×
21.04.2023
223.018.4f51

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ ВОЗДЕЙСТВИЯ ТЕХНОЛОГИЧЕСКИХ ЖИДКОСТЕЙ НА ГОРНУЮ ПОРОДУ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтедобыче и может быть использовано при обосновании и выборе эффективных технологических жидкостей для проведения ремонтных работ на скважинах в различных геолого-физических условиях их эксплуатации. Способ оценки воздействия технологической жидкостью на горную породу включает геологическое изучениеобразцов керна размером 30х30 мм, исследование образцов на рентгеновском томографе с получением 2D-срезов и 3D-изображений, определение количества пор и их диапазон раскрытости. Далее производят обработку данных рентгеновской томографии до и после воздействия технологической жидкостью на образцы горной породы, сканирование поверхности образцов керна – места сгущения трещин, каверн и/или пор с помощью сканирующего электронного микроскопа, обработку данных электронной микроскопии путем сравнения изображений участков «опорных точек». Проводят рентгенофлуоресцентный анализ образцов керна горных пород, после в образцах керна создают остаточную водонасыщенность. Далее определяют пористость и помещают образцы керна горных пород в кернодержатель фильтрационной установки, создают боковой, торцевой обжим керна резиновой манжетой и пластовую температуру. Образец подвергают воздействию исследуемой технологической жидкостью в течение 5-15 дней при поддержании постоянного градиента давления на керне за счет энергии сжатого воздуха. Далее фильтрат технологической жидкости, проникшей в керн, вытесняют нефтью в обратном направлении, при установившемся давлении и постоянном расходе нефти через образцы керна определяют коэффициент проницаемости после воздействия технологической жидкостью и коэффициент восстановления проницаемости, определяют пористость образцов керна после воздействия технологической жидкостью. После чего обрабатывают данные рентгеновской томографии и электронной микроскопии до и после воздействия технологической жидкостью и оценивают по данным рентгенофлуоресцентного анализа изменение минерального состава горной породы после воздействия технологической жидкостью, сопоставляют полученные данные и делают вывод об эффективности или неэффективности применения технологической жидкости для конкретных геолого-физических условий. Обеспечивается эффективный подбор технологических жидкостей для определенных геолого-физических условий. 3 ил., 2 табл.

Изобретение относится к нефтедобыче и может быть использовано при обосновании и выборе эффективных технологических жидкостей для проведения ремонтных работ на скважинах в различных геолого-физических условиях их эксплуатации.

Одним из главных критериев выбора эффективной технологии вскрытия продуктивных пластов и проведения безопасных работ является обеспечение сохранности их фильтрационных свойств. Известно, что в процессе разбуривания залежей на репрессии и проведении операций по глушению скважин имеет место фильтрация используемой технологической жидкости в пласт, что может привести к кольматации пустотного пространства коллектора и, как следствие, к ухудшению его свойств. Механизм кольматации изучен в многочисленных работах российских и зарубежных ученых. В целом можно выделить два основных механизма: 1) закупорка пустотных каналов частицами твердой фазы технологической жидкости – бурового раствора. Данное явление имеет место в том случае, если размер частиц твердой фазы меньше диаметра пустотных каналов; 2) взаимодействие компонентов (как правило, фильтрата) технологической жидкости с минералами, слагающими коллектор.

В настоящее время известны следующие способы оценки влияния технологических жидкостей на образцы горной породы, раскрытые в патенте РФ № 2682098 от 14.03.2019 «Способ определения смачиваемости горных пород методом рентгеновской томографии керна»; в статье «Применение метода рентгеновской томографии для оценки влияния технологических жидкостей на горные породы в процессе бурения и освоения скважин», опубликованной в журнале «Нефтяное хозяйство», №6, 2020. С. 40–44, авторы: Гаршина О.В„ Казаков Д.А., Некрасова И.Л., Хвощин П.А., Предеин А.А., Казымов К.П., Жданов В.М., Осовецкий Б.М., Конесев Г.В.

