×
20.04.2023
223.018.4edf

Результат интеллектуальной деятельности: Способ выявления растущих дефектов стенки трубы и сварных швов трубопроводов и ремонтных конструкций, установленных на трубопроводы

Вид РИД

Изобретение

Правообладатели

№ охранного документа
0002793369
Дата охранного документа
31.03.2023
Аннотация: Изобретение относится к области внутритрубной диагностики трубопроводов и может быть использовано для выявления опасных дефектов, растущих в межинспекционный период. Сущность изобретения заключается в том, что критерий выявления растущих дефектов определяют путем сопоставления амплитуд сигналов от дефектов, зарегистрированных по данным текущей инспекции с амплитудами сигналов от тех же дефектов, зарегистрированных по данным предыдущей (предыдущих) инспекции, при котором определяют граничное значение разницы амплитуд сигналов, при превышении которого дефект считают растущим. Технический результат - повышение точности определения межремонтных сроков магистрального трубопровода за счет выявления критических дефектов сварных швов и стенки трубы трубопроводов и ремонтных конструкций, установленных на трубопроводы. 5 з.п. ф-лы, 12 ил., 5 пр.

Заявляемое изобретение относится к области внутритрубной диагностики трубопроводов и может быть использовано для выявления опасных дефектов, растущих в межинспекционный период.

Известен способ неразрушающего контроля изделий [см. патент на изобретение № RU 2548944], согласно которому осуществляют сканирование поверхности контролируемого изделия в идентичных условиях в течение его жизненного цикла, считывание, преобразование и обработку информации, полученной при сканировании, визуализацию образа поверхности изделия с последующим сравнением результатов текущего и предыдущего сканирования, при этом предварительно размагниченное изделие намагничивают монотонно возрастающим магнитным полем до величины магнитной индукции, соответствующей максимальному значению магнитной проницаемости материала, затем начинают сканирование, получают в результате визуализации магнитный образ поверхности контролируемого изделия в текущий момент и после сравнения его с ранее полученным магнитным образом поверхности этого же изделия в исходном состоянии судят о наличии в нем зон локализации пластических деформаций, количестве этих зон и их расположении в изделии.

Общим для известного и заявляемого способа является многократная запись результатов контроля в течение срока службы контролируемого изделия, считывание, преобразование, обработка информации, полученной в процессе сканирования, визуализация результатов контроля.

Недостатком данного способа является отсутствие численных критериев определения роста содержащихся в объекте контроля аномалий.

Известен способ оценки геометрических размеров дефектов стенки трубной секции и сварных швов по данным магнитного внутритрубного дефектоскопа с помощью универсальной нейросетевой модели [см. патент на изобретение № RU 2591584], который осуществляют следующим образом. Оценку геометрических размеров дефектов стенки трубной секции и сварных швов по данным магнитного внутритрубного дефектоскопа выполняют с помощью универсальной нейросетевой модели, реализующей способ, заключающийся в распространении сигналов ошибки от выходов нейронной сети к ее входам в направлении, обратном прямому распространению сигналов в обычном режиме работы. Обучение нейросети происходит с использованием стандартного алгоритма обратного распространения ошибки - метода обучения многослойного персептрона. Это итеративный градиентный алгоритм, который используется с целью минимизации ошибки работы многослойного персептрона и получения желаемого выхода.

Общим для известного и заявляемого способа является определение параметров сигнала магнитного дефектоскопа для оценки степени опасности дефекта.

Недостатком данного способа является вероятностное определение параметров дефектов с погрешностью, уменьшение которой требует для каждого из применяемых внутритрубных дефектоскопов значительной обучающей выборки, состоящей из сигналов рассеяния магнитного поля от дефектов с известными параметрами, что затруднительно, учитывая бесконечное множество комбинаций формы и параметров реальных дефектов трубопроводов.

Известен способ магнитного контроля сварных стыков рельсов [см. патент на изобретение № R U2586090], согласно которому на дефектоскопическом средстве устанавливают устройство, создающее магнитное поле в рельсе, перемещают дефектоскопическое средство и фиксируют изменения магнитного поля в рельсе датчиком, скользящим по поверхности рельса, обнаруживают зоны сварных стыков, сохраняют их координаты в диагностической карте участка рельсового пути, при этом дополнительно фиксируют и сохраняют формы сигналов от зон сварных стыков, сравнивают их с соответствующими сигналами предыдущих измерений и на основании этих сравнений принимают решение об обнаружении и развитии дефектов в сварных стыках рельсов.

Общим для известного и заявляемого способа является определение параметров сигнала магнитного дефектоскопа, сравнение их с