×
14.05.2023
223.018.54dc

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ ЛИСТОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ ДЛЯ ИЗГОТОВЛЕНИЯ ОТВЕТСТВЕННЫХ МЕТАЛЛОКОНСТРУКЦИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии и может быть использовано для изготовления толстых листов для металлоконструкций ответственного назначения, применяемых в судостроении, топливно-энергетическом комплексе, тяжелом машиностроении, в том числе для конструкций, работающих при высоких (до 250°C) температурах. Способ производства горячекатаных листов из низколегированной стали для изготовления ответственных металлоконструкций, включающий аустенизацию непрерывнолитых заготовок, черновую прокатку, чистовую прокатку и охлаждение листов. Заготовки получают из стали, содержащей, мас.%: C 0,07-0,12, Si 0,16-0,35, Mn 1,25-1,75, Al 0,02-0,05, Ti 0,010-0,035, Mo 0,15-0,30, S не более 0,006, P не более 0,012, N не более 0,009, Cr+Ni+Cu 0,35-0,7, V+Nb 0,05-0,16, Fe и неизбежные примеси. Коэффициент трещиностойкости при сварке Pcm составляет 0,23% или менее, при этом аустенизацию непрерывнолитых заготовок проводят в диапазоне температур 1180-1250°С, черновую прокатку начинают при температуре не ниже 950°С и осуществляют с относительным обжатием за проход не менее 10% до толщины, составляющей 2-3,5 толщины готового листа, чистовую прокатку начинают при температуре 750-800°С и заканчивают при температуре 750-820°С с получением листов толщиной от 16 до 70 мм, затем проводят охлаждение листов толщиной от 16 до 40 мм или ускоренное охлаждение листов толщиной от более 40 до 70 мм с последующей термической обработкой. Получают листы толщиной от 16 до 70 мм для изготовления металлоконструкций с гарантированной хладостойкостью при пониженных температурах до минус 60°C и высокими прочностными свойствами, сохраняющимися при повышенных температурах эксплуатации, вплоть до плюс 250°C. 4 з.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к металлургии и может быть использовано для изготовления толстых листов для металлоконструкций ответственного назначения, применяемых в судостроении, топливно-энергетическом комплексе, тяжелом машиностроении в том числе для конструкций, работающих при высоких (до 250°C) температурах.

Известен способ производства листов из хладостойкой стали, включающий получение заготовки, ее нагрев до температуры выше Ас3, предварительную деформацию в контролируемом режиме, окончательную деформацию с регламентированной температурой конца деформации и охлаждение, при этом предварительную деформацию заготовки ведут при температуре 1000-850°C с суммарным обжатием 65-75%, а окончательную деформацию - при температуре 750-700°C до требуемой толщины листа с обжатием за проход не менее 12% при суммарном обжатии не менее 60%, при этом охлаждение листа проводят со скоростью более 35°C/мин до температуры 150±10°C, а затем на воздухе и осуществляют отпуск листа при 650±20°C с выдержкой 1,0-1,5 мин на мм толщины листа с последующим охлаждением на воздухе. Заготовку получают из стали, содержащей 0,07-0,09% С, 1,30-1,60% Mn, 0,50-0,70% Si, 0,05-0,20% Cr, 0,05-0,10% Ni, 0,02-0,04% V, 0,02-0,04% А1, 0,02-0,04% Nb, 0,05-0,15% Cu, 0,002-0,004% Са, 0,002-0,005% S, 0,005-0,010% Р, 0,006-0,008% N, Fe - остальное, при этом Pcm≤0,21 (патент РФ 2337976, МПК C21D 8/02, С22С 38/24, 10.11.2008 г.).

Листы, изготовленные по данной технологии гарантированно обеспечивают повышенное сопротивление хрупкому разрушению в диапазоне температур от плюс 120°C до минус 60°C. При температурах выше плюс 120°C прочностные характеристики не регламентированы.

