×
24.04.2023
223.018.5246

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СВЯЗУЮЩЕГО ПЕКА

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к способу получения нефтекаменноугольного связующего пека с пониженным содержанием бенз[а]пирена для получения анодной массы алюминиевых электролизеров, нефтекаменноугольному связующему пеку, анодной массе и продукту металлургической или электродной промышленности. Данный способ включает смешение каменноугольного пека и нефтяного пека в соотношении 1:99-80:20 масс.%. Температура размягчения исходных пеков составляет 90-140°С методом Меттлера. При смешении контролируют заданную действительную плотность нефтекаменноугольного связующего пека посредством отбора проб упомянутого пека с периодичностью раз в 10-60 минут. Для производства продукта металлургической или электродной промышленности используется нефтекаменноугольный связующий пек с пониженным содержанием бенз[а]пирена. Технический результат - получение связующего пека с пониженным содержанием бенз[а]пирена как более дешевого и доступного сырья при сохранении прочих качественных показателей на уровне, позволяющем использовать нефтекаменноугольный связующий пек для изготовления анодной массы, угольных и графитированных электродов, конструкционных углеродных материалов (продуктов металлургической или электродной промышленности), снижение энергозатрат и повышение производительности процесса, расширение сырьевого рынка при производстве связующего пека. 4 н. и 3 з.п. ф-лы, 4 табл., 14 пр.

Область техники

Изобретение относится к области металлургии, в частности к способам получения и подготовки электродного пека, предназначенного для производства анодной массы, и может найти применение в коксохимической, нефтеперерабатывающей, электродной промышленности.

Уровень техники

Основным видом связующего для производства анодной массы является каменноугольный пек - неперегоняемый остаток дистилляции каменноугольной смолы.

Каменноугольный пек является побочным продуктом процесса получения металлургического кокса из углей, масштабы его производства снижаются при росте потребности в связующем пеке со стороны электродной промышленности и производства алюминия электролитическим способом, в частности. При оценке качества каменноугольного пека применяется ряд показателей, характеризующих его пригодность выполнять роль связующего при смешении зеленой углеродной массы и при обжиге углеродного изделия. К таким показателям относятся температура размягчения пека, вязкость, коксовый остаток при 550°С, вещества, нерастворимые в толуоле и хинолине. В свете растущих экологических ограничений на выбросы от производственных мощностей, которые производят и используют анодные материалы, особенно в алюминиевой промышленности, большое значение приобретает задача по замещению каменноугольного пека другими видами связующего с более низким содержанием канцерогенноопасного вещества – бенз[а]пирена.

В качестве альтернативы каменноугольному пеку рассматривались нефтяные пеки, которые получают переработкой различных нефтяных остатков. Нефтяные пеки могут в ограниченном объеме использоваться при производстве электродной продукции, в основном в виде пропиточных и низкотемпературных пеков. Известен способ получения нефтяного пека вакуумной дистилляцией смолы термического крекинга нефтепродуктов (патент RU2288251, опубл.27.11.2006). Получаемый пек имеет температуру размягчения 133оС, вязкость 11818 мПа∙с при 180оС, коксовый остаток 53,7%. Высокая вязкость и температура размягчения не позволяют применять нефтяной пек в качестве связующего для производства анодной массы и анодов алюминиевых электролизеров.

Известны способы получения нефтяных пеков различными методами термической обработки тяжелой смолы пиролиза или ее фракций (патенты RU2645524, опубл. 21.02.2018; RU2659262, опубл. 29.06.2017; RU2663148, опубл. 01.08.2018; RU2647735, опубл. 19.03.2018; RU94028240, опубл. 10.08.1996). Получаемые пеки, в зависимости от применяемой технологии, имеют широкий диапазон температур размягчения от 70 до 155оС при отсутствии в составе пека α1-фракции (веществ нерастворимых в хинолине) и низком содержании α-фракции (веществ нерастворимых в толуоле) 10-18%. Низкое содержание α-фракции и отсутствие α1-фракции, не позволяют применять нефтяной пек в качестве связующего для производства анодной массы и анодов алюминиевых электролизеров.

