×
20.04.2023
223.018.4edf

Результат интеллектуальной деятельности: Способ выявления растущих дефектов стенки трубы и сварных швов трубопроводов и ремонтных конструкций, установленных на трубопроводы

Вид РИД

Изобретение

Правообладатели

№ охранного документа
0002793369
Дата охранного документа
31.03.2023
Аннотация: Изобретение относится к области внутритрубной диагностики трубопроводов и может быть использовано для выявления опасных дефектов, растущих в межинспекционный период. Сущность изобретения заключается в том, что критерий выявления растущих дефектов определяют путем сопоставления амплитуд сигналов от дефектов, зарегистрированных по данным текущей инспекции с амплитудами сигналов от тех же дефектов, зарегистрированных по данным предыдущей (предыдущих) инспекции, при котором определяют граничное значение разницы амплитуд сигналов, при превышении которого дефект считают растущим. Технический результат - повышение точности определения межремонтных сроков магистрального трубопровода за счет выявления критических дефектов сварных швов и стенки трубы трубопроводов и ремонтных конструкций, установленных на трубопроводы. 5 з.п. ф-лы, 12 ил., 5 пр.

Заявляемое изобретение относится к области внутритрубной диагностики трубопроводов и может быть использовано для выявления опасных дефектов, растущих в межинспекционный период.

Известен способ неразрушающего контроля изделий [см. патент на изобретение № RU 2548944], согласно которому осуществляют сканирование поверхности контролируемого изделия в идентичных условиях в течение его жизненного цикла, считывание, преобразование и обработку информации, полученной при сканировании, визуализацию образа поверхности изделия с последующим сравнением результатов текущего и предыдущего сканирования, при этом предварительно размагниченное изделие намагничивают монотонно возрастающим магнитным полем до величины магнитной индукции, соответствующей максимальному значению магнитной проницаемости материала, затем начинают сканирование, получают в результате визуализации магнитный образ поверхности контролируемого изделия в текущий момент и после сравнения его с ранее полученным магнитным образом поверхности этого же изделия в исходном состоянии судят о наличии в нем зон локализации пластических деформаций, количестве этих зон и их расположении в изделии.

Общим для известного и заявляемого способа является многократная запись результатов контроля в течение срока службы контролируемого изделия, считывание, преобразование, обработка информации, полученной в процессе сканирования, визуализация результатов контроля.

Недостатком данного способа является отсутствие численных критериев определения роста содержащихся в объекте контроля аномалий.

Известен способ оценки геометрических размеров дефектов стенки трубной секции и сварных швов по данным магнитного внутритрубного дефектоскопа с помощью универсальной нейросетевой модели [см. патент на изобретение № RU 2591584], который осуществляют следующим образом. Оценку геометрических размеров дефектов стенки трубной секции и сварных швов по данным магнитного внутритрубного дефектоскопа выполняют с помощью универсальной нейросетевой модели, реализующей способ, заключающийся в распространении сигналов ошибки от выходов нейронной сети к ее входам в направлении, обратном прямому распространению сигналов в обычном режиме работы. Обучение нейросети происходит с использованием стандартного алгоритма обратного распространения ошибки - метода обучения многослойного персептрона. Это итеративный градиентный алгоритм, который используется с целью минимизации ошибки работы многослойного персептрона и получения желаемого выхода.

Общим для известного и заявляемого способа является определение параметров сигнала магнитного дефектоскопа для оценки степени опасности дефекта.

Недостатком данного способа является вероятностное определение параметров дефектов с погрешностью, уменьшение которой требует для каждого из применяемых внутритрубных дефектоскопов значительной обучающей выборки, состоящей из сигналов рассеяния магнитного поля от дефектов с известными параметрами, что затруднительно, учитывая бесконечное множество комбинаций формы и параметров реальных дефектов трубопроводов.