Наиболее близким по своей технической сущности и достигаемым результатам является способ производства листа толщиной 8-100 мм из нормализованной стали, включающий выплавку стали, изготовление заготовки, ее нагрев до температуры 1230-1250°C, черновую прокатку с температурой окончания 1050-1100°C, чистовую прокатку с температурой 900-910°C, водяное охлаждение и термообработку. При этом сталь содержит 0,17-0,19% С, 0,25-0,45% Si, 1,40-1,55% Mn, Р≤0,015%, S≤0,002%, 0,02-0,04% Nb, 0,02-0,05% Al, Fe и неизбежные примеси - остальное (Патент CN 107326162, МПК C21D 8/02, C21D 1/28, С22С 38/04, С22С 38/02, С22С 38/12, С22С 38/06, 07.11.1981 г.).

Листвой прокат, произведенный по данной технологии, обладает недостаточной хладостойкостью за счет невысокой вязкости металла при температуре минус 60°C.

Технический результат - получение листового проката толщиной от 16 до 70 мм для изготовления металлоконструкций, с гарантированной хладостойкостью при пониженных температурах до минус 60°C, что обеспечивается высокой вязкостью металла, и высокими прочностными свойствами, сохраняющимися при повышенных температурах эксплуатации, вплоть до плюс 250°C.

Технический результат достигается тем, что в способе производства горячекатаных листов из низколегированной стали для изготовления ответственных металлоконструкций, включающем аустенизацию непрерывнолитых заготовок, черновую прокатку, чистовую прокатку, охлаждение листов или охлаждение с последующей термической обработкой, согласно предложению, заготовки получают из стали со следующим соотношением элементов: 0,07-0,12% С, 0,16-0,35% Si, 1,25-1,75% Mn, 0,02-0,05% Al, 0,010-0,035% Ti, 0,15-0,30% Mo, S≤0,006%, P≤0,012%, N≤0,009%, (Cr+Ni+Cu)=0,35-0,70%, (V+Nb)=0,05-0,016%, Fe и неизбежные примеси - остальное, при этом Pcm≤0,23%, при этом металлографическая структура проката включает 80% отпущенного бейнита и 20% феррита, аустенизацию непрерывнолитых заготовок производят до температуры 1180-1225°C, черновую прокатку начинают при температуре не ниже 950°C и осуществляют ее на толщину, составляющую не менее 2-3,5 толщин готового листа с относительными обжатиями за проход не менее 10%, за исключением проходов «добивки» толщины, чистовую прокатку начинают при температуре 750-800°C и завершают при температуре 750-820°C.

Технический результат также достигается тем, что после чистовой прокатки листы толщиной до 40 мм охлаждают на спокойном воздухе, при этом металлографическая структура листов толщиной до 40 мм включает 30% феррита, 50% перлита и 20% бейнита.

Технический результат также достигается тем, что после чистовой прокатки листы толщиной более 40 мм подвергают ускоренному охлаждению в установке контролируемого охлаждения до температуры 20-80°C, далее листы подвергают нормализации с выдержкой при температуре 800-820°C и последующему отпуску при температуре 600-630°C. Металлографическая структуралистов толщиной более 40 мм включает 80% отпущенного бейнита и 20% феррита.

Сущность изобретения состоит в следующем.

Содержание углерода в пределах 0,07-0,12% в сочетании с целевой микроструктурой проката обеспечивает необходимый уровень прочностных свойств при высоких температурах, с одновременным обеспечением высокой вязкости и хладостойкости до минус 60°C. Содержание углерода менее 0,07% не позволяет достичь требуемого уровня прочности, а при содержании более 0,12% ухудшает пластические и вязкостные свойства стали.

Кремний раскисляет и упрочняет сталь, повышает ее упругие свойства. При содержании кремния менее 0,16% прочность стали недостаточна. Увеличение содержания кремния более 0,35% приводит к возрастанию количества силикатных неметаллических включений, что негативно отражается на механических свойствах стали.

Легирование стали марганцем в диапазоне 1,25-1,75% позволяет обеспечить низкий уровень сегрегационной неоднородности и является достаточным для твердорастворного упрочнения для получения требуемого уровня прочностных свойств, в том числе после повторного нагрева. При содержании марганца менее 1,25% снижается прочность и вязкость стали при отрицательных температурах. Содержание марганца более 1,75% чрезмерно упрочняет сталь, ухудшает ее пластичность.

