцо 12.

Подвижная втулка 10 внутри оснащена седлом 13 под запорный элемент 14 (см. фиг. 3), выполненный в виде шара. Внутренний диаметр dс стопорного кольца 9 больше или равен внутреннему диаметру d седла 13 (см. фиг. 1, 3) подвижной втулки 10. Данное условие необходимо для исключения штуцирования потока жидкости при посадке пакер-пробки 6 (см. фиг. 1).

В исходном положении оба отверстия 3' и 3" ряда 2, оснащённые соответствующими струйными насадками 4' и 4", корпуса 1 герметично изнутри перекрыты подвижной втулкой 10, закреплённой относительно корпуса 1 срезным элементом 15. Срезной элемент 15 ввёрнут в корпус 1.

В рабочем положении подвижная втулка 10 имеет возможность осевого ограниченного перемещения относительно корпуса 1 до упора в стопорное кольцо 9 с открытием отверстий 3' и 3" ряда 2, оснащённых струйными насадками 4' и 4", и фиксацией подвижной втулки 10 относительно корпуса 1. Фиксация подвижной втулки 10 относительно корпуса 1 осуществляется с помощью разрезного пружинного кольца 12, находящегося в сжатом состоянии, размещённого в наружной цилиндрической выборке 11, выполненной на нижнем конце подвижной втулки 10. При осевом перемещении подвижной втулки 10 вниз и взаимодействии нижнего торца подвижной втулки 10 со стопорным кольцом 9 пружинное разрезное кольцо 12 размещается напротив внутренней цилиндрической канавки 16 корпуса 1, расширяется, т.к. находится в сжатом состоянии, и попадает во внутреннюю цилиндрическую канавку 16 корпуса 1 и фиксирует подвижную втулку 10 относительно корпуса 1.

Также в корпусе 1 выше ряда 2 с отверстиями 3' и 3" выполнен ряд 17 радиальных каналов 18'….18n.

В исходном положении ряд 17 радиальных каналов 18'….18n в корпусе 1 герметично изнутри перекрыт дополнительной подвижной втулкой 19, снизу снабжённой наружной кольцевой проточкой 20, в которой установлено дополнительное разрезное пружинное кольцо 21.

Внутри дополнительная подвижная втулка 19 оснащена посадочным седлом 22 под дополнительный запорный элемент 23 (см. фиг. 4), причём дополнительная подвижная втулка 19 (см. фиг. 1) закреплена относительно корпуса 1 срезным штифтом 24.

В рабочем положении дополнительная подвижная втулка 19 имеет возможность осевого ограниченного перемещения вниз относительно корпуса 1 с открытием ряда 17 каналов 18'…..18n и фиксацией дополнительной подвижной втулки 19 относительно корпуса 1 с помощью дополнительного разрезного пружинного кольца 21 во внутренней кольцевой проточке 25, выполненной в корпусе 1 ниже ряда 2 отверстий 3' и 3".

Диаметр посадочного седла 13 подвижной втулки 10 меньше диаметра посадочного седла 22 дополнительной подвижной втулки 19.

Например, диаметр посадочного седла 13 подвижной втулки 10: dn1 = 32 мм, а диаметр посадочного седла 22 подвижной втулки 19: dn2 = 45 мм.

Диаметры запорных элементов 14 и 23 меньше диаметров посадочных седел 13 и 22 подвижной втулки 10 и 19, соответственно на 3-4 мм. Примем, диаметр запорного элемента 14 посадочного седла 13 подвижной втулки 10 равным 28 мм, а диаметр дополнительного запорного элемента 23 посадочного седла 22 дополнительной подвижной втулки 19 равным 42 мм.

Центраторы 7' и 7" (см. фиг. 1 и 2) с соответствующими переточными каналами 8' и 8" выполнены сменными с наружным диаметром - Dн на 10 мм меньшим внутреннего диаметра Dв - перфорируемой колонны труб 26, при этом центраторы 7' и 7" установлены на верхнем и нижнем концах корпуса 1 с помощью резьбового соединения 27' и 27" и зафиксированы относительно корпуса 1 соответствующими винтами 28' и 28".

Уплотнительные элементы 29 обеспечивают необходимую герметичность при работе ГП и предотвращают несанкционированные перетоки жидкости.

ГП для поинтервальной перфорации и ГРП работает следующим образом.