Имеются данные, свидетельствующие, что нефтяной пек можно применять в качестве связующего электродного пека, предварительно смешав его в определенной пропорции с каменноугольным пеком.

Наиболее близким к предлагаемому изобретению по технической сущности является способ получения нефтекаменноугольного пека с температурой размягчения в интервале 107-114°C и пониженным содержанием полиароматических углеводородов (ПАУ), патент US5746906A, опубл. 05.05.1998. Способ включает смешение каменноугольного пека с повышенной температурой размягчения от 130 до 170 °С и нефтяного пека с пониженной температурой размягчения в соотношении 60:40. Получаемый гибридный связующий пек имеет температуру размягчения 110-112 оС, содержание α1-фракции 10-12 % масс., что делает его пригодным для изготовления анодной массы алюминиевых электролизеров Содерберга и для предварительно обожженных анодов. Способ позволяет получить связующий пек с фактическим содержанием бенз[а]пирена 0,6 % масс. (6000 ppm).

Описанный способ получения нефтекаменноугольного пека можно реализовать при коммерческой доступности каменноугольного пека с повышенной температурой размягчения от 130 до 170 °С, который не всегда есть на рынке либо его стоимость слишком велика.

Раскрытие изобретения

Задачей предлагаемого изобретения является получение связующего пека с пониженным содержанием бенз[а]пирена, как более дешевого и доступного сырья при сохранении прочих качественных показателей на уровне, позволяющем использовать нефтекаменноугольный связующий пек для изготовления анодной массы, угольных и графитированных электродов, конструкционных углеродных материалов (продуктов металлургической или электродной промышленности), снижение энергозатрат и повышение производительности процесса расширение сырьевого рынка при производстве связующего пека.

Поставленная задача достигается тем, что в способе получения нефтекаменноугольного связующего пека для получения анодной массы алюминиевых электролизеров, включающем смешение каменноугольного пека и нефтяного пека в заданном соотношении, согласно заявляемому изобретению соотношение каменноугольного пека и нефтяного пека при смешении составляет 1:99-80:20 масс. %, а температура размягчения исходных пеков составляет 90-140°С методом Меттлера, при этом при смешении контролируют заданную действительную плотность нефтекаменноугольного связующего пека посредством отбора проб упомянутого пека с периодичностью раз в 10-60 минут.

Достижению поставленной задачи способствует то, что действительную плотность связующего пека определяют методом гелиевой пикнометрии.

Достижению поставленной задачи способствует то, что смешение проводят при температуре выше температуры плавления каменноугольного и нефтяного пеков.

Согласно заявляемому изобретению при смешении с нефтяным пеком с температурой размягчения 90-140°С по Меттлеру используется каменноугольный пек с температурой размягчения 90-140 °С по Меттлеру, его доля в смеси составляет от 1 до 80 % масс., контроль качества смешения ведут по показателю действительная плотность. Контроль заданной действительной плотности связующего пека посредством отбора проб связующего пека с заданной периодичностью в процессе смешения позволяет оптимизировать энергетические затраты, связанные с длительным нагревом и перемешиванием нефтяного и каменноугольного пека, и повысить производительность процесса.

В прототипе используется каменноугольный пек особого качества с повышенной температурой размягчения от 130 до 170 °С, его доля в смеси составляет 60 % масс., контроль качества смешения не осуществляется.

Таким образом, заявляемый способ получения связующего пека соответствует критерию «новизна».