Недостатком известных аналогов является недостаточно высокое разрешение при использовании методов рентгеновской томографии, которые позволяют различать в образцах (трещины, поры) только пустоты размером более 25 мкм. Однако нередко преобладают в породе (особенно в аргиллитах) микротрещины и микропоры меньшего размера, которые существенно влияют на проникновение жидкостей в пустоты горной породы. Только методы электронной микроскопии позволяют устранить этот недостаток, а совместное применение методов рентгеновской томографии и электронной микроскопии дают возможность оценить весь размерный спектр пустот и их изменение под влиянием внешних воздействий.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ оценки воздействия раствора на породу с целью повышения нефтеотдачи пласта (патент РФ №2773492 от 06.06.2022), основанный на изучении кернового материала нефтяного месторождения. Согласно способу выбирают наиболее характерные прослои геологического разреза по керну скважин, из которых выпиливают образцы размером 30х30 мм; производят фотографирование исходных образцов на цифровой камере для общей характеристики основных деталей структуры и вещественного состава; исследуют образцы на рентгеновском томографе с получением 2D-срезов и 3D-изображений; затем образцы помещают на столик сканирующего электронного микроскопа, сканируют поверхности, выбирают и фотографируют «опорные точки» - места сгущения трешин или пор. Далее образцы помещаются в раствор с имитацией реального процесса в скважине и выдерживают в нем в течение 20 дней, затем вынимают их, просушивают и последовательно изучают в рентгеновском томографе и электронном микроскопе. Под электронным микроскопом исследуют участки «опорных точек» с получением микрофотографий и определяют химический состав новообразований микрозондовым методом. Далее обрабатывают данные рентгеновской томографии с построением карт трещиноватости до и после эксперимента, а также определяют количество трещин разного диапазона раскрытости. Данные электронной микроскопии обрабатывают путем сравнения изображений участков «опорных точек». Составляют таблицы химического состава новообразований. Затем составляют общее заключение по результатам экспериментов, и делается вывод о выборе рабочей жидкости для данного нефтеносного пласта. Данный способ принят в качестве прототипа.

Недостатком известного способа, принятого за прототип, является то, что образцы помещаются в технологический раствор при атмосферных условиях и выдерживаются в течение 20 дней. Представленный подход не позволяет имитировать реальные пластовые условия (пластовая температура, пластовое давление, горное давление, эффективное давление, остаточная водонасыщенность образцов керна и др.), а также оценить изменение минералогического состава горной породы, открытой пористости и проницаемости образцов керна после воздействия технологическими жидкостями, которые являются наиболее важными показателями эффективности использования технологических жидкостей.

Задачей настоящего изобретения является разработка способа, позволяющего эффективно подбирать технологические жидкости для определенных геолого-физических условий с использованием комплекса лабораторного оборудования, имитирующего реальные пластовые условия, при использовании которого будет обеспечиваться сохранение фильтрационно-емкостных свойств горных пород при проведении ремонтных работ в скважинах.

Поставленная задача была решена за счет того, что в известном способе оценки воздействия технологической жидкостью на горную породу, включающем геологическое изучение образцов керна размером 30х30 мм, исследование образцов на рентгеновском томографе с получением 2D-срезов и 3D-изображений, определение количества пор и их диапазон раскрытости, обработку данных рентгеновской томографии до и после воздействия технологической жидкостью на образцы горной породы, сканирование поверхности образцов керна – места сгущения трещин, каверн и/или пор с помощью сканирующего электронного микроскопа, обработку данных электронной микроскопии путем сравнения изображений участков «опорных точек», согласно изобретению проводят рентгенофлуоресцентный анализ образцов керна горных пород, после в образцах керна создают остаточную водонасыщенность, затем определяют пористость и помещают образцы керна горных пород в кернодержатель фильтрационной установки, создают боковой, торцевой обжим керна резиновой манжетой и пластовую температуру, далее образец подвергают воздействию заявляемой технологической жидкостью в течение 5-15 дней при поддержании постоянного градиента давления на керне за счет энергии сжатого воздуха, после этого фильтрат технологической жидкости, проникшей в керн, вытесняют нефтью в обратном направлении, при установившемся давлении и постоянном расходе нефти через образцы керна определяют коэффициент проницаемости после воздействия технологической жидкостью и коэффициент восстановления проницаемости, определяют пористость образцов керна после воздействия технологической жидкостью, далее обрабатывают данные рентгеновской томографии и электронной микроскопии до и после воздействия технологической жидкостью, оценивают по данным рентгенофлуоресцентного анализа изменение минерального состава горной породы после воздействия технологической жидкостью, сопоставляют полученные данные и делают вывод об эффективности/не эффективности применения технологической жидкости для конкретных геолого-физических условий.

Предложенный способ позволяет установить характер и уровень воздействия технологической жидкости на пласт по количественным данных изменения пустот анализируемых образцов, по процессам кольматации веществ в пустотах анализируемых образцов, изменению химического состава основных компонентов анализируемых образцов и т.д. Подбор технологических жидкостей для определенных геолого-физических условий рекомендуется производить на основе комплексного проведения лабораторных экспериментов.