Содержание алюминия задано в ограниченном диапазоне для минимизации риска образования большого числа силикатных алюминатных включений. Алюминий раскисляет сталь и измельчает зерно. Он связывает азот в нитриды, уменьшая его вредное влияние на вязкостные свойства. При содержании алюминия менее 0,02% его влияние мало, вязкостные свойства стали ухудшаются. Увеличение содержания алюминия более 0,05% приводит к графитизации углерода и снижению прочностных характеристик. При этом снижаются характеристики жаропрочности и ударной вязкости стали за счет дополнительного выделения на границе зерен нитридов алюминия.

Титан упрочняет сталь, при содержании титана менее 0,010% не достигается требуемый уровень прочности, а при его содержании свыше 0,035% происходит чрезмерное упрочнение стали, что ухудшает ее пластичность. Кроме того, титан введен в сталь для стабилизации структуры при нагреве металла под прокатку и уменьшении размера зерна при черновой прокатке.

Введение хрома, никеля и меди в указанных пределах необходимо для связывания углерода в карбиды, уменьшая склонность стали к хрупкому разрушению, за счет снижения блокировки дислокаций. Совместное легирование молибденом и никелем эффективно влияет на хладноломкость и уменьшает отпускную хрупкость. Эмпирически установлено, что для обеспечения требуемого уровня и прочностных характеристик стали суммарное содержание хрома, никеля и меди должно составлять 0,35-0,70%.

При содержании молибдена более 0,45% снижается пластичность. Молибден повышает устойчивость аустенита, расширяя область промежуточного превращения, способствует формированию структуры бейнита. При содержании молибдена менее 0,15% сталь не обладает достаточной прокаливаемостью, имеет не достаточную твердость. Увеличение содержания молибдена более 0,30% снижает пластичность стали и ее стойкость к ударным нагрузкам.

Совместное микролегирование стали Nb и V эффективно тормозит рекристаллизацию и рост зерна при нагреве, что в свою очередь позволяет сохранять требуемый уровень прочностных свойств при высоких температурах, измельчает зерно и дает дополнительное упрочнение вследствие дисперсионного твердения при охлаждении после деформации. При суммарном содержании ванадия и ниобия менее 0,04% их влияние недостаточно велико, свойства стали ниже допустимого уровня. Увеличение суммарного содержания ванадия и ниобия более 0,15% стимулирует развитие ликвационной неоднородности с образованием крупных конгламератов комплексных частиц, снижающих хладостойкость стали и вызывающих дисперсионное твердение горячекатаных листов.

Для повышения чистоты стали по вредным примесям содержание серы и фосфора также строго регламентировано. Сталь предложенного состава содержит в виде примесей не более 0,006% серы и не более 0,012% фосфора. При заявленных предельных концентрациях эти элементы не оказывают заметного негативного воздействия на механические свойства горячекатаных листов, тогда как их удаление из расплава существенно повышает затраты на производство и усложняет технологический процесс. При повышении содержания легкоплавких примесей серы и фосфора выше заявленных пределов резко увеличивается неоднородность структуры стали, что в свою очередь, снижает ее жаропрочность.

Азот является карбонитридообразующим элементом, упрочняющим сталь. Увеличение содержания азота более 0,009% приводит к снижению вязкостных в и пластических свойств стали, что недопустимо. Заявленное содержание азота для стали предложенного химического состава обеспечивает в структуре стали отсутствие 8-феррита, наличие которого снижает жаропрочность.

Для предложенного химического состава ограничение величины коэффициента трещиностойкости при сварке Pcm не более 0,23% исключает образование холодных трещин и повышает свариваемость готовых листов.

Нагрев непрерывнолитых заготовок перед прокаткой в диапазоне температур 1180-1250°C позволяет получить гомогенизированную аустенитную структуру исходной заготовки, растворить элементы преципитаты, повысить пластичность и деформируемость стали.

В ходе черновой прокатки гомогенизируется литая структура исходной непрерывнолитой заготовки за счет динамической рекристаллизации и последующей статической рекристаллизации при выдержке промежуточной заготовки (подката) на толщине подстуживания.