Особенностью заявляемого способа является использование каменноугольного и нефтяного пеков с близкими температурами размягчения, что позволяет использовать промышленно выпускаемые и коммерчески доступные каменноугольный и нефтяной пеки электродного качества. Способ может быть реализован в смесильном отделении анодного производства. Способ включает предварительный отбор проб исходных каменноугольного и нефтяного пеков, определение действительной плотности пеков, смешение в лабораторных условиях в определенной пропорции, при этом доля каменноугольного пека составляет от 1 до 80 % масс., отбор пробы готового связующего пека и определение его действительной плотности. Далее при получении крупной промышленной партии связующего пека выполняют загрузку, одновременную или последовательную, в общую обогреваемую емкость двух типов пеков – каменноугольного и нефтяного, при этом доля каменноугольного пека составляет от 1 до 80 % масс. После расплавления в обогреваемой емкости каменноугольного и нефтяного пеков проводят перемешивание любым способом или устройством, при перемешивании из нижней части емкости отбирают пробы связующего пека и контролируют его действительную плотность. При получении результата, совпадающего с лабораторными данными при той же доле каменноугольного пека, перемешивание прекращают, а полученный связующий пек направляют на производство анодной массы. Контроль заданной действительной плотности связующего пека посредством отбора проб связующего пека с заданной периодичностью позволяет избежать излишних энергозатрат и приводит к общему повышению производительности процесса, т.к. позволяет оперативно управлять процессом и прекращать перемешивание при достижении заданной действительной плотности.

Предложенное изобретение относится к применению вышеуказанного способа для получения анодной массы, угольных и графитированных электродов, конструкционных углеродных материалов (продуктов коксохимической или нефтеперерабатывающей промышленности) с пониженным содержанием бенз[а]пирена. Изобретение может быть реализовано на коксохимических, нефтеперерабатывающих или нефтехимических предприятиях. Получаемый по заявляемому изобретению нефтекаменноугольный связующий пек может быть использован для производства углеродных изделий и материалов на предприятиях металлургической и электродной промышленности.

Использование каменноугольного и нефтяного пеков с температурой размягчения менее 90 °С по Меттлеру приведет к получению связующего пека с низким значением коксового остатка, что не обеспечит требуемого качества анодной массы и анодов. Использование каменноугольного и нефтяного пеков с температурой размягчения более 140 °С по Меттлеру приведет к получению связующего пека с излишне высокой температурой размягчения и вязкостью, это не позволит провести качественное смешение пека с наполнителем при получении зеленой анодной массы, качество анодной массы будет неудовлетворительным.

Использование в смеси более 80 масс. % каменноугольного пека приведет к получению связующего пека с высоким содержанием бенз[а]пирена, это не даст существенного снижения вредных выбросов при использовании такого пека.

Осуществление изобретения

Изобретение иллюстрируется следующими примерами.

Пример 1. Каменноугольный и нефтяной пек с качеством как указано в таблице 1, в соотношении 50:50 по массе поместили в обогреваемый сосуд емкостью 2 дм3. Емкость нагрели до температуры 210 °С до полного расплавления пеков, расплавленные пеки перемешали рамочной мешалкой в течение 2 минут для получения однородного связующего пека. На готовом связующем пеке определили качественные показатели, которые представлены в таблице 1.

Пример 2. Каменноугольный и нефтяной пек с качеством как по примеру 1, в соотношении 60:40 по массе поместили в обогреваемый сосуд емкостью 2 дм3. Емкость нагрели до температуры 210 °С до полного расплавления пеков, расплавленные пеки перемешали рамочной мешалкой в течение 2 минут для получения однородного связующего пека. На готовом связующем пеке определили качественные показатели, которые представлены в таблице 1.

Пример 3. В промышленный обогреваемый бак емкостью 5 м3 по пекопроводу подали 1,5 т расплавленного каменноугольного пека, с качеством как по примеру 1. В этот же бак подали гранулированный нефтяной пек, с качеством как по примеру 1, в количестве 1,5 т, доля нефтяного пека в баке составила 50 % по массе. После плавления нефтяного пека включили перемешивающее устройство. Перемешивание вели при температуре 210°С. Из нижней части бака через сливной кран каждые 20 мин отбирали пробы связующего пека для контроля качества смешения по параметру действительная плотность. Действительную плотность определяли методом гелиевой пикнометрии на измельченном связующем пеке фракции -3 мм, погрешность метода ± 0,011 см3/г. При достижении действительной плотности 1,253 ± 0,011 см3/г, как в примере 1, перемешивание прекратили, готовый связующий пек направили на производство анодной массы.