Перед работой ГП в зависимости от внутреннего диаметра – Dв перфорируемой колонны труб изготавливают центраторы 7' и 7" (см. фиг. 1 и 2) с наружным диаметром - Dн.

Например, внутренний диаметр перфорируемой колонны труб 26 составляет Dв = 132 мм. Тогда (см. фиг. 1 и 2) наружный диаметр центраторов 7' и 7" составляет:

Dн = Dв – 10 мм = 132 мм - 10 мм = 122 мм

Изготавливают центраторы 7' и 7" с внутренней резьбой, соответствующей резьбовым соединениям 27' и 27" выполненным на верхнем и нижнем концах корпуса 1.

Наворачивают центраторы 7' и 7" на верхний и нижний концы корпуса 1 с помощью резьбового соединения 27' и 27", фиксируют центраторы 7' и 7" неподвижно относительно корпуса 1 соответствующими винтами 28' и 28".

Далее на присоединительную резьбу 5 корпуса 1 ГП наворачивают посадочный инструмент с пакер-пробкой 6. Затем посредством присоединительной резьбы 30 корпуса 1 ГП наворачивают на нижний конец колонны насосно-компрессорных труб (НКТ) 31 например, колонны НКТ диметром 73 мм.

Спускают ГП с посадочным инструментом и пакер-пробкой 6 на конце колонны НКТ 31, например, в горизонтальную скважину (на фиг. 1-3 не показано) в заданный интервал отсечения скважины. Например, перед проведением ГПП перфорируемой колонне труб 26 отсекают пакер-пробкой 6 (фиг. 1) негерметичный забой горизонтальной скважины. Для этого в колонне ГТ и ГП, а также посадочном устройстве пакер-пробки 6 с помощью насосного агрегата создают избыточное давление для посадки пакер-пробки 6. Например, под давлением 9,0 МПа сажают пакер-пробку 6 в перфорируемой колонне труб 26 горизонтальной скважины и отсекают негерметичный забой. Стравливают давление в колонне НКТ 31.

Далее размещают ГП в интервале проведения перфорации перфорируемой колонны труб 26 горизонтальной скважины. С целью повышения эффективности проведения кислотного ГРП ориентируют струйные насадки 4' и 4" ГП в направлении главного горного напряжения (на фиг. 1-4 не показано), при этом центраторы 7' и 7" (см. фиг. 1 и 2) с соответствующими переточными каналами 8' и 8" обеспечивают соосность перфоратора и перфорируемой колонны труб благодаря разнице в диаметрах равной 10 мм между внутренним диаметром – Dв перфорируемой колонны труб 26 с наружным диаметром – Dн центраторов 7' и 7", установленной опытным путём.

Кроме того, это позволяет отцентровать ГП в перфорируемой колонне труб 26 горизонтальной скважины перед проведением ГПП с последующим ГРП, что обеспечивает равные расстояния от струйных насадок 4' и 4" до внутреннего диаметра – Dв перфорируемой колонны труб 26 и позволяет выполнить симметричные перфорационные отверстия 32' и 32" (фиг. 3, 4) равных диаметров в перфорируемой колонне труб 26 горизонтальной скважины и сократить время ГПП, а переточные каналы 8' и 8" исключают запирание потока отработанной жидкости с кварцевым песком в интервале ГПП с последующим ГРП.

Сбрасывают в колонну НКТ 31 запорный элемент 14 (фиг. 3). Создают в колонне ГТ избыточное давление, например 6,0 МПа, при этом срезной элемент 15, фиксирующий подвижную втулку 10 относительно корпуса 1 ГП, разрушается. Подвижная втулка 10 смещается вниз до упора нижним торцом в стопорное кольцо 9, где фиксируется относительно корпуса 1 разрезным пружинным кольцом 12, находящимся в наружной цилиндрической выборке 11 подвижной втулки 10, при этом разрезное пружинное кольцо 12 разжимается и попадает во внутреннюю цилиндрическую канавку 16 корпуса 1. В результате изнутри открывается ряд 2 с отверстиями 3' и 3", в которых установлены струйные насадки 4' и 4".

Центраторы 7' и 7" с соответствующими переточными каналами 8' и 8" центрируют ГП в эксплуатационной колонне горизонтальной скважины перед проведения ГПП с последующим ГРП, что позволяет создать симметричные отверстия в эксплуатационной колонне горизонтальной скважины и сократить время ГПП, а переточные каналы исключают запирание потока отработанной жидкости с кварцевым песком в интервале ГПП с последующим ГРП.