Температура деформации на черновой стадии прокатки принята не менее 950°C, исходя из необходимости измельчения зерна аустенита за счет многократной рекристаллизации. Для обеспечения удовлетворительной проработки структуры листов по толщине с учетом высокой температуры конца прокатки необходимо обеспечить толщину промежуточного подстуживания не менее 2-3,5 толщин готового листа, с относительными обжатиями за проход не менее 10% за исключением проходов «добивки» ширины. Это позволяет разрушить литую структуру заготовки и измельчить зерно аустенита. Применение единичных обжатиях за проход менее 10% отрицательно сказывается на проработке литой структуры по толщине, что приведет к неоднородной зеренной структуре и плохой проработке центральных слоев раската

В ходе чистовой прокатки с началом в диапазоне температур 750-800°C достигается измельчение зерна, в том числе за счет торможения рекристаллизации за счет выделения преципитатов по границам зерен и дополнительного упрочнения за счет дисперсионных частиц. Начало чистовой прокатки при температуре ниже 750°C приводит к образованию большого количества феррита в структуре, что приводит к снижению прочности, а начало чистовой прокатки при температурах выше 800°C приводит к укрупнению зерна, что отрицательно сказывается на ударной вязкости проката. Выделение дисперсионных частиц способствует повышению теплостойкости стали и обеспечению требуемых прочностных свойств при повышенных температурах до плюс 250°C.

Охлаждение прокатов на воздухе осуществляется от температур в диапазоне 750-820°C. В случае замедленного охлаждения повышение температуры начала охлаждения (температуры конца прокатки) приводит к росту зерна в процессе охлаждения, что отрицательно сказывается на ударной вязкости. Снижение температуры начала охлаждения проката в случае охлаждения в УКО приводит к образованию промежуточных структур, которые отрицательно сказываются на прочностных характеристиках и приводят к снижению ударной вязкости проката.

Листы толщиной менее 40 мм охлаждаются на спокойном воздухе с целью получения феррито-перлитной структуры с небольшой долей бейнита.

Ускоренное охлаждение листов толщиной более 40 мм после прокатки в установке контролируемого охлаждения до температуры 20-80°C позволяет зафиксировать полученное мелкое зерно и получить мелкодисперсную бейнитную структуру для листов.

Нормализация проката с выдержкой при температуре 800-820°C после прокатки позволяет повысить однородность структуры, уменьшить долю неравновесной игольчатой структуры бейнита, снижающей вязкость и хладостойкость. Последующий отпуск при температуре 600-630°C обеспечивает получение целевой микроструктуры проката состоящей на 80% из отпущенного бейнита и на 20% из феррита, что обеспечивает необходимый уровень прочностных характеристик, высокую пластичность, вязкость и хладостойкость стали. Выделение ванадий содержащих частиц при термообработке и процессе замедленного охлаждения способствует обеспечению требуемой теплостойкости при температуре плюс 250°.

Применение способа поясняется примерами его реализации при производстве на реверсивном стане 5000 ПАО «Северсталь» листового проката из стали марки 09Г2МФБ.

Пример 1. Производство листового проката размером 40×2940×7790 мм (до резки в меру).

В конвертерном цехе производили изготовление непрерывнолитых заготовок сечением 315×1996×1504 мм из стали, содержащей С=0,09%; Si=0,34%; Mn=1,34%; Al=0,04%; Ti=0,016%; Мо=0,22%; S=0,002%; Р=0,012%; N=0,006%; Cr=0,17%; Ni=0,13%; Cu=0,06%; V=0,074%; Nb=0,053%; Fe и неизбежные примеси, - остальное. Состав полученной легирующей композиции полностью соответствовал заявленному содержанию элементов. При этом заявленные суммарные содержания элементов составляют (Cr+Ni+Cu)=0,17+0,13+0,06=0,36%, (V+Nb)=0,074+0,053=0,127%. Величина коэффициента трещиностойкости при сварке Pcm=0,20%, т.е. соответствует заявленному значению не более 0,23%.