Пример 4. В промышленный обогреваемый бак емкостью 5 м3 по пекопроводу подали 1,5 т расплавленного каменноугольного пека, с качеством как по примеру 1. В этот же бак подали гранулированный нефтяной пек, с качеством как по примеру 1, в количестве 1 т, доля нефтяного пека в баке составила 40 % по массе. После плавления нефтяного пека включили перемешивающее устройство. Перемешивание вели при температуре 210°С. Из нижней части бака через сливной кран каждые 20 мин отбирали пробы связующего пека для контроля качества смешения по параметру действительная плотность. При достижении действительной плотности 1,268 ± 0,011 см3/г, как в примере 2, перемешивание прекратили, готовый связующий пек направили на производство анодной массы.

Таблица 1

Нефтяной пек по примерам
1-5
Каменно-угольный пек по примерам 1-9 Пример 1
50:50
Пример 2
60:40
Пример 3
50:50
Пример 4
60:40
Пример 5
50:50
Температура размягчения по Меттлеру, оС 118 111 118 117 118 117 118
Вязкость при 200 оС, сПз 265 143 324 264 324 264 324
Коксовый остаток, масс. % 36 59 48 49 48 49 48
Вещества, нерастворимые в толуоле (α-фракция), масс.% 1 36 21 24 21 24 21
Вещества, нерастворимые в хинолине (α1-фракция), масс.% 0 12 7 8 7 8 7
Действительная плотность, г/см3 1,169 1,328 1,253 1,268 1,253 1,268 1,253
Массовая доля серы, масс.% 0,12 0,44 0,27 0,29 0,27 0,29 0,27
Содержание бенз[а]пирена, масс% 0,03 1,11 0,48 0,59 0,48 0,59 0,48

Пример 5. В промышленный обогреваемый бак емкостью 50 м3 по пекопроводу подали 25 т расплавленного каменноугольного пека, с качеством как по примеру 1. В этот же бак подали расплавленный нефтяной пек, с качеством как по примеру 1, в количестве 25 т, доля нефтяного пека в баке составила 50 % по массе. Перемешивание пеков вели с помощью насоса-циркулятора, заборный патрубок которого находился в нижней части бака, выход нагнетательного патрубка насоса находился в верхней части бака. Перемешивание вели при температуре 200°С. Один раз в час отбирали по две пробы связующего пека для контроля качества смешения по параметру действительная плотность, первую пробу отбирали из бака в области заборного патрубка, вторую пробу из верхней части бака. При достижении действительной плотности первой и второй пробы 1,253 ± 0,011 см3/г, как в примере 1, перемешивание прекратили, готовый связующий пек направили на производство анодной массы.

Пример 6. Каменноугольный пек с качеством как по примеру 1 и нефтяной пек, имеющий температуру размягчения 94 °С по Меттлеру и коксовый остаток 40 масс.%, в соотношении 80:20 по массе поместили в обогреваемый сосуд емкостью 2 дм3. Емкость нагрели до температуры 192 °С до полного расплавления пеков, расплавленные пеки перемешали рамочной мешалкой в течение 2 минут для получения однородного связующего пека. На готовом связующем пеке определили качественные показатели, которые представлены в таблице 2.

Пример 7. Каменноугольный пек с качеством как по примеру 1 и нефтяной пек, имеющий температуру размягчения 136°С по Меттлеру, в соотношении 5:95 по массе поместили в обогреваемый сосуд емкостью 2 дм3. Смешение провели как по примеру 6. На готовом связующем пеке определили показатели, которые представлены в таблице 2.