Предлагаемый способ иллюстрируется чертежами, представленными на фиг. 1-3.

На фиг.1 – Образец керна горной породы размером 30 х 30 мм.

На фиг.2 – Результаты рентгенотомографических исследований образцов керна до и после воздействия технологической жидкостью.

На фиг.3 – Результаты электронной микроскопии образцов керна до и после воздействия технологической жидкостью.

Предложенный способ основывается на детальном геологическом изучение образцов керна размером 30х30 мм.

Производят рентгенофлуоресцентный анализ образцов керна горных пород прибором S8Tiger & D2 Phaser с целью определения их минерального состава. Исследуют образцы на рентгеновском томографе с получением 2D-срезов и 3D-изображений. Затем сканируют поверхность образцов керна – места сгущения трещин, каверн и/или пор с помощью сканирующего электронного микроскопа. Далее в образцах керна с помощью прибора Преображенского создают остаточную водонасыщенность. Определяют пористость с помощью прибора ПЭ-2 и образцы керна горных пород помещают в кернодержатель установки AFS-300. Создают боковой, торцевой обжим керна резиновой манжетой и пластовую температуру.

Затем образец подвергают воздействию заявляемой технологической жидкостью в течение 5-15 дней при поддержании постоянного градиента давления на керне за счет энергии сжатого воздуха. После этого фильтрат технологической жидкости, проникшей в керн, вытесняют нефтью в обратном направлении.

При установившемся давлении и постоянном расходе нефти через образцы керна определяют коэффициент проницаемости после воздействия технологической жидкостью. Соотношение коэффициентов проницаемости после воздействия к первоначальной величине является коэффициентом восстановления проницаемости (β): , где КН1 и КН2 - соответственно проницаемость образца керна до и после воздействия технологической жидкостью.

Определяют пористость образцов керна после воздействия технологической жидкостью с помощью прибора ПЭ-2.

Далее обрабатывают данные рентгеновской томографии до и после эксперимента, а также определяют количество пор и их диапазон раскрытости.

Данные электронной микроскопии обрабатывают путем сравнения изображений участков «опорных точек». По данным рентгенофлуоресцентного анализа оценивают изменение минерального состава горной породы после воздействия технологической жидкостью. На основе сопоставления полученных данных делается вывод об эффективности/не эффективности применения технологической жидкости для конкретных геолого-физических условий.

Пример реализации предлагаемого способа:

Для реализации, описанного способа, использовался образец керна карбонатной горной породы. Образец керна представлен на фиг.1.

1. С помощью прибора S8Tiger & D2 Phaser проведен рентгенофлуоресцентный анализ образцов керна горных пород до и после воздействия технологической жидкостью на образцы горной породы. В таблице 1 представлено изменение минералогического состава горных пород до и после воздействия технологической жидкостью. Из данных, представленных в таблице 1, установлено, что произошло увеличение массового компонентного состава глинистых веществ (Al2O3, SiO2). То есть можно сказать, что воздействие технологической жидкости на горную породу привело к разбуханию глинистых минералов и увеличению их объема.

2. Используя рентгеновский томограф построены 3D-изображения образцов керна горных пород с последующей дифференциацией пустот по размерам до и после воздействия технологической жидкостью. На Фиг.2 представлены 3D-изображения образцов керна горных пород до и после воздействия технологической жидкостью. В таблице 2 представлена информация о распределении пор по размерам до и после воздействия технологической жидкостью. По результатам компьютерной томографии видно, что произошло перераспределение пор, поры диаметром (46–92 мкм) частично закольматировалась и их общий объем уменьшился. Связано это с разбуханием глинистых минералов, как было установлено по данным рентгенофлуоресцентного анализа образцов керна горных пород. Предел чувствительности томографа позволяет оценить раскрытость пор шириной не более 25 мкм.

3. Использование сканирующего электронного микроскопа позволило оценить основные изменения после воздействия технологической жидкостью на наноуровне. Метод сканирующего электронного микроскопа позволяет оценить параметры пустот размером менее 25 мкм. На Фиг.3 представлены результаты сканирующего электронного микроскопа до и после воздействия технологической жидкостью на образец горной породы. По результатам сканирующего электронного микроскопа можно выделить следующее, что произошло залечивание некоторых пор и каверн, а также заполнение микропор новообразованным веществом технологической жидкости.

4. С помощью прибора ПЭ-2 определена открытая пористость образцов керна до и после воздействия технологической жидкостью. Открытая пористость образца керна горной породы до воздействия технологической жидкостью составляла – 8,67%, после воздействия технологической жидкостью – 8,24%, что указывает на снижение открытой пористости образца (на 0,43%), что связано с залечиванием и кольматацией некоторых пор новообразованным веществом технологической жидкостью и разбуханием глинистых минералов.

