×
14.05.2023
223.018.5527

Результат интеллектуальной деятельности: Способ определения содержания сульфидов в отложениях в нефтепромысловом оборудовании

Вид РИД

Изобретение

Аннотация: Изобретение относится к разработке и эксплуатации нефтяных месторождений. Способ предусматривает антиоксидантную обработку отобранных для анализа образцов 5-8% раствором аскорбиновой кислоты, последующую обработку взвешенной пробы 20% раствором соляной кислоты в установке для определения сероводорода в атмосфере азота, который пропускают через барботер, обеспечивая его регулируемую подачу и непрерывное заполнение установки, отгонку выделившегося сероводорода HS и расчет его общего количества по результатам йодометрического титрования. Расчет процентного содержания сульфид-ионов в образце осуществляют по формуле: [S]%=[HS]⋅0,016, где [HS] - количество мг-эквивалентов сероводорода в 100 г образца отложения; 0,016 - масса одного мг-эквивалента сульфид-иона, а расчет концентрации сульфида железа по формуле: [FeS]%=[HS]⋅0,044, где 0,044 - масса 1 мг-эквивалента сульфида железа. Достигается повышение точности анализа при одновременном улучшении мер безопасности. 1 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к разработке и эксплуатации нефтяных месторождений, в частности, к способам определения содержания сульфидов, преимущественно сульфида железа, в отложениях, скапливающихся в нефтепроводах, нефтесодержащих емкостях, скважинном оборудовании. Способ может быть использован в лабораториях нефтедобывающих и нефтеперерабатывающих компаний, компаниях трубопроводного транспорта нефти и нефтепродуктов, научно-исследовательских лабораториях.

Образующиеся в нефтепромысловом оборудовании твердые отложения комплексного состава являются причиной снижения или полной потери производительности оборудования из-за перекрытия проходных сечений рабочих органов и труб, т.е. упомянутые отложения приводят к преждевременному выходу из строя дорогостоящего оборудования и дополнительным ремонтам, а в итоге - к ухудшению технико-экономических показателей нефтегазодобывающих предприятий, при этом наибольшее количество осложнений в процессе добычи нефти вызывают отложения, содержащие в своем составе сульфиды железа. Установлено, что, кроме всего прочего, наличие сульфидов, которые действуют как центры кристаллизации, вызывает дальнейший интенсивный рост солеотложений.

Сульфиды железа в виде трудно обрабатываемых отложений в основном образуются непосредственно в скважине в результате коррозии стали под действием сероводорода, присутствующего в нефти; в наземном оборудовании, помимо коррозии, они образуются за счет биоценоза -бактериального восстановления сульфатов до сероводорода. Температурный режим и высокая концентрация органического вещества в нефтепромысловых системах создают благоприятные условия для образования сульфидов, несмотря на меры, принимаемые для подавления роста сульфатредуцирующих бактерий.

Из практики борьбы с солеотложениями установлено, что стоимость работ, связанных с удалением указанных отложений, намного выше, чем расходы на предупреждение их образования.

Осадки сульфида железа являются одним из основных источников экономических потерь в нефтяной промышленности. Определение количества образующегося сульфида железа в твердых отложениях обосновано считается важным аспектом контроля состояния нефтепромыслового оборудования, поскольку позволяет своевременно принимать меры для снижения их вредного воздействия и выбирать по возможности оптимальные методы очистки. Сложность определения количественного состава упомянутых отложений и, в частности, содержания в них сульфидов, обусловлена высоким содержанием твердых и жидких органических веществ, а также присутствием карбонатов, сульфатов и других солей, в том числе, осевших из морской воды, используемой при заводнении нефтеносного пласта, оксидов, присутствием продуктов коррозии и остатков буровых растворов.

Присутствие сульфида железа в принципе не изменяет картину и характер отложения солей в скважине. Существенное отличие заключается в количественных характеристиках отложений и скоростях накопления осадков в оборудовании.

В патентной и научно-технической литературе достаточно широко представлены методики определения сульфид-ионов, в частности, сульфидов железа, в жидкой среде: в воде, водных нефтяных эмульсиях, в сырой нефти, а методики определения их количественного содержания в твердых отложениях в нефтепромысловом оборудовании практически отсутствуют.