Пример 8. Каменноугольный пек с качеством как по примеру 1 и нефтяной пек, как по примеру 7, в соотношении 60:40 по массе поместили в обогреваемый сосуд емкостью 2 дм3. Емкость нагрели до температуры 200 °С до полного расплавления пеков, расплавленные пеки перемешали рамочной мешалкой в течение 2 минут для получения однородного связующего пека. На готовом связующем пеке определили показатели, которые представлены в таблице 2.

Пример 9. Каменноугольный с качеством как по примеру 1 и нефтяной пек, имеющий температуру размягчения 136°С по Меттлеру, в соотношении 30:70 по массе поместили в обогреваемый сосуд емкостью 2 дм3. Смешение провели как по примеру 8. На готовом связующем пеке определили показатели, которые представлены в таблице 2.

Пример 10. Каменноугольный пек с качеством как по примеру 1 и нефтяной пек, имеющий температуру размягчения 94°С по Меттлеру, в соотношении 85:15 по массе поместили в обогреваемый сосуд емкостью 2 дм3. Смешение провели как по примеру 6. На готовом связующем пеке определили показатели, которые представлены в таблице 2.

Пример 11. Связующий пек, полученный по примеру 3, смешали с прокаленным нефтяным коксом в соотношении 40% масс. пека, 60 % масс. кокса. Смешение проводили при температуре 195°С. Полученную расплавленную анодную массу набили в металлические формы и обожгли в шахтной печи при температуре 960°С в течение трех часов, скорость подъема температуры до 960°С составила 15°С. Охлажденную анодную массу после обжига высверлили полым сверлом внутренним диаметром 50 мм и определили показатели качества, указанные в таблице 3.

Таблица 2

Нефтяной пек по примерам 
6, 10
Пример 6 80:20 Нефтяной пек по примерам
7-9
Пример 7
5:95
Пример 8
60:40
Пример 9
30:70
Пример 10
85:15
Температура размягчения по Меттлеру, оС 94 107 136 129 122 124 108
Вязкость при 185 оС, сПз 208 236 544 372 275 320 420
Коксовый остаток, масс.% 40 55 50 51 56 53 56
Вещества, нерастворимые в толуоле (α-фракция), масс. % 10 30 25 26 32 28 32
Вещества, нерастворимые в хинолине (α1-фракция) 0 9 3 4 8 6 10
Содержание бенз[а]пирена, масс.% < 0,008 0,85 0,14 0,2 0,7 0,37 1,0

Пример 12. Связующий пек, полученный по примеру 8, смешали с прокаленным нефтяным коксом в соотношении 14,5 % масс. пека, 85,5 % масс. кокса. Смешение проводили при температуре 178оС. Прессование «зеленого» анода провели при температуре 160оС в течение 36 секунд. «Зеленый» анод обожгли в шахтной печи при температуре 1100оС. Из обожженного анода высверлили полым сверлом внутренним диаметром 50 мм керны и определили показатели качества полученного продукта, указанные в таблице 4.

Пример 13. Каменноугольный пек с качеством как по примеру 1 и нефтяной пек, имеющий температуру размягчения 144°С по Меттлеру, в соотношении 60:40 по массе поместили в обогреваемый сосуд емкостью 2 дм3. Емкость нагрели до температуры 210 °С до полного расплавления пеков, расплавленные пеки перемешали рамочной мешалкой в течение 2 минут для получения однородного связующего пека. Полученный связующий пек использовали для приготовления обожженного образца анодной массы, как по примеру 11, показатели качества представлены в таблице 3.

Пример 14. Каменноугольный пек с качеством как по примеру 1 и нефтяной пек, имеющий температуру размягчения 87°С по Меттлеру, в соотношении 50:50 по массе поместили в обогреваемый сосуд емкостью 2 дм3. Емкость нагрели до температуры 192 °С до полного расплавления пеков, расплавленные пеки перемешали рамочной мешалкой в течение 2 минут для получения однородного связующего пека. Полученный связующий пек использовали для приготовления обожженного образца анодной массы, как по примеру 11, показатели качества представлены в таблице 3.