Далее проводят ГПП. Для проведения ГПП с последующим кислотным ГРП в карбонатных породах пласта (на фиг. 1-4 не показано).

Для этого подбирают расход насосного агрегата (на фиг. 1-4 не показан), исходя из расхода жидкости не менее 5,0 л/с на одну струйную насадку, например, диаметром dн = 6,0 мм, определенного опытном путём.

Учитывая, что количество струйных насадок в ряду 2 (см. фиг. 1, 3, 4) равно двум (4' и 4"), то расход жидкости, создаваемый насосным агрегатом, должен быть не менее 5,0 л/с ⋅ 2 = 10 л/с.

Проводят ГПП в заданном интервале перфорируемой колонны труб 26 с образованием перфорационных отверстий 32' и 32" напротив соответствующих струйных насадок 4' и 4" ГП. Опытным путём установлено, что при применении двух струйных насадок диаметром dн = 6,0 мм, при внутреннем диаметре перфорируемой колонны труб 26 равной Dв =132 мм диаметр перфорационных отверстий 32' и 32" - dот получается равным 20 мм.

ГПП эксплуатационной колонны и последующее образование каверн производится при подаче по колонне ГТ в ГП через струйные насадки 4' и 4" смеси кварцевого песка и технологической жидкости (концентрация кварцевого песка от 50 до 100 кг/м3) с расходом жидкости не менее 10 л/с.

После окончания ГПП, не изменяя положения ГТ с ГП, по колонне ГТ в ГП через струйные насадки 4' и 4", проводят кислотный ГРП по любой известной технологии.

При кислотном ГРП закачкой кислотного состава, например 12 %-го водного раствора соляной кислоты, из каверн протравливанием карбонатной породы образуют трещины кислотного ГРП 33' и 33" напротив соответствующих струйных насадок 4' и 4" ГП, при этом продукты реакции кислотного состава с породой остаются в пласте. Поэтому необходимо извлечь продукты реакции кислотного состава с карбонатной породой из пласта.

С этой целью сбрасывают в колонну НКТ 31 запорный элемент 23 (фиг. 4). Создают в колонне ГТ избыточное давление, например 9,0 МПа, при этом срезной элемент 24, фиксирующий подвижную втулку 19 относительно корпуса 1 ГП разрушается. Подвижная втулка 19 смещается вниз до тех пор, пока не зафиксируется относительно корпуса 1 разрезным пружинным кольцом 21, находящимся в наружной цилиндрической выборке 20 подвижной втулки 19, при этом разрезное пружинное кольцо 21 разжимается и попадает во внутреннюю цилиндрическую канавку 25 корпуса 1. В результате изнутри открывается ряд 17 каналов 18'….18n.

С целью эффективной очистки трещин кислотного ГРП 33' и 33" и освоения скважины до получения нефти без запирания потока извлекаемых продуктов реакции в призабойной зоне пласта количество и диаметр радиальных каналов 18'….18n определяют заранее в зависимости от проходного диаметра – do корпуса 1, равного внутреннему диаметру колонны НКТ 31, с учетом условия:

ƩSin > Sо ,

где ƩSin - сумма площадей радиальных каналов 18'….18n, м

Sо - площадь проходного диаметра dо корпуса 1 ГП, м.

Например, как указано выше для работы с предлагаемым ГП применяют колонну НКТ 31 по ГОСТ 633-80 наружным диаметром 73 мм с толщиной стенки 7,0 мм. Тогда внутренний диаметр dо = 73 мм - 2·7,0 мм = 59 мм.

Примем, диаметр dк радиальных каналов 18'….18n равным 24,5 мм, а их количество равным 6. Тогда, подставляя в выше приведённое условие, получим:

(3,14 · (0,0245) 2/ 4) · 6 > (3,14 · (0,059) 2/ 4)

2,83·10-3 м2 > 2,73·10-3 м2

Условие выполняется. Далее в колонну НКТ 31 посредством геофизического подъёмника спускают сваб (на фиг. 1-4 не показано) и свабированием извлекают продукты реакции кислотного состава с карбонатной породой из трещин ГРП 33' и 33" (см. фиг. 4) через ряд 17 радиальных каналов 18'….18n по колонне НКТ 31 на устье и далее в желобную ёмкость (на фиг. 1-4 не показано) до получения притока нефти из горизонтальной скважины.