Согласно ОСТ 39-234-89 «Вода для заводнения нефтяных пластов. Определение сероводорода», содержание сероводорода и сульфидов находят йодометрическим методом. Для этого отбирают 50-100 мл не консервированной или весь объем консервированной пробы воды, помещают в колбу с притертой пробкой, добавляют 10 мл 10% раствора ацетата кадмия или ацетата цинка и перемешивают раствор. Выпавший осадок переносят на фильтр и промывают 3-4 раза горячей дистиллированной водой. Промытый осадок вместе с фильтром помещают в ту же колбу, в которой проводили осаждение и стеклянной палочкой тщательно измельчают фильтр. В колбу добавляют 20-30 мл дистиллированной воды и 50 мл 0,1 н раствора йода. Колбу закрывают пробкой, хорошо перемешивают и оставляют в темном месте на 5 мин. Затем содержимое колбы титруют 0,1 н раствором тиосульфата натрия, добавляя в конце титрования раствор крахмала. Титрование заканчивают при полном обесцвечивании фильтра и раствора. Параллельно проводят и холостой опыт. Содержание сульфидов и сероводорода в пересчете на H2S мг/л определяют по формуле:

H2S=(V1-V2)⋅k⋅1,7⋅1000/V-V3,

где V1 и V2 - объемы 0,1 н раствора тиосульфата натрия, израсходованные на титрование в холостой и исходной пробе, мл

k - поправочный коэффициент для приведения концентрации раствора тиосульфата натрия к точно 0,1 н

1,7 - количество сероводорода, соответствующее 1 мл 0,1 н раствора тиосульфата натрия, мг

V - объем сточной воды, взятый на определение, мл

V3 - объем прибавленных консервирующих растворов, мл

(в не консервированной пробе V3=0).

Известный способ при четком выполнении условий отраслевого стандарта обеспечивает достаточно высокую точность определения содержания сульфидов в водной среде. Однако эти условия неосуществимы при определении содержания сульфидов и сульфид-ионов в отложениях из нефтепромыслового оборудования, включающих, как отмечено выше, большое количество других загрязнений.

Известен способ определения сульфидов железа в твердых отложениях (JP2005098969, опубл. 2005.04.14), согласно которому измеряют электропроводность К1 диспергатора, в котором диспергировано твердые вещество отложений, и проводимость К2 суспензии этого твердого вещества в упомянутом диспергаторе; по полученным значениям К1 и К2 вычисляют процентное содержание X (масс. %) диспергированного в суспензии твердого вещества. Затем методом хроноамперометрии (хроноамперометрия - электрохимический метод анализа, базирующийся на зависимости от времени величины тока, протекающего через электролитическую ячейку при определенном значении электродного потенциала поляризуемого электрода) определяют концентрацию ионов железа W в суспензии, при этом процентное содержание Y сульфида железа (масс. %) вычисляют, используя значение концентрации ионов железа W в суспензии, а содержание сульфида железа Z находят из соотношения процентного содержания Y (масс. %) сульфида железа и процентного содержания X (масс. %) диспергированного твердого вещества: Z=Y/X. Известный способ требует значительных расходов на оборудование, необходимое как для подготовки пробы (диспергатор), так и для выполнения анализа, включая аппаратуру для хроноамперометрии; при этом способ является многооперационным, что создает возможность суммирования ошибок и снижения точности определения содержания сульфида.

В качестве наиболее близкого к предлагаемому выбран способ определения сульфида железа в пелоиде - лечебной грязи (SU1267253, опубл. 1986.10.30), включающий обработку пробы кислотой в атмосфере СО2, отгонку выделившегося сероводорода H2S с определением его общего количества, при этом в пробе, оставшейся после его отгонки, методом трилонометрического титрования определяют количество закисного железа по разности между количеством окисного железа до и после его окисления персульфатом аммония, затем рассчитывают содержание(в %) сульфида железа [FeS], в зависимости от количественного соотношения сероводорода и закисного железа, по одной из формул:

[FeS]=[H2S]⋅0,04392 либо [FeS]=[Fe2+]⋅0,04392,

где [H2S] - содержание сероводорода, мг-экв, на 100 г лечебной грязи;

[Fe2+] - содержание закисного железа, мг-экв, на 100 г лечебной грязи.

Сульфид железа при нейтральном значении рН нерастворим в воде: железо (II) из нейтральных растворов (рН 7) выпадает в осадок и в присутствии кислорода окисляется до нерастворимого гидроксида железа (III). Для снижения значения рН и перевода FeS в раствор требуется воздействие сильной неорганической кислоты, которое сопровождается бурным выделением токсичного сероводорода. При обработке отложений из нефтепромыслового оборудования в ходе их анализа наблюдается выделение значительных количеств сероводорода, которое, вдобавок, может происходить неравномерно, бурными вспышками.