Таблица 3

Показатель качества анодной массы Пример 11 Пример 13 Пример 14
удельное электросопротивление, мкОм∙м 103 190 207
предел прочности на сжатие, кг/см2 240 160 142
общая пористость, % 38 41 42
реакционная способность в СО2, мг/см2∙ч 14 26 28
осыпаемость в СО2, мг/см2∙ч 0,4 2,4 2,5
реакционная способность в воздухе, мг/см2∙ч 125 151 157

Таблица 4

Показатель качества обожженного анода Пример 12
удельное электросопротивление, мкОм∙м 57
предел прочности на сжатие, кг/см2 388
кажущаяся плотность, г/см2 1,57
газопроницаемость, нПм 1,9
Остаток образца от карбоксильной реакции (CRR), % масс. 89
Пыль от карбоксильной реакции (CRR), % масс. 1,9

Результаты примеров 1-9 свидетельствуют об удовлетворительном качестве связующего пека, получаемого смешением нефтяного и каменноугольного пеков с температурами размягчения от 90 до 140°С по Меттлеру, связующий пек имеет показатели качества, удовлетворяющие требованиям к пеку для анодной массы. При этом, содержание бенз[а]пирена в связующем пеке в 1,3-5,5 раза меньше, чем в исходном каменноугольном пеке, использовавшемся для смешения.

Результаты примеров 3-5 свидетельствуют об эффективности контроля качества смешения по показателю действительная плотность связующего пека. Периодичность отбора проб для контроля действительной плотности зависит об массы перемешиваемого пека. Так, при массе 2,5 т связующего пека перемешивание происходит интенсивно и отбор проб проводится один раз в 20 минут. При массе 50 т перемешивание происходит менее интенсивно, поэтому пробы для контроля действительной плотности достаточно отбирать каждый час, причем из разных частей емкости для контроля гомогенности смеси. Метод гелиевой пикнометрии является удобным экспрессным методом, общие затраты времени на анализ составляют 20 минут.

Результаты примеров 6-9 свидетельствуют, что можно использовать от 1 до 80% масс. каменноугольного пека при смешении с нефтяным пеком, а температура размягчения пеков может варьироваться от 90 до 140°С по Меттлеру.

Результат примера 10 свидетельствует:

- использование в смеси более 80 % масс.каменноугольного пека приводит к получению связующего пека с высоким содержанием бенз[а]пирена, что не соответствует задаче данного изобретения.

Результат примера 11 свидетельствует о пригодности анодной массы, полученной на основе связующего пека по данному способу, для применения в самообжигающемся аноде алюминиевого электролизера.

Результат примера 12 свидетельствует о пригодности полученного по предлагаемому способу связующего пека для изготовления продуктов таких как предварительно обожженные аноды, которые можно изготавливать в электродной и использовать металлургической промышленности.

Результаты примеров 13-14 свидетельствуют:

- использование каменноугольного и нефтяного пеков с температурой размягчения менее 90 °С или более 140°С по Меттлеру для получения связующего пека приводит к получению анодной массы с высоким удельным электросопротивлением, низким пределом прочности на сжатие, высокой пористостью, высокой реакционной способность в токе СО2 и воздухе, высокой осыпаемостью.

Источник поступления информации: Роспатент

Showing 31-40 of 230 items.
27.12.2014
№216.013.1449

Катодный кожух алюминиевого электролизера

Изобретение относится к конструкции катодного кожуха электролизера для получения алюминия электролитическим способом. Катодный кожух содержит продольные и торцевые стенки с вертикальными ребрами жесткости, днище, шпангоуты, которые охватывают стенки и днище, и фланцевый лист. Фланцевый лист...
Тип: Изобретение
Номер охранного документа: 0002536617
Дата охранного документа: 27.12.2014
10.02.2015
№216.013.225b

Способ автоматического контроля криолитового отношения

Изобретение относится к цветной металлургии, в частности к электролитическому производству алюминия, а именно к области управления электролизом алюминия. Способ автоматического контроля криолитового отношения электролита алюминиевого электролизера, включающий измерение силы тока, напряжения на...
Тип: Изобретение
Номер охранного документа: 0002540248
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2653