Непрерывнолитую заготовку толщиной 315 мм нагревали в методической печи до температуры 1200°C, при этом происходила аустенизация низколегированной стали указанного состава, растворение дисперсных карбонитридных упрочняющих частиц. После выдачи заготовки из печи осуществляли ее черновую прокатку на реверсивном стане 5000 до толщины промежуточного подката 140 мм, равной 3,5 толщины готового листа. При этом величина частных относительных обжатий в черновой прокатке составляла 10% и 11,2%, а температура конца черновой прокатки составляла 968°C, т.е. также соответствовала заявленным значениям для данного параметра.

Начало чистовой прокатки осуществляли при температуре 750°C, а окончание - при 759°C до получения листового проката толщиной 40 мм. После прокатки листы передавали на термический участок для замедленного охлаждения с целью формирования целевой микроструктуры, что соответствует заявленному способу.

Пример 2. Производство листового проката размером 60×2604×7248 мм (до резки в меру).

В конвертерном цехе производили изготовление непрерывнолитых заготовок сечением 315×1996×1874 мм из стали, содержащей С=0,11%; Si=0,36%; Mn=1,67%; Al=0,03%; Ti=0,015%; Мо=0,29%; S=0,002%; Р=0,008%; N=0,005%; Cr=0,21%; Ni=0,26%; Cu=0,09%; V=0,088%; Nb=0,07%; Fe и неизбежные примеси, - остальное. Состав полученной легирующей композиции полностью соответствовал заявленному содержанию элементов. При этом заявленные суммарные содержания элементов составляют (Cr+Ni+Cu)=0,21+0,26+0,09=0,56%, (V+Nb)=0,082+0,062=0,158% Величина коэффициента трещиностойкости при сварке Pcm=0,21%, т.е. соответствует заявленному значению не более 0,23%.

Непрерывнолитую заготовку толщиной 315 мм нагревали в методической печи до температуры 1210°C, при этом происходила аустенизация низколегированной стали указанного состава, растворение дисперсных карбонитридных упрочняющих частиц. После выдачи заготовки из печи осуществляли ее черновую прокатку на реверсивном стане 5000 до толщины промежуточного подката 185 мм, равной 3,1 толщины готового листа. При этом величина частных относительных обжатий в черновой прокатке составляла 10% и 11,2%, а температура конца черновой прокатки составляла 974°C, т.е. также соответствовала заявленным значениям для данного параметра.

Начало чистовой прокатки осуществляли при температуре 761°C, а окончание - при 814°C до получения листового проката толщиной 60 мм. После прокатки листы подвергали ускоренному охлаждению в установке ускоренного охлаждения до температуры окончания бейнитного превращения 25°C, что соответствует регламентированным значениям. Дальнейшая термическая обработка листов по режиму: нормализация при температуре 820°C с последующим отпуском при температуре 605°C обеспечивает получение заданной микроструктуры стали, которая позволяет получить требуемый комплекс механических свойств.

В таблице представлены показатели механических и эксплуатационных свойств, а также параметры микроструктуры горячекатаных листов, произведенных по приведенным выше технологиям.

Механические свойства готового проката определяли на поперечных образцах. Температурно-деформационный режим прокатки и последующая термическая обработка обеспечили получение структуры состоящей из отпущенного бейнита с небольшой долей феррита, которая обеспечивает высокий уровень прочностных, пластических характеристик и хорошую вязкость стали. Испытания на статическое растяжение осуществляли на плоских пятикратных образцах по ГОСТ 1497, растяжение при температуре +250°C на образцах Тип 1 по ГОСТ 9651, растяжение в направлении толщины проката с определением относительного сужения по ГОСТ 28870, на ударный изгиб на образцах с V-образным надрезом по ГОСТ 9454 при температурах -40°C и -60°C, излом полнотолщинного образца по ГОСТ 5521.

Технико-экономические преимущества рассматриваемого изобретения состоят в том, что предложенные температурно-деформационные режимы производства позволяют в наибольшей степени использовать все механизмы упрочнения низколегированной стали данного химического состава: измельчение зерен микроструктуры, дислокационное упрочнение, дисперсионное твердение, анизотропия структуры и свойств. Использование предложенного способа для производства листового проката на реверсивном стане позволит высокие прочностные характеристики проката, при сохранении высокой пластичности и ударной вязкости по всей толщине проката.