Известен способ магнитного контроля сварных стыков рельсов [см. патент на изобретение № R U2586090], согласно которому на дефектоскопическом средстве устанавливают устройство, создающее магнитное поле в рельсе, перемещают дефектоскопическое средство и фиксируют изменения магнитного поля в рельсе датчиком, скользящим по поверхности рельса, обнаруживают зоны сварных стыков, сохраняют их координаты в диагностической карте участка рельсового пути, при этом дополнительно фиксируют и сохраняют формы сигналов от зон сварных стыков, сравнивают их с соответствующими сигналами предыдущих измерений и на основании этих сравнений принимают решение об обнаружении и развитии дефектов в сварных стыках рельсов.

Общим для известного и заявляемого способа является определение параметров сигнала магнитного дефектоскопа, сравнение их с соответствующими сигналами предыдущих измерений и на основании этих сравнений принятие решения об обнаружении и развитии дефектов.

Недостатком указанного способа является отсутствие возможности использования для сравнения намагничивающих и измерительных систем, имеющих разные характеристики намагничивания и фиксации результатов контроля.

Совокупность признаков, наиболее близкая к совокупности существенных признаков заявляемого изобретения, присуща известному способу выявления растущих дефектов магистральных трубопроводов [см. патент на изобретение № RU 2753108], согласно которому по результатам последовательных пропусков внутритрубного инспекционного прибора (ВИП) по испытательному трубопроводному полигону, имеющему как дефекты с постоянными параметрами, так и дефекты, параметры которых увеличиваются между пропусками ВИЛ, определяют пороговое значение изменения параметра, которое в дальнейшем используют в качестве критерия выявления растущих в межинспекционный период дефектов по результатам сопоставления последовательных пропусков ВИП по инспектируемым трубопроводам.

Общим для прототипа и заявляемого способа является определение параметров сигнала магнитного дефектоскопа, сравнение их с соответствующими сигналами предыдущих измерений и принятие решения об обнаружении и развитии дефектов на основании этих сравнений.

Недостатком указанного способа является необходимость проведения предварительных испытаний ВИП на испытательном трубопроводе, идентичном инспектируемому в части характеристик трубных секций с целью определения критерия выявления растущих в межинспекционный период дефектов.

Задачей, на которую направлено заявляемое техническое решение, является выявление развивающихся дефектов трубопровода по данным периодической внутритрубной диагностики в соответствии с определенным пороговым значением изменения параметра сигнала от датчиков магнитных ВИП, работающих по принципу регистрации утечки магнитного потока при намагничивании трубопровода в осевом (MFL) или окружном (TFI) направлениях, в том числе при отличающихся характеристиках намагничивающей системы ВИП и отличающихся характеристиках датчиков магнитной измерительной системы ВИП, регистрирующих утечку магнитного потока.

Техническим результатом изобретения является повышение точности определения межремонтных сроков магистрального трубопровода за счет выявления критических дефектов сварных швов и стенки трубы трубопроводов и ремонтных конструкций, установленных на трубопроводы, способных привести к нарушению целостности трубопровода в связи с повышенной скоростью развития таких дефектов, без необходимости проведения предварительных испытаний и настройки ВИП на испытательном полигоне.

Указанный технический результат достигается в предлагаемом способе выявления растущих (развивающихся) дефектов стенки трубы и сварных швов трубопроводов и ремонтных конструкций, установленных на трубопроводы, согласно которому определяют критерий выявления растущих дефектов, проводят сопоставление параметров сигналов от дефектов, зарегистрированных по данным текущей инспекции с параметрами сигналов тех же дефектов, зарегистрированных по данным предыдущих инспекций, вычисляют разницу параметров сигналов от дефектов, зарегистрированных по данным всех инспекций, оценивают изменение параметров дефектов в промежутке между инспекциями, и по результатам оценки осуществляют отнесение дефекта к растущему.