Зонт открытой рудовосстановительной электропечи

Изобретение относится к области металлургии, в частности к элементам конструкции газоотводящего оборудования открытой рудовосстановительной печи для производства, преимущественно, кристаллического кремния и ферросилиция. Зонт состоит из крышки, стен корпуса меньшего диаметра и подвижного...
Тип: Изобретение
Номер охранного документа: 0002541264
Дата охранного документа: 10.02.2015
20.03.2015
№216.013.3238

Алюминиевый сплав

Изобретение относится к металлургии алюминиевых сплавов и может быть использовано преимущественно для изготовления катанки электротехнического назначения, а также деформированных полуфабрикатов, используемых в строительстве, машиностроении и других областях народного хозяйства. Сплав содержит...
Тип: Изобретение
Номер охранного документа: 0002544331
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3265

Способ создания противофильтрационного экрана гидротехнического сооружения для хранения промышленных отходов

Изобретение относится к способам предотвращения загрязнения грунтов и подземных вод компонентами промышленных отходов, в частности к созданию противофильтрационных экранов полигонов захоронения и складирования отходов, шламовых полей. При создании противофильтрационного экрана гидротехнического...
Тип: Изобретение
Номер охранного документа: 0002544376
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.326b

Изолирующий материал для шламохранилищ промышленных отходов

Предложенное изобретение относится к строительным материалам и утилизации отходов электротермического производства. Изолирующий материал для шламохранилищ промышленных отходов включает глиносодержащий материал и материал в виде техногенного отхода, в качестве глиносодержащего материала он...
Тип: Изобретение
Номер охранного документа: 0002544382
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.33c2

Способ кислотной переработки красных шламов

Изобретение относится к способу кислотной переработки красных шламов, получаемых в процессе производства глинозема, и может применяться в технологиях утилизации отходов шламовых полей глиноземных заводов. Способ включает выщелачивание с использованием в качестве выщелачивающего реагента...
Тип: Изобретение
Номер охранного документа: 0002544725
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.33c4

Футеровка алюминиевого электролизера с инертными анодами

Изобретение относится к футеровке алюминиевого электролизера. Футеровка включает подину и токоотводящие элементы из алюминия, выполненные жидкими в верхней части в контакте с расплавом алюминия и твердыми - в нижней части и установленные проходящими вертикально через подину. Подина выполнена из...
Тип: Изобретение
Номер охранного документа: 0002544727
Дата охранного документа: 20.03.2015
20.04.2015
№216.013.41d6

Ошиновка алюминиевых электролизеров продольного расположения

Изобретение относится к ошиновке последовательно соединенных электролизеров получения алюминия с продольным расположением в корпусе. Ошиновка содержит анодные шины, стояки и катодные стержни, разделенные на группы, каждая из которых соединена с отдельной катодной шиной. Катодные шины групп...
Тип: Изобретение
Номер охранного документа: 0002548352
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.41d8

Устройство для дозированной подачи сырья в алюминиевый электролизер

Изобретение относится к устройствам для подачи сырья, в частности глинозема, фторида алюминия, дробленого электролита, в алюминиевый электролизер. Устройство содержит бункер дозируемого материала, дозировочную камеру с установленным штоком и пневмоцилиндром. На штоке жестко закреплен в верхней...
Тип: Изобретение
Номер охранного документа: 0002548354
Дата охранного документа: 20.04.2015
Showing 31-40 of 77 items.
25.08.2017
№217.015.9dcd

Устройство для сбора и удаления газов из алюминиевых электролизеров содерберга

Изобретение относится к устройству для сбора и удаления отходящих газов алюминиевых электролизеров Содерберга. Устройство содержит газосборный колокол, на продольных сторонах и в угловой части которого установлены патрубки, соединенные трубопроводами между собой и через коллектор с корпусной...
Тип: Изобретение
Номер охранного документа: 0002610651
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.a07a