Источник поступления информации: Роспатент

Showing 91-100 of 129 items.
02.05.2019
№219.017.484f

Конструкционная криогенная сталь и способ ее получения

Изобретение относится к области металлургии, а именно к особохладостойким конструкционным сталям, используемым для изготовления оборудования, предназначенного для хранения и транспортировки сжиженного природного газа. Сталь содержит, мас.%: углерод 0,03-0,10, кремний 0,10-0,45, марганец...
Тип: Изобретение
Номер охранного документа: 0002686758
Дата охранного документа: 30.04.2019
02.05.2019
№219.017.4886

Способ установки теплоизолирующей вставки в дутьевой канал воздушной фурмы доменной печи

Изобретение относится к области металлургии и может быть использовано при установке теплоизолирующей керамической вставки в дутьевой канал воздушной фурмы доменной печи. В способе осуществляют нанесение компенсационного теплоизоляционного материала, обладающего клеящими и гидроизоляционными...
Тип: Изобретение
Номер охранного документа: 0002686750
Дата охранного документа: 30.04.2019
14.05.2019
№219.017.519b

Стальной прокат повышенной коррозионной стойкости и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к производству стального проката повышенной коррозионной стойкости, применяемого для водопроводных систем. Прокат выполнен из стали, содержащей компоненты в следующем соотношении, мас.%: углерод 0,04-0,12, кремний не более 0,03, марганец...
Тип: Изобретение
Номер охранного документа: 0002687360
Дата охранного документа: 13.05.2019
29.05.2019
№219.017.6244

Способ производства горячекатаного проката повышенной прочности

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения рулонного проката для изготовления насосно-компрессорных труб. Для повышения прочностных свойств и коррозионной стойкости проката осуществляют выплавку стали, содержащей,...
Тип: Изобретение
Номер охранного документа: 0002689348
Дата охранного документа: 27.05.2019
30.05.2019
№219.017.6b97

Способ производства тонких холоднокатаных полос для нанесения полимерного покрытия

Изобретение относится к области черной металлургии, в частности к производству холоднокатаных полос толщиной 0,35-0,70 мм для последующего нанесения полимерного покрытия. Для увеличения выхода годного проката с полимерным покрытием за счет снижения отсортировки по дефектам поверхности...
Тип: Изобретение
Номер охранного документа: 0002689491
Дата охранного документа: 28.05.2019
20.06.2019
№219.017.8cff

Способ производства толстолистового высокопрочного износостойкого проката (варианты)

Изобретение относится к области металлургии, конкретно к производству проката толщиной до 50 мм. Для повышения прочностных свойств, ударной вязкости и твердости при сохранении достаточной пластичности предложено пять вариантов осуществления способа, при этом каждый из вариантов способа включает...
Тип: Изобретение
Номер охранного документа: 0002691809
Дата охранного документа: 18.06.2019
09.08.2019
№219.017.bd2b

Холоднокатаный прокат

Изобретение относится к области производства холоднокатаного проката для изготовления бочек. Прокат имеет плоскую поверхность с механическими и жировыми загрязнениями. Улучшение адгезии лакокрасочного покрытия без проведения промежуточных операций очистки, грунтования и зачистки наружной...
Тип: Изобретение
Номер охранного документа: 0002696515
Дата охранного документа: 02.08.2019
12.08.2019
№219.017.be4e

Способ проведения испытаний проката для нефтепромысловых труб на коррозионно-абразивный износ

Изобретение относится к области испытаний и может быть использовано для проведения испытаний эксплуатационных свойств проката, используемого для нефтепромысловых труб. Способ проведения испытаний проката для нефтепромысловых труб на коррозионно-абразивный износ, включающий взвешивание...
Тип: Изобретение
Номер охранного документа: 0002697030
Дата охранного документа: 08.08.2019
16.08.2019
№219.017.c080

Способ производства трубного проката повышенной коррозионной стойкости на реверсивном стане

Изобретение относится к области металлургии. Для повышения коррозионной стойкости трубного проката при сохранении высокой прочности, пластичности и ударной вязкости получают непрерывно-литую заготовку из стали, содержащей, мас.%: С 0,04-0,08, Si 0,15-0,35, Mn 0,7-1,0, Ni 0,2-0,5, Cu 0,4-0,6, Nb...
Тип: Изобретение
Номер охранного документа: 0002697301
Дата охранного документа: 13.08.2019
07.09.2019
№219.017.c851