Дополнительно проводят анализ соответствия амплитуд сигнала данных предыдущих и текущей инспекций, а критерий выявления растущих дефектов определяют путем сопоставления амплитуд сигналов от дефектов, зарегистрированных по данным текущей инспекции с амплитудами сигналов от тех же дефектов, зарегистрированных по данным предыдущих инспекций, при котором

рассчитывают разницу амплитуд сигнала из полученной выборки ΔΑ удаляют значения «выбросов», при котором рассчитывают среднее разницы двух амплитуд сигнала рассчитывают среднеквадратичное отклонение СКО разницы двух амплитуд сигнала,

проводят исключение «выбросов» из выборки по критерию

повторяют вычисления по удалению значений «выбросов» из полученной выборки ΔΑ до тех пор, пока в выборке не останется значений, удовлетворяющих этому критерию,

рассчитывают среднеквадратичное отклонение разницы двух

амплитуд сигнала по отфильтрованной выборке,

определяют верхний порог 95% доверительного интервала разницы двух амплитуд сигнала по формуле

определяют граничное значение разницы амплитуд сигналов по формуле

при превышении которого дефект считают растущим, далее на исходную выборку накладывают полученный порог браковки и определяют растущие дефекты.

Кроме того, дефект также относят к растущему в случае наличия сигнала от дефекта на данных текущей инспекции при его отсутствии на данных предыдущих инспекций.

В частном случае, связанном с определением критерия выявления растущих дефектов, его определяют путем сопоставления максимальных амплитуд сигналов от дефектов, зарегистрированных по данным текущей инспекции с максимальными амплитудами сигналов от тех же дефектов, зарегистрированных по данным предыдущих инспекций.

В частном случае, связанном с выявлением растущих дефектов при наличии в составе трубопровода участков труб с различной толщиной стенки,

критерий выявления растущих дефектов определяют путем сопоставления относительных амплитуд сигналов от дефектов, зарегистрированных по данным текущей инспекции с относительными амплитудами сигналов от тех же дефектов, зарегистрированных по данным предыдущих инспекций, определяемых по формуле:

где

- максимальное значение амплитуды сигнала в области дефекта;

- значение фоновой амплитуды.

Кроме того, сопоставление относительных амплитуд сигнала от дефекта осуществляют с использованием зависимости разброса относительной амплитуды от начального значения относительной амплитуды, для чего имеющуюся выборку дефектов разбивают на подвыборки по значению амплитуды сигнала предыдущей инспекции, при этом для каждой подвыборки определяют частный порог браковки, а общий порог браковки определяют как линию регрессии к частным порогам браковки.

В частном случае, связанном с определением критерия выявления растущих дефектов, расположенных под ремонтными конструкциями, значение фоновой амплитуды определяют как амплитуду сигнала бездефектной стенки трубопровода, расположенной под ремонтной конструкцией.

В частном случае, связанном с различными характеристиками датчиков ВИЛ, проводят анализ соответствия амплитуд сигнала данных предыдущей и текущей инспекции, при котором

определяют корреляционную функцию вида

вычисляют коэффициент приведения амплитуд сигнала k,

значения амплитуд сигнала текущей инспекции приводят к значениям относительных амплитуд сигнала предыдущей инспекции по формуле и далее для определения критерия выявления растущих дефектов проводят сопоставление приведенных относительных амплитуд сигналов.

Сущность заявляемого способа поясняется чертежами.

На фиг. 1 приведена диаграмма сопоставления максимальных амплитуд сигнала от дефектов на толщине стенки 15 мм.

На фиг. 2 приведена диаграмма сопоставления максимальных амплитуд сигнала от дефектов на толщине стенки 27 мм.

На фиг. 3 показано определение порога браковки дефектов по отклонениям максимальных амплитуд сигнала на толщине стенки 15 мм.

На фиг. 4 показано определение порога браковки дефектов по отклонениям максимальных амплитуд сигнала на толщине стенки 27 мм.

На фиг. 5 приведена диаграмма сопоставления максимальных амплитуд сигнала от дефектов на толщине стенки 15 мм с наложением определенного порога браковки.