5. С использованием установки AFS-300 определены начальная проницаемость по нефти образца керна (до воздействия технологической жидкостью) и проницаемость по нефти образца керна после воздействия технологической жидкостью. В качестве технологической жидкости использовалась техническая вода плотностью 1020,0 кг/м3. Моделировались пластовые условия (температура – 30оС и пластовое давление – 20 МПа) и технологическая жидкость в контакте с образцов керна выдерживалась в течение семи суток. Проницаемость образца керна до воздействия технологической жидкостью составляла – 75,5*10-3 мкм2, после воздействия технологической жидкостью – 51,2*10-3 мкм2, что указывает на снижение эффективной проницаемости (на 24,3*10-3 мкм2, коэффициент восстановления проницаемости (β) – 67,8%) вследствие кольматационных процессов, произошедших в пустотах горной породы.

Таким образом, проведенный комплексный лабораторный эксперимент по изучению воздействия технологической жидкости на образец горной породы показал снижение фильтрационно-емкостных свойств (проницаемость и пористость) горной породы вследствие залечивания и кольматации некоторых пор новообразованным веществом и разбуханием глинистых минералов. По результатам проведенных экспериментов можно сделать вывод о том, что анализируемая технологическая жидкость не подходит под данные геолого-физические условия для проведения ремонтных работ в скважинах ввиду существенного снижения открытой пористости и проницаемости из-за разбухания глинистых минералов и новообразований кольматирующих пустоты горной породы.

Таблица 1

Химический состав образца горной породы до и после воздействия технологической жидкостью

Оксид До воздействия технологической жидкостью После воздействия технологической жидкостью
CaO 54,59 49,67
MgO 0,31 0,30
FeO 0,07 0,05
SiO2 0,51 0,79
TiO2 0,07 0,07
Al2O3 0,10 0,19
K2O 0,04 0,05
Na2O 0,25 0,27

Таблица 2

Результаты изменения количества пор в образце горной породы до и после воздействия технологической жидкостью

Размер пор, мкм До воздействия технологической жидкостью После воздействия технологической жидкостью
<23.1 0,17 0,15
23-46 0,03 0,13
46-69 52,55 50,4
69-92 15,21 12,51
92-116 19,67 18,12
116-139 4,98 4,84
139-162 4,53 4,98
162-185 1,44 2,79
185-208 0,87 1,94
208-231 0,29 1,25
231-254 0,12 0,95
254-277 0,07 0,35
277-300 0,04 0,64
300-323 0,02 0,94
323-347 0,01 0,01
347-370 <0,01 0
370-393 <0,01 0
393-416 <0,01 0
416-439 <0,01 0
439-462 <0,01 0
462-485 <0,01 0
485-508 0 0
508-531 <0,01 0
531-554 0 0
554-578 <0,01 0
Сумма: 100,0% 100,0%

Способ оценки воздействия технологической жидкостью на горную породу, включающий геологическое изучение образцов керна размером 30х30 мм, исследование образцов на рентгеновском томографе с получением 2D-срезов и 3D-изображений, определение количества пор и их диапазон раскрытости, обработку данных рентгеновской томографии до и после воздействия технологической жидкостью на образцы горной породы, сканирование поверхности образцов керна – места сгущения трещин, каверн и/или пор с помощью сканирующего электронного микроскопа, обработку данных электронной микроскопии путем сравнения изображений участков «опорных точек», отличающийся тем, что проводят рентгенофлуоресцентный анализ образцов керна горных пород, после в образцах керна создают остаточную водонасыщенность, затем определяют пористость и помещают образцы керна горных пород в кернодержатель фильтрационной установки, создают боковой, торцевой обжим керна резиновой манжетой и пластовую температуру, далее образец подвергают воздействию исследуемой технологической жидкостью в течение 5-15 дней при поддержании постоянного градиента давления на керне за счет энергии сжатого воздуха, после этого фильтрат технологической жидкости, проникшей в керн, вытесняют нефтью в обратном направлении, при установившемся давлении и постоянном расходе нефти через образцы керна определяют коэффициент проницаемости после воздействия технологической жидкостью и коэффициент восстановления проницаемости, определяют пористость образцов керна после воздействия технологической жидкостью, далее обрабатывают данные рентгеновской томографии и электронной микроскопии до и после воздействия технологической жидкостью, оценивают по данным рентгенофлуоресцентного анализа изменение минерального состава горной породы после воздействия технологической жидкостью, сопоставляют полученные данные и делают вывод об эффективности или неэффективности применения технологической жидкости для конкретных геолого-физических условий.
Источник поступления информации: Роспатент