Способ производства холоднокатаного проката

Изобретение относится к области металлургии. Для обеспечения требуемого комплекса механических свойств, стабильных и однородных по длине полосы, осуществляют выплавку стали, разливку, горячую прокатку, травление, холодную прокатку, отжиг, холодную прокатку, отжиг и дрессировку, при этом первую...
Тип: Изобретение
Номер охранного документа: 0002699480
Дата охранного документа: 05.09.2019
Showing 91-97 of 97 items.
06.08.2020
№220.018.3d20

Рулонный прокат для обсадных и насосно-компрессорных труб и способ его производства

Изобретение относится к металлургии, а именно к производству рулонного проката толщиной 4-20 мм для изготовления высокопрочных насосно-компрессорных и обсадных труб, преимущественно малого диаметра, эксплуатируемых в агрессивных средах, содержащих сероводород и углекислый газ. Прокат выполнен...
Тип: Изобретение
Номер охранного документа: 0002728981
Дата охранного документа: 03.08.2020
12.04.2023
№223.018.44f9

Способ производства холоднокатаной полосы

Изобретение относится к области металлургии, а именно к технологии производства холоднокатаной полосы, используемой для изготовления изделий с высокими требованиями к жаропрочности. Выплавляют сталь следующего химического состава, мас.%: углерод 0,05-0,12, кремний 0,12-0,42, марганец 0,70-1,50,...
Тип: Изобретение
Номер охранного документа: 0002762448
Дата охранного документа: 21.12.2021
21.04.2023
№223.018.4fa4

Способ производства прямошовных труб большого диаметра из низколегированной стали

Изобретение относится к области производства стальных труб большого диаметра для магистральных трубопроводов. Способ производства прямошовных труб большого диаметра из низколегированной стали включает фрезеровку продольных кромок, их подгибку, формовку штрипсового проката в трубную заготовку,...
Тип: Изобретение
Номер охранного документа: 0002792989
Дата охранного документа: 28.03.2023
15.05.2023
№223.018.5afe

Способ производства толстых листов из низколегированных малоуглеродистых сталей на реверсивном стане

Изобретение относится к производству толстых листов из низколегированных малоуглеродистых сталей на реверсивном стане. Осуществляют прокатку промежуточных заготовок из непрерывнолитой заготовки, их резку в меру и обработку лицевой поверхности, сборку нарезанных промежуточных заготовок в...
Тип: Изобретение
Номер охранного документа: 0002765972
Дата охранного документа: 07.02.2022
15.05.2023
№223.018.5aff

Способ производства толстых листов из низколегированных малоуглеродистых сталей на реверсивном стане

Изобретение относится к производству толстых листов из низколегированных малоуглеродистых сталей на реверсивном стане. Осуществляют прокатку промежуточных заготовок из непрерывнолитой заготовки, их резку в меру и обработку лицевой поверхности, сборку нарезанных промежуточных заготовок в...
Тип: Изобретение
Номер охранного документа: 0002765972
Дата охранного документа: 07.02.2022
21.05.2023
№223.018.6a25

Способ производства высокопрочного оцинкованного проката

Изобретение относится к области металлургии, а именно к получению высокопрочного горячекатаного оцинкованного проката для изготовления металлоконструкций. Способ включает выплавку стали, разливку стали с получением заготовки, ее аустенитизацию, горячую прокатку, охлаждение, смотку проката в...
Тип: Изобретение
Номер охранного документа: 0002795601
Дата охранного документа: 05.05.2023
21.05.2023
№223.018.6a26

Способ производства высокопрочного оцинкованного проката

Изобретение относится к области металлургии, а именно к получению высокопрочного горячекатаного оцинкованного проката для изготовления металлоконструкций. Способ включает выплавку стали, разливку стали с получением заготовки, ее аустенитизацию, горячую прокатку, охлаждение, смотку проката в...
Тип: Изобретение
Номер охранного документа: 0002795601
Дата охранного документа: 05.05.2023
+ добавить свой РИД