На фиг. 6 приведена диаграмма сопоставления максимальных амплитуд сигнала от дефектов на толщине стенки 27 мм с наложением определенного порога браковки.

На фиг. 7 приведена диаграмма сопоставления относительных амплитуд сигнала от дефектов.

На фиг. 8 показано определение порога браковки дефектов по отклонениям относительных амплитуд сигнала от дефектов.

На фиг. 9 приведена диаграмма сопоставления относительных амплитуд сигнала от дефектов с наложением определенного порога браковки.

На фиг. 10 приведена диаграмма сопоставления относительных амплитуд сигнала от дефектов с наложением порога браковки, определенного по значению частных порогов браковки.

На фиг. 11 приведена диаграмма сопоставления относительных амплитуд сигнала от дефектов для последовательных пропусков ВИП, датчики которых имеют отличные характеристики по регистрации амплитуды сигнала магнитного поля рассеяния (до приведения).

На фиг. 12 приведена диаграмма сопоставления относительных амплитуд сигнала от дефектов для последовательных пропусков ВИП, датчики которых имеют отличные характеристики по регистрации амплитуды сигнала магнитного поля рассеяния (после приведения).

Сущность изобретения заключается в следующем. В соответствии с нормативной документацией внутритрубная диагностика трубопроводов проводится с заданной периодичностью. При каждом пропуске ВИП (инспекции) в процессе обработки диагностических данных магнитных секций MFL и TFI проводится регистрация амплитуды сигнала (в том числе максимальной) в месте расположения дефекта и амплитуды бездефектного участка трубопровода в области дефекта (фоновая амплитуда), записанные значения сохраняются в базу данных, содержащую результаты обнаружения дефектов. При наличии двух и более последовательных пропусков ВИП (инспекций) с магнитными секциями MFL и TFI проводится сопоставление амплитуды сигнала от дефекта, зарегистрированного по данным текущей инспекции с амплитудой сигнала того же дефекта, зарегистрированного по данным предыдущих инспекций. Оценивается изменение параметров дефекта в промежутке между инспекциями. Дефект определяется как растущий при соблюдении следующих условий:

- наличие сигнала от дефекта на данных текущей инспекции при отсутствии на данных предыдущих инспекций;

- превышении определенного значения разницы параметров дефекта, определенных по данным текущей инспекции над параметрами дефекта, определенных по данным предыдущих инспекций.

Ниже приведены примеры осуществления заявляемого способа.

Пример 1. Для трубопровода с толщиной стенки 15 мм способ осуществляют следующим образом.

Проводят сопоставление максимальных амплитуд сигнала от дефектов, зарегистрированных на участке трубопровода с толщиной стенки 15 мм (фиг. 1) для каждого дефекта, зарегистрированного по данным обоих последовательных инспекций, при котором рассчитывают разницу амплитуд сигнала по формуле Из полученной выборки ΔΑ удаляют значения «выбросов». Данная операция необходима для определения границ порога разброса отклонения амплитуды сигнала для нерастущих дефектов. Исключение «выбросов» проводят по следующему алгоритму:

1) рассчитывают среднее разницы двух амплитуд сигнала по формуле где n - количество дефектов;

2) рассчитывают среднеквадратичное отклонение разницы двух амплитуд сигнала (СКО) по формуле

3) проводят исключение «выбросов» из выборки по критерию

4) для полученной в результате исключения «выбросов» выборки повторяют операции по п. 1) - 3) до тех пор, пока в выборке не останется значений Далее рассчитывают среднеквадратичное отклонение разницы двух амплитуд сигнала по отфильтрованной выборке Определяют верхний порог 95% доверительного интервала разницы двух амплитуд сигнала по формуле Определяют граничное значение разницы амплитуд сигналов при превышении которого дефект считают растущим (фиг. 3). После этого на исходную выборку накладывают полученный порог браковки и определяют растущие дефекты (фиг. 5).