Процесс гидропескоструйной перфорации и кислотного гидравлического разрыва пласта с выносом продуктов реакции с карбонатной породой пласта окончен. После чего колонну НКТ 31 с ГП извлекают из горизонтальной скважины.

Далее вновь собирают ГП, как показано на фиг. 1, и все вышеописанные операции повторяют необходимое количество раз в зависимости от количества интервалов проведения ГПП с последующим кислотным ГРП в горизонтальной скважине и выносом продуктов реакции с карбонатной породой, при этом после посадки пакер-пробка 6 отсекает предыдущий интервал проведения ГПП с последующим кислотным ГРП.

В корпусе выполнен ряд 2 с двумя отверстиями, расположенными в горизонтальной плоскости под углом 180° по отношению друг к другу, что позволяет интенсифицировать приток нефти в полость скважины через отверстия, полученные в эксплуатационной колонне горизонтальной скважины в результате проведения поинтервальной ГПП с последующим ГРП.

Повышается эффективность перфорации в наклонных и горизонтальных скважинах связанная с тем, что так как обеспечивается соосность перфоратора и перфорируемой колонны труб благодаря разнице в диаметрах равной 10 мм между внутренним диаметром - Dв перфорируемой колонны труб 26 и наружным диаметром - Dн центраторов 7' и 7", что обеспечивает равные расстояния от струйных насадок 4' и 4" до внутреннего диаметра - Dв перфорируемой колонны труб 26. Это позволяет выполнить симметричные перфорационные отверстия 32' и 32" (см. фиг. 3 и 4) равными диаметрами - dоm , например равными 12 мм в перфорируемой колонне труб 26 горизонтальной скважины.

Расширяются функциональные возможности устройства, так как устройство позволяет произвести очистку от продуктов реакции кислоты с породой и освоение скважины до получения нефти сразу после проведения кислотного гидравлического разрыва пласта.

Снижаются затраты на изготовление перфоратора, так как центраторы установлены на корпусе перфоратора с помощью резьбовых соединений и зафиксированы винтами, поэтому имеется возможность установки сменных центраторов на корпус ГП в зависимости от внутреннего диаметра перфорируемой колонны труб.

Сокращается продолжительность работ по выполнению поинтервальной ГПП с последующим кислотным ГРП и по освоению скважины до получения нефти из-за совмещения устройством нескольких технологических операций: гидропескоструйной перфорации, кислотного ГРП, очистки продуктов реакции кислоты с карбонатными породами пласта и освоения скважины до получения нефти.

Гидропескоструйный перфоратор для поинтервальной перфорации и гидравлического разрыва пласта обладает высокой эффективностью перфорации в наклонных и горизонтальных скважинах, расширяет функциональные возможности устройства, снижает затраты на изготовление перфоратора, сокращает продолжительность работ по выполнению поинтервальной ГПП с последующим кислотным ГРП и освоения скважины.

Гидропескоструйный перфоратор для поинтервальной перфорации и гидравлического разрыва пласта, содержащий корпус с двумя отверстиями, расположенными в горизонтальной плоскости под углом 180° по отношению друг к другу, в отверстиях установлены струйные насадки, в корпусе размещена подвижная втулка, снабженная снизу наружной цилиндрической выборкой, в которой размещено разрезное пружинное кольцо, а внутри подвижная втулка оснащена посадочным седлом под запорный элемент, снизу корпус снабжён присоединительной резьбой для пакерного оборудования, а снаружи в верхней и нижней частях корпуса жёстко установлены центраторы с переточными каналами, при этом снизу в корпус ввёрнуто стопорное кольцо, при этом в исходном положении ряд отверстий корпуса, оснащённых струйными насадками, герметично изнутри перекрыт подвижной втулкой, закреплённой относительно корпуса срезным элементом, в рабочем положении подвижная втулка имеет возможность осевого ограниченного перемещения относительно корпуса до упора в стопорное кольцо с открытием ряда отверстий, оснащённых струйными насадками, и фиксацией подвижной втулки относительно корпуса с помощью разрезного пружинного кольца, отличающийся тем, что в корпусе выше ряда с отверстиями выполнен ряд радиальных каналов, при этом в исходном положении ряд радиальных каналов в корпусе герметично изнутри перекрыт дополнительной подвижной втулкой, снизу снабжённой наружной кольцевой проточкой, в которой установлено дополнительное разрезное пружинное кольцо, а внутри дополнительная подвижная втулка оснащена посадочным седлом под дополнительный запорный элемент, причём дополнительная подвижная втулка закреплена относительно корпуса срезным штифтом, а в рабочем положении дополнительная подвижная втулка имеет возможность осевого ограниченного перемещения вниз относительно корпуса с открытием ряда каналов, и фиксацией дополнительной подвижной втулки относительно корпуса с помощью дополнительного разрезного пружинного кольца во внутренней кольцевой проточке, выполненной в корпусе ниже ряда отверстий, при этом диаметр посадочного седла подвижной втулки меньше диаметра посадочного седла дополнительной подвижной втулки, при этом центраторы с переточными каналами выполнены сменными с наружным диаметром на 10 мм меньше внутреннего диаметра перфорируемой колонны труб, при этом центраторы установлены на верхнем и нижнем концах корпуса с помощью резьбового соединения и зафиксированы относительно корпуса винтами.
Источник поступления информации: Роспатент