Известный способ не предусматривает возможности анализа проб того состава, который характерен для отложений в нефтепромысловом оборудовании (высокое содержание твердых и жидких органических веществ, присутствие карбонатов, сульфатов и других солей, оксидов, а также продуктов коррозии и остатков буровых растворов, причем при содержании сульфидов, в том числе сульфида железа, в несколько раз, а в ряде случаев на порядок, больше, чем в пелоиде); он не может обеспечить достаточной точности определения содержания сульфид-ионов и соответствующих мер безопасности.

Задачей изобретения является создание безопасного способа определения содержания сульфид-ионов и сульфида железа в твердых отложениях сложного состава из нефтепромыслового оборудования с точностью, необходимой для контроля состояния упомянутого оборудования, разработки и корректировки мер по его защите от упомянутых отложений.

Технический результат предлагаемого способа заключается в повышении точности определения количественного содержания сульфид-ионов и сульфида железа в образцах отложений из нефтепромыслового оборудования при одновременном улучшении мер безопасности.

Указанный результат достигают способом количественного определения содержания сульфид-ионов и сульфида железа в образцах твердых отложений, предусматривающим обработку пробы неорганической кислотой в атмосфере инертного газа в установке для определения сероводорода, отгонку выделившегося сероводорода H2S, расчет его общего количества по результатам йодометрического титрования, в котором, в отличие от известного, образцы отложений из нефтепромыслового оборудования непосредственно после их отбора для анализа подвергают антиоксидантной обработке с помощью 5-8% раствора аскорбиновой кислоты, после чего пробы обрабатывают 20% соляной кислотой, в качестве инертного газа используют азот, который непрерывно подают через барботер, обеспечивая заполнение установки на протяжении всего времени проведения анализа, при этом процентное содержание сульфид-ионов в образце рассчитывают по формуле:

[S2-]%=[H2S] 0,016, где [H2S] - количество мг-эквивалентов сероводорода в 100 г образца отложения; 0.016 - масса одного мг-эквивалента сульфид-иона,

концентрацию сульфида железа находят по формуле: [FeS]%=[H2S] • 0,044, где 0,044 - масса 1 мг-эквивалента сульфида железа.

В преимущественном варианте осуществления способа обработку отобранных образцов отложений раствором аскорбиновой кислоты ведут из расчета 1-2 мл 5-8% раствора на 5-10 г пробы.

Способ осуществляют следующим образом:

Образцы отложений тщательно перемешивают с антиоксидантным раствором, представляющим собой 5-8% раствор аскорбиновой кислоты, который берут из расчета 1-2 мл на 5-10 г образца, избегая излишнего расхода антиоксиданта.

Для осуществления предлагаемого способа используют известную стандартную установку для определения сероводорода (см. чертеж), которая содержит реакционную колбу 1, насадку 2 с обратным холодильником 3 и капельной воронкой 4, мерный цилиндр 5, поглотительную склянку 6, барботер 7.

Капельная воронка 4 служит для ввода в реакционную колбу 1 кислоты, а также инертного газа, в качестве которого используют азот, подаваемый через барботер 7. Обеспечение непрерывной регулируемой продувки инертного газа через всю систему установки является важным условием как для отгонки сероводорода, выделяющегося в результате кислотной обработки пробы, так и для вытеснения из установки воздуха во избежание окисления кислородом воздуха сульфид-ионов и внесения возможной ошибки в результаты определения.

Выход обратного холодильника 3 соединен гибким шлангом с алонжем, вставленным в мерный цилиндр 5, при этом трубка алонжа опущена до самого дна упомянутого цилиндра. Как показано на чертеже (фиг.), выходная трубка мерного цилиндра 5 соединена с поглотительной склянкой 6.

В реакционную колбу 1 помещают отмеренное количество дистиллированной воды, используемой в качестве растворителя, в мерный цилиндр 5 - отмеренный объем раствора йода, а в поглотительную склянку 6 вводят тоже отмеренный объем раствора тиосульфата натрия.