Пример 2. Для трубопровода с толщиной стенки 27 мм способ осуществляют аналогично примеру 1. Полученные данные для трубопровода с толщиной стенки 27 мм при осуществлении способа представлены на фиг. 2, 4, 6.

Пример 3. Для выявления растущих дефектов при наличии в составе трубопровода участков труб с различной толщиной стенки способ осуществляют аналогично примеру 1, при этом проводят сопоставление относительных амплитуд сигнала от дефектов, определяемых по формуле Фоновую амплитуду сигнала определяют как медиану всех значений амплитуд сигнала, зарегистрированных в секции трубопровода. Данная операция позволяет проводить анализ выявления растущих дефектов без разделения выборки дефектов по участкам труб с различной толщиной стенки (фиг. 7, 8, 9).

Пример 4. Для того, чтобы учитывать неравномерность разброса отклонения амплитуды сигнала для нерастущих дефектов в зависимости от значения амплитуды сигнала от дефекта, способ осуществляют по результатам сравнения относительных амплитуд с наложением порога браковки, определенного по значению частных порогов браковки, аналогично примеру 1, при этом проводят сопоставление относительных амплитуд сигнала от дефектов с использованием зависимости разброса относительной амплитуды от начального значения относительной амплитуды, для чего имеющуюся выборку дефектов разбивают на подвыборки по значению амплитуды сигнала предыдущего пропуска. Для каждой подвыборки определяют частный порог браковки, а общий порог браковки определяют как линию регрессии к частным порогам браковки (фиг. 10).

Пример 5. Для выявления растущих дефектов при различных характеристиках датчиков ВИП по регистрации амплитуды сигнала магнитного поля рассеяния способ осуществляют аналогично примеру 1, при этом проводят анализ соответствия амплитуд сигнала данных предыдущей и текущей инспекции (фиг. 11). Данная операция необходима для приведения значения амплитуд сигнала текущего пропуска к значениям относительных амплитуд сигнала предыдущего пропуска для осуществления возможности их сравнения.

Приведение осуществляют следующим образом:

- по значениям относительных амплитуд сигнала данных предыдущей и текущей инспекции определяют корреляционную функцию вида

- значения амплитуд сигнала текущего пропуска приводят к значениям относительных амплитуд сигнала предыдущего пропуска (фиг.12) по формуле

- далее проводят определение значения порогов браковки аналогично примеру 1.

Изобретение позволяет выявлять растущие в межинспекционный период дефекты (которые являются наиболее опасными) по результатам сопоставления данных последовательных пропусков (инспекций) ВИП по магистральным трубопроводам, что позволяет предотвратить разрушение трубопровода по развивающимся плоскостным дефектам (трещинам в сварных швах и телу трубы), оптимизировать ремонт коррозионных дефектов, выявляя участки трубопровода с развивающейся коррозией, оценить работоспособность систем защиты трубопровода от коррозии и более точно определить межремонтные сроки участков трубопроводов.

Данный способ выявления растущих дефектов подтвержден при проведении испытаний на полигоне АО «Транснефть - Диаскан».

Источник поступления информации: Роспатент

Showing 121-130 of 159 items.
15.11.2019
№219.017.e227

Способ определения давления насыщенных паров высокозастывающей нефти

Изобретение относится к способам измерения давления газообразных и жидких веществ, а именно к способам определения давления насыщенных паров высокозастывающей нефти, содержания в ней свободных и растворенных газов, и может быть использовано в нефтяной и нефтеперерабатывающей промышленности....
Тип: Изобретение
Номер охранного документа: 0002706049
Дата охранного документа: 13.11.2019
15.11.2019
№219.017.e2c4

Горелочное устройство и способ организации факела горения топлива

Изобретение относится к области теплотехники, а именно к устройствам для сжигания отработанных нефтепродуктов, в том числе отработанных масел и некондиционных нефтепродуктов, а также дизельного топлива и сырой нефти любых сортов, мазута, печного топлива, растительных масел и жиров любого...
Тип: Изобретение
Номер охранного документа: 0002706168
Дата охранного документа: 14.11.2019
12.12.2019
№219.017.ec58