Showing 31-40 of 170 items.
05.02.2020
№220.017.fea5

Термический способ очистки добывающей скважины и скважинного оборудования от плавких отложений

Изобретение относится к нефтегазодобывающей промышленности, а именно к термическим способам очистки скважины и скважинных устройств от плавких отложений. Способ включает использование для нагрева колонны труб с обратными клапанами, нагнетание теплоносителя в виде пара в скважину и вызывание...
Тип: Изобретение
Номер охранного документа: 0002713060
Дата охранного документа: 03.02.2020
06.02.2020
№220.017.ff50

Способ эксплуатации пары скважин, добывающих высоковязкую нефть

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежи высоковязкой и битумной нефти. Техническим результатом является повышение дебита добывающей скважины, обеспечение стабильности работы пары скважин с постоянным расходом закачки пара через...
Тип: Изобретение
Номер охранного документа: 0002713277
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ff5c

Способ изоляции заколонных перетоков в скважине

Изобретение относится к способу изоляции заколонных перетоков в скважине. Техническим результатом является снижение трудоемкости. Способ изоляции заколонных перетоков в скважине включает разбуривание месторождения скважинами, пересекающими пласт, состоящий из водонасыщенных и нефтенасыщенной...
Тип: Изобретение
Номер охранного документа: 0002713279
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ff85

Устройство для углубления забоя скважины

Изобретение относится к нефтедобывающей промышленности и может найти применение при углублении забоя скважины в процессе её эксплуатации с возможностью отбора керна. Устройство включает полый корпус, плунжер, размещённый внутри полого корпуса, пружину, кольцевой буртик и клапан. Плунжер сверху...
Тип: Изобретение
Номер охранного документа: 0002713284
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ff9d

Устройство для извлечения клина-отклонителя из скважины

Изобретение относится к области бурения и капитального ремонта нефтяных и газовых скважин и может быть использованопри строительстве многозабойных скважин и переводе существующих скважин в разряд многоствольных. Устройство включает ствол c ловильным крюком под ответную выборку клина-отклонителя...
Тип: Изобретение
Номер охранного документа: 0002713276
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ffa6

Способ эксплуатации добывающей скважины

Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации нефтедобывающей скважины. Технический результат – повышение эффективности способа за счет его упрощения. Способ включает спуск и герметичную посадку в эксплуатационной колонне выше продуктивного пласта...
Тип: Изобретение
Номер охранного документа: 0002713287
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ffa9

Способ измерения длины колонны труб при спускоподъёмных операциях

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения длины колонны труб оптическими методами. Технической задачей предлагаемого изобретение является создание способа измерения длины труб при спускоподъёмных операциях, упрощающего использование за...
Тип: Изобретение
Номер охранного документа: 0002713280
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ffbe

Устройство для магнитной дефектоскопии насосных штанг

Изобретение относится к нефтегазодобывающей промышленности, а именно к дефектоскопии штанг при помощи магнитных исследований во время спускоподъемных операций. Техническим результатом является создание конструкции устройства для магнитной дефектоскопии насосных штанг при их спуске или подъеме...
Тип: Изобретение
Номер охранного документа: 0002713282
Дата охранного документа: 04.02.2020
06.02.2020
№220.018.000b

Способ исследования высоты и направления трещины разрыва пласта

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения азимутального направления и высоты трещины после проведения гидравлического разрыва пласта (ГРП) в породах со слабосцементированной призабойной зоной пласта. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002713285
Дата охранного документа: 04.02.2020
06.02.2020
№220.018.0010