Способ футеровки катодного устройства электролизера

Изобретение относится к способу футеровки катодного устройства электролизера для производства первичного алюминия электролизом. Способ включает загрузку теплоизоляционного слоя, состоящего из неграфитированного углерода, в кожух катодного устройства, формирование огнеупорного слоя засыпкой...
Тип: Изобретение
Номер охранного документа: 0002606374
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b3c9

Способ токоподвода к алюминиевому электролизеру с самообжигающимся анодом и верхним токоподводом

Изобретение относится к способу оптимизации токоподвода к аноду электролизера при электролитическом получении алюминия в электролизерах с самообжигающимся анодом и верхним токоподводом. Способ включает удаление в ходе технологического сопровождения на электролизере токоподводящих штырей...
Тип: Изобретение
Номер охранного документа: 0002613839
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b5a8

Способ футеровки катодного устройства электролизера для получения первичного алюминия (варианты)

Изобретение относится к вариантам способа футеровки катодного устройства электролизера для получения алюминия. Способ включает засыпку теплоизоляционного слоя в кожух катодного устройства, формирование огнеупорного слоя с последующим уплотнением слоев, установку подовых и бортовых блоков с...
Тип: Изобретение
Номер охранного документа: 0002614357
Дата охранного документа: 24.03.2017
25.08.2017
№217.015.b6a5

Способ получения угольного пека-связующего для производства анодной массы углеродных электродов

Изобретение относится к области углехимии, к технологии извлечения углеводородов из каменного угля и может быть использовано при производстве электродов для электролизного алюминиевого производства. Способ получения угольного пека-связующего для производства анодной массы углеродных электродов...
Тип: Изобретение
Номер охранного документа: 0002614445
Дата охранного документа: 28.03.2017
25.08.2017
№217.015.beca

Способ переработки фторуглеродсодержащих отходов электролитического производства алюминия

Изобретение относится к цветной металлургии, в частности к технологии электролитического производства алюминия и защите окружающей среды от воздействия вредных примесей, содержащихся в отходах, а именно к способу переработки фторуглеродсодержащих отходов электролитического производства...
Тип: Изобретение
Номер охранного документа: 0002616753
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.d03b

Способ нанесения алюминиевых покрытий на металлические изделия

Изобретение относится к технологии нанесения защитных покрытий на металлические изделия, а именно к нанесению алюминиевых покрытий на металлические изделия, и может быть использовано для защиты покрываемых изделий от коррозионного разрушения. Способ включает химическую подготовку поверхности...
Тип: Изобретение
Номер охранного документа: 0002621201
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d04d

Способ футеровки катода электролизера для получения первичного алюминия

Изобретение относится к способу футеровки катодных устройства электролизеров для получения алюминия. Способ включает засыпку и выравнивание теплоизоляционного слоя в кожух катодного устройства, засыпку, выравнивание и уплотнение огнеупорного слоя, установку подовых и бортовых блоков с...
Тип: Изобретение
Номер охранного документа: 0002621197
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d052

Способ получения сплава на основе алюминия и устройство для осуществления способа

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения сплава алюминий-скандий в условиях промышленного производства. Способ получения сплава на основе алюминия, содержащего 1-3 мас.% скандия, включает приготовление и расплавление смеси, содержащей...
Тип: Изобретение
Номер охранного документа: 0002621207
Дата охранного документа: 01.06.2017
25.08.2017
№217.015.d0d4

Способ мокрой очистки отходящих газов электролизных корпусов производства алюминия

Изобретение относится к цветной металлургии и может быть использовано для очистки отходящих газов электролизных корпусов производства алюминия от остатков фтористого водорода и соединений серы с получением в качестве товарного продукта сульфата натрия. Способ мокрой очистки отходящих газов...
Тип: Изобретение
Номер охранного документа: 0002621334
Дата охранного документа: 02.06.2017
+ добавить свой РИД