Способ определения объема смеси последовательно перекачиваемых по трубопроводам жидкостей, имеющих различные качественные характеристики

Изобретение относится к трубопроводному транспорту. Способ определения объема смеси последовательно перекачиваемых по трубопроводам жидкостей, имеющих различные качественные характеристики, включает последовательную перекачку вытесняемой и вытесняющей жидкостей, выбор качественных характеристик...
Тип: Изобретение
Номер охранного документа: 0002708473
Дата охранного документа: 09.12.2019
22.12.2019
№219.017.f08a

Стенд для проведения параметрических испытаний масштабных моделей проточных частей насосного оборудования и масштабная модель насоса

Группа изобретений может быть использована для проведения параметрических и кавитационных испытаний масштабных моделей проточных частей центробежных насосов с целью получения их характеристик и дальнейшего пересчета на натурный образец насоса. Стенд для проведения параметрических испытаний...
Тип: Изобретение
Номер охранного документа: 0002709753
Дата охранного документа: 19.12.2019
08.02.2020
№220.018.002e

Муфта для установки датчика

Изобретение относится к области машиностроения, а именно к упругим пластинчатым муфтам. Муфта упругая пластинчатая содержит две соосно установленные фланцевые полумуфты. Кроме того, она содержит два адаптера и торсион моментомера, установленный между фланцевыми полумуфтами с помощью адаптеров....
Тип: Изобретение
Номер охранного документа: 0002713536
Дата охранного документа: 05.02.2020
12.02.2020
№220.018.01a2

Устройство искрозащиты

Изобретение относится к области электротехники, и может быть применено в нефтегазовой, рудной и мукомольной отраслям промышленности, и предназначено для использования во взрывозащищенном электрооборудовании, имеющем в своем составе автономные источники энергии в виде внутренних источников...
Тип: Изобретение
Номер охранного документа: 0002713881
Дата охранного документа: 10.02.2020
20.02.2020
№220.018.0445

Одометр

Заявляемое изобретение относится к устройствам измерения пройденной дистанции внутритрубными инспекционными приборами контроля технического состояния трубопроводов, нефтепродуктопроводов, в частности к колесным одометрам. Одометр содержит неподвижный кронштейн, соединенный посредством...
Тип: Изобретение
Номер охранного документа: 0002714465
Дата охранного документа: 17.02.2020
23.02.2020
№220.018.051a

Способ обнаружения питтинговой коррозии

Использование: для обнаружения питтинговой коррозии (питтинга) в контролируемых изделиях методом направленных акустических волн. Сущность изобретения заключается в том, что с помощью ультразвуковых пьезоэлектрических преобразователей, предназначенных для проведения ультразвуковой толщинометрии...
Тип: Изобретение
Номер охранного документа: 0002714868
Дата охранного документа: 19.02.2020
28.03.2020
№220.018.1164

Флотационная установка очистки сточных вод

Изобретение может быть использовано для очистки сточных и природных вод. Сточные воды, обработанные раствором коагулянта, из гидравлического смесителя подают в камеру коагуляции 8. Оттуда после ввода раствора флокулянта направляют по напорному трубопроводу в камеру флокуляции 9. Из камеры...
Тип: Изобретение
Номер охранного документа: 0002717786
Дата охранного документа: 25.03.2020
28.03.2020
№220.018.1173

Система поперечного намагничивания для внутритрубного дефектоскопа

Изобретение относится к области контрольно-измерительной техники, в частности к магнитной дефектоскопии. Сущность изобретения заключается в том, что система поперечного намагничивания для внутритрубного дефектоскопа содержит магнитные щетки, при этом незакрепленные концы щетин магнитных щеток...
Тип: Изобретение
Номер охранного документа: 0002717902
Дата охранного документа: 26.03.2020
+ добавить свой РИД