Башмак-клапан для установки расширяемой системы в скважине

Изобретение относится к нефтегазодобывающей промышленности, а именно к области бурения скважин, в частности к устройствам для установки расширяемых систем при изоляции зон осложнений при бурении. Устройство включает корпус с центральным проходным каналом, выполненным с внешней резьбой с...
Тип: Изобретение
Номер охранного документа: 0002713281
Дата охранного документа: 04.02.2020
Showing 31-40 of 290 items.
20.12.2013
№216.012.8d9c

Способ ремонта обсадной колонны в скважине с дефектным участком

Изобретение относится к нефтегазодобывающей промышленности, а именно к восстановлению герметичности обсадных колонн. На устье скважины производят сборку инструмента в следующей последовательности снизу вверх: универсальное вырезающее устройство, снабженное раздвижными резцами, винтовой...
Тип: Изобретение
Номер охранного документа: 0002501935
Дата охранного документа: 20.12.2013
20.01.2014
№216.012.981e

Способ изоляции зоны поглощения в скважине

Предложение относится к нефтедобывающей промышленности, в частности к способам ремонтно-изоляционных работ в скважинах в условиях больших поглощений. Техническим результатом является повышение эффективности изоляции зоны поглощения в скважине за счет более интенсивного перемешивания двух...
Тип: Изобретение
Номер охранного документа: 0002504641
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9827

Способ разработки обводненного нефтяного месторождения

Изобретение относится к нефтегазовой промышленности, а именно к способам изоляции заколонных перетоков в скважинах между нефте- и водонасыщенной зонами пласта. Спускают в скважину обсадную колонну с последующей перфорацией пласта. Исследуют интервалы нефтеводонасыщенности и интервалы их...
Тип: Изобретение
Номер охранного документа: 0002504650
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9efd

Способ изоляции поглощающих пластов

Предложение относится к ремонтно-изоляционным работам на скважинах нефтяных месторождений, в частности изоляции поглощающих пластов, способам восстановления крепи скважин. Способ изоляции поглощающих пластов включает спуск заливочных труб в интервал изоляции. Последовательно закачивают по...
Тип: Изобретение
Номер охранного документа: 0002506409
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f08

Способ обработки пласта

Изобретение относится к нефтяной промышленности и может найти применение при обработке призабойной зоны скважины. Способ обработки пласта включает спуск колонны труб с пакером в интервал перфорации пласта. Промывают скважину, оснащенную центральной и затрубной задвижками. Сажают пакер выше...
Тип: Изобретение
Номер охранного документа: 0002506420
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f09

Способ обработки призабойной зоны скважины

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности обработки призабойной зоны пласта за счет повышения проницаемости призабойной зоны пласта с одновременным упрощением технологического процесса и снижением стоимости и продолжительности обработки...
Тип: Изобретение
Номер охранного документа: 0002506421
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f0a

Способ обработки призабойной зоны скважины

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности обработки призабойной зоны пласта за счет повышения проницаемости призабойной зоны пласта с одновременным упрощением технологического процесса, снижением стоимости и продолжительности обработки...
Тип: Изобретение
Номер охранного документа: 0002506422
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a2b4

Устройство для фиксации колонны труб с забойным двигателем

Изобретение относится к нефтегазовой промышленности и может быть использовано в качестве компенсатора реактивного момента при работе забойного двигателя. Устройство для фиксации колонны труб с забойным двигателем включает спущенную через опорный фланец в обсадную колонну скважины колонну труб....
Тип: Изобретение
Номер охранного документа: 0002507367
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a2bd

Способ герметизации эксплуатационной колонны

Изобретение относится к способам герметизации эксплуатационной колонны. Перед герметизацией эксплуатационной колонны временно блокируют пласт самораспадающимся после проверки герметичности нижнего пакера гелем, затем на устье скважины снизу вверх собирают следующую компоновку: нижний пакер,...
Тип: Изобретение
Номер охранного документа: 0002507376
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ac7e

Способ герметизации эксплуатационной колонны

Изобретение относится к нефтедобывающей промышленности, в частности к способам герметизации эксплуатационной колонны. Способ герметизации эксплуатационной колонны включает спуск в эксплуатационную колонну скважины двух пакеров, соединенных между собой трубой, на посадочном инструменте, в...
Тип: Изобретение
Номер охранного документа: 0002509873
Дата охранного документа: 20.03.2014
+ добавить свой РИД