После предварительной продувки установки азотом в течение 15-20 минут в реакционную колбу 1 вносят навеску пробы из подготовленного к анализу образца и продолжают продувку еще не менее 20 минут. После этого добавляют 20% раствор соляной кислоты и продувают еще 15-20 мин. Затем, не прекращая продувку, включают нагрев и кипятят реакционную смесь в течение 50-60 минут для полного завершения реакции и отгонки всего выделившегося сероводорода, после чего нагрев прекращают и оставляют смесь для охлаждения до комнатной температуры.

Находящийся в мерном цилиндре 5 раствор йода поглощает выделяющийся сероводород, а раствор тиосульфата в поглотительной склянке 6 служит для улавливания паров йода.

Содержимое цилиндра 5 и поглотительной склянки 6, которое представляет собой оставшийся не прореагировавшим йод, количественно перемещают в сосуд для титрования и титруют раствором тиосульфата натрия до исчезновения окраски индикатора, в качестве которого используют 0,5% раствор крахмала.

В результате титрования получают данные для определения количества мг-эквивалентов сульфид-иона в анализируемом образце отложения.

Содержание сероводорода (количество мг-эквивалентов) в 100 г образца [H2S] рассчитывают аналогично известному способу по формуле:

где V1 и N1 - объем (мл) и нормальность раствора йода, залитого в цилиндр;

V2 и N2 - объем (мл) и нормальность раствора тиосульфата натрия, израсходованного на титрование раствора йода;

V3 - объем (мл) раствора тиосульфата натрия, залитого в поглотительную склянку;

m - масса навески.

Процентное содержание сульфид-иона в образце рассчитывают по формуле:

[S2-]%=[H2S]•,016,

где [H2S] - количество мг-эквивалентов сероводорода в 100 г образца отложения; 0.016 - масса одного мг-эквивалента сульфид-иона.

Искомая концентрация сульфида железа может быть рассчитана по известной формуле:

[FeS] %=[H2S]•0,044,

где 0,044 - масса 1 мг-эквивалента сульфида железа.

Примеры конкретного осуществления способа

Были проанализированы пробы образцов отложений, отобранных в нефтепромысловом оборудовании (электродегидраторе) платформ ПА-Б (пример 1) и ПА-А (пример 2) Пильтун-Астохского нефтяного месторождения (о. Сахалин) в 2019 году.

Отобранные образцы отложений были непосредственно после отбора подвергнуты предварительной антиоксидантной обработке путем тщательного перемешивания с раствором аскорбиновой кислоты, взятым из расчета 1 мл 8% раствора на 5 г пробы, что обеспечило защиту от нежелательного окисления компонентов пробы при ее подготовке на воздухе (усреднение, взвешивание), дополнительную защиту в ходе анализа и дало существенный вклад в повышение точности определения содержания сульфид-ионов и, в конечном счете, сульфида железа.

Используемая установка для определения сероводорода была дополнительно снабжена барботером, через который осуществлялась непрерывная регулируемая подача азота в установку, что сводило к минимуму возможность неучтенного окисления пробы и устраняло опасность выбросов сероводорода в окружающую среду.

Пример 1

В мерный цилиндр 5 внесли 20 мл 0,1Н раствора йода, в поглотительную склянку 6 залили 5 мл 0,099 Н раствора тиосульфата натрия, титр которого устанавливали по раствору бихромата калия. В реакционную колбу 1 внесли 10 мл дистиллированной воды. Систему продували азотом в течение 15 мин. Затем в реакционную колбу поместили навеску образца массой 2, 87 г. После следующих 15 минут продувки через капельную воронку добавили 10 мл 20% раствора соляной кислоты и продолжали продувать азот еще 20 мин, после чего реакционную смесь нагрели до кипения и кипятили с обратным холодильником в течение 60 мин; затем, не прекращая подачи азота, оставили охлаждаться до комнатной температуры.

Выделяющийся сероводород улавливали раствором йода, а пары йода -раствором тиосульфата натрия в поглотительной склянке 6. По окончании реакции растворы йода и тиосульфата количественно перенесли дистиллированной водой в колбу для титрования, оттитровали избыток йода 0,099 Н раствором тиосульфата натрия в присутствии 1 мл 0,5% раствора крахмала. Объем тиосульфата, израсходованного на титрование, составил 10,2 мл.

Расчет по приведенным выше формулам дал следующие результаты:

[S2-]=16,74•0,016=0,27%

[FeS]=16,74•0,044=0,74%

Пример 2

Антиоксидантную обработку образца, подготовку установки и разложение кислотой навески массой 2,93 г образца отложений осуществляли по примеру 1, при этом реакционную смесь, содержащую пробу отложения и соляную кислоту, кипятили в течение 50 минут.