Showing 11-14 of 14 items.
01.06.2023
№223.018.74b0

Способ электроэрозионной проволочной вырезной обработки

Изобретение относится к электроэрозионной обработке, в частности к электроэрозионной проволочной вырезной обработке труднообрабатываемых слоисто-волокнистых композитов. Способ включает электроэрозионную проволочно-вырезную обработку листовой непроводящей или слабопроводящей заготовки при...
Тип: Изобретение
Номер охранного документа: 0002772410
Дата охранного документа: 19.05.2022
01.06.2023
№223.018.74b8

Способ прогнозирования дебита скважин с учетом анизотропии проницаемости карбонатных горных пород

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке сложнопостроенных карбонатных нефтяных залежей, характеризующихся анизотропией проницаемости горных пород. Предлагаемый способ определения дебита скважин с учетом анизотропии проницаемости горных...
Тип: Изобретение
Номер охранного документа: 0002768341
Дата охранного документа: 23.03.2022
17.06.2023
№223.018.7e48

Способ прогнозирования пространственной ориентации трещин гидравлического разрыва пласта

Изобретение относится к нефтедобыче и может быть использовано для прогнозирования пространственной ориентации трещин гидравлического разрыва пласта на этапе планирования мероприятия. Технический результат - повышение эффективности планирования гидравлического разрыва пласта и определение...
Тип: Изобретение
Номер охранного документа: 0002771648
Дата охранного документа: 11.05.2022
17.06.2023
№223.018.7eb1

Способ определения дисперсности водонефтяной эмульсии

Изобретение относится к нефтегазовой промышленности. Раскрыт способ определения дисперсности водонефтяной эмульсии, включающий прямую визуализацию изображения, формирующегося при микроскопическом наблюдении, с дальнейшей компьютерной обработкой данных и определением дисперсности эмульсии по...
Тип: Изобретение
Номер охранного документа: 0002775550
Дата охранного документа: 04.07.2022
Showing 1-5 of 5 items.
20.08.2015
№216.013.6f3d

Состав для выравнивания профиля приемистости нагнетательных скважин

Изобретение относится к нефтедобывающей промышленности и используется для регулирования профилей приемистости нагнетательных скважин. Состав для выравнивания профиля приемистости нагнетательных скважин, содержащий соль алюминия и воду, в качестве соли алюминия содержит хлорид и/или сульфат...
Тип: Изобретение
Номер охранного документа: 0002560047
Дата охранного документа: 20.08.2015
26.08.2017
№217.015.e9a3

Жидкость для глушения нефтегазовых скважин

Изобретение относится к области добычи нефти и газа, в частности к составам для глушения скважин, и может быть использовано на предприятиях нефтедобывающей промышленности при проведении подземного и капитального ремонта скважин. Жидкость для глушения нефтегазовых скважин, содержащая водную...
Тип: Изобретение
Номер охранного документа: 0002627807
Дата охранного документа: 11.08.2017
09.06.2018
№218.016.5d6d

Кислотный состав для обработки призабойной зоны пласта

Изобретение относится к нефтедобывающей промышленности, в частности к составам для кислотной обработки призабойной зоны карбонатного и терригенного (карбонатность более 5%) пластов, и может быть использовано в процессе интенсификации притока нефти и освоения скважин путем кислотной обработки, а...
Тип: Изобретение
Номер охранного документа: 0002656293
Дата охранного документа: 04.06.2018
01.06.2023
№223.018.74b8

Способ прогнозирования дебита скважин с учетом анизотропии проницаемости карбонатных горных пород

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке сложнопостроенных карбонатных нефтяных залежей, характеризующихся анизотропией проницаемости горных пород. Предлагаемый способ определения дебита скважин с учетом анизотропии проницаемости горных...
Тип: Изобретение
Номер охранного документа: 0002768341
Дата охранного документа: 23.03.2022
17.06.2023
№223.018.7e48

Способ прогнозирования пространственной ориентации трещин гидравлического разрыва пласта

Изобретение относится к нефтедобыче и может быть использовано для прогнозирования пространственной ориентации трещин гидравлического разрыва пласта на этапе планирования мероприятия. Технический результат - повышение эффективности планирования гидравлического разрыва пласта и определение...
Тип: Изобретение
Номер охранного документа: 0002771648
Дата охранного документа: 11.05.2022
+ добавить свой РИД