Объем тиосульфата, израсходованного на титрование, составил 3,6 мл.

Расчет, проведенный по примеру 1, дал следующие результаты:

[S2-]=38,88•0,016=0,62%

[FeS]=38,88•0,044=1,71%

Источник поступления информации: Роспатент

Showing 31-40 of 125 items.
10.02.2016
№216.014.c540

Способ получения нанодисперсных танталатов редкоземельных элементов

Изобретение относится к синтезу гептатанталатов европия EuTaO или тербия TbTaO, которые могут быть использованы в качестве рентгеноконтрастных веществ, люминофоров, покрытий рентгеновских экранов, оптоматериалов, материалов для электроники. Для получения нанодисперсных танталатов редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002574773
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.e8a3

Способ получения композиционного магнитного материала на основе оксидов кремния и железа

Изобретение относится к получению магнитного материала, содержащего диоксид кремния и оксид железа, и может быть использовано в производстве магнитных сорбентов. Способ получения композиционного магнитного материала в виде частиц с магнитным железосодержащим ядром и сорбционно-активной...
Тип: Изобретение
Номер охранного документа: 0002575458
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2e3e

Способ изготовления композиционных силовых панелей

Способ предназначен для изготовления композиционных силовых панелей. Способ включает формирование системы ребер силового набора каркаса намоткой гибкого волокнистого материала, пропитанного связующим, на матрицу, размещенную на оправке, последующее формирование обшивочного слоя панели намоткой...
Тип: Изобретение
Номер охранного документа: 0002579779
Дата охранного документа: 10.04.2016
27.08.2016
№216.015.5077

Способ получения волластонита

Изобретение относится к технологии переработки кальций- и кремнийсодержащих техногенных отходов борного производства (борогипса) и может быть использовано при производстве игольчатого волластонита для применения в цветной металлургии, в шинной, асбоцементной и лакокрасочной промышленности, в...
Тип: Изобретение
Номер охранного документа: 0002595682
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.5104

Способ получения пористой биоактивной керамики на основе оксида циркония

Изобретение относится к медицине, в частности к травматологии, ортопедии, регенеративной медицине, стоматологии и челюстно-лицевой хирургии, и может быть использовано для восстановления структуры и функции костной ткани. Диоксид циркония смешивают с химически стойким стеклом марки ХС-2 №29 и...
Тип: Изобретение
Номер охранного документа: 0002595703
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.6eb1

Способ получения катодного материала для химических источников тока

Изобретение может быть использовано в промышленном синтезе катодных материалов для литиевых химических источников тока высокой энергоемкости. Древесину измельчают до размера частиц менее 2 мм и сушат в потоке сухого азота при 120-130°С. Затем реактор с измельченной и высушенной древесиной...
Тип: Изобретение
Номер охранного документа: 0002597607
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.71ac

Аддукты додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами магния или алюминия и способ их получения

Изобретение относится к химии соединений додекагидро-клозо-додекаборатного , хитозана, солей магния и алюминия, а именно к аддуктам додекагидро-клозо-додекабората хитозана с нитратами или перхлоратами магния или алюминия и способу их получения. Синтезированные новые продукты могут найти...
Тип: Изобретение
Номер охранного документа: 0002596741
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7cdd

Способ получения микропористого слоя на поверхности изделий из титана или его сплава

Изобретение относится к получению пористых структур на поверхности изделий из титана или его сплава и может быть использовано при изготовлении эндопротезов и зубных имплантатов на титановой основе, для подготовки поверхности титановых имплантатов под нанесение биосовместимых покрытий, а также...
Тип: Изобретение
Номер охранного документа: 0002600294
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8128

Способ очистки зольного графита

Изобретение может быть использовано при изготовлении конструкционных материалов для атомной энергетики, теплотехники, а также как исходное сырье для получения коллоидного графита, окиси графита и расширенного графита. Способ очистки зольного графита включает обработку графита водным раствором...
Тип: Изобретение
Номер охранного документа: 0002602124
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8279

Способ комплексной переработки борогипса

Изобретение относится к технологии переработки кальцийсодержащих техногенных отходов борного производства. Способ включает обработку отходов борного производства раствором гидроксида щелочного металла с образования гидросиликата кальция. Обработку осуществляют при соотношении твердой и жидкой...
Тип: Изобретение
Номер охранного документа: 0002601608
Дата охранного документа: 10.11.2016
Showing 1-9 of 9 items.
20.02.2014
№216.012.a25e

Способ обработки смеси оксидов ниобия и/или тантала и титана

Изобретение относится к области гидрометаллургии редких металлов. Способ обработки смеси оксидов ниобия и/или тантала и титана для отделения ниобия и/или тантала от титана включает растворение смеси при нагревании в растворе фтористоводородной кислоты с получением фторидного раствора. В...
Тип: Изобретение
Номер охранного документа: 0002507281
Дата охранного документа: 20.02.2014
10.04.2014
№216.012.b873

Способ тройной остеотомии таза

Изобретение относится к области медицины, а именно к травматологии и ортопедии, и может быть использовано при лечении деформации тазобедренного сустава. Осуществляют передний доступ к крылу подвздошной кости. На мышечной ножке из портняжной мышцы выкраивают костный трансплантат треугольной...
Тип: Изобретение
Номер охранного документа: 0002512946
Дата охранного документа: 10.04.2014
10.05.2018
№218.016.448b

Способ определения содержания воды в нефтесодержащих эмульсиях и отложениях

Изобретение относится к способам определения содержания (концентрации) воды в нефтесодержащих эмульсиях и отложениях, в отработанных нефтепродуктах и других нефтесодержащих отходах (нефтешламах), а также в почвах и грунтах с мест розлива нефтепродуктов или территорий с высоким уровнем...
Тип: Изобретение
Номер охранного документа: 0002650079
Дата охранного документа: 06.04.2018
19.06.2019
№219.017.870f

Способ получения фторированного углеродного материала и устройство для его осуществления

Изобретение может быть использовано при изготовлении катодных материалов для литиевых химических источников тока, компонентов смазывающих веществ и наполнителей полимерных материалов. Устройство для получения фторированного углеродного материала включает реактор 1, нагреватель 9, смеситель 4...
Тип: Изобретение
Номер охранного документа: 0002350554
Дата охранного документа: 27.03.2009
20.06.2019
№219.017.8d55

Способ определения содержания парафина в нефти, нефтепродуктах и нефтесодержащих отложениях

Изобретение относится к способу определения парафина в нефтесодержащих отложениях, включающий осаждение асфальтенов растворителем, отстаивание реакционной смеси в темном месте и ее последующую фильтрацию, удаление растворителя из полученного фильтрата и адсорбцию смолистых веществ оксидом...
Тип: Изобретение
Номер охранного документа: 0002691958
Дата охранного документа: 19.06.2019
26.07.2020
№220.018.3869

Способ исследования состава отложений, образующихся в оборудовании нефтедобывающей скважины

Изобретение относится к нефтяной промышленности, а именно к анализу химического и минерального состава отложений, образующихся в процессе добычи нефти в нефтепромысловом оборудовании. Способ исследования состава отложений, образующихся в оборудовании нефтедобывающей скважины, включает отбор...
Тип: Изобретение
Номер охранного документа: 0002727781
Дата охранного документа: 23.07.2020
16.06.2023
№223.018.7cbe

Способ обнаружения притока закачиваемой воды в нефтедобывающей скважине

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для обнаружения поступления в нефтедобывающую скважину закачиваемой с целью заводнения воды и определения ее относительного содержания в попутно добываемых водах и продукции упомянутой скважины. Предлагаемый...
Тип: Изобретение
Номер охранного документа: 0002743836
Дата охранного документа: 26.02.2021
16.06.2023
№223.018.7cc3

Способ определения состава отложений, образующихся в оборудовании для подготовки нефти

Изобретение относится к нефтедобывающей промышленности, в частности к исследованию химического и минерального состава отложений, образующихся в оборудовании для подготовки добытой нефти к переработке. Способ включает отбор образца, разделение его на пробы А, Б, В, Г, при этом непосредственно...
Тип: Изобретение
Номер охранного документа: 0002743783
Дата охранного документа: 25.02.2021
17.06.2023
№223.018.7dcf

Способ мониторинга полимеров в попутно добываемой воде нефтедобывающих скважин

Изобретение относится к нефтяной промышленности, в частности к исследованию попутно добываемой воды в процессе подготовки нефти, а именно к выделению, идентификации и количественному определению высокомолекулярных соединений, и может найти применение при проведении штатных и внеплановых работ...
Тип: Изобретение
Номер охранного документа: 0002784290
Дата охранного документа: 23.11.2022
+ добавить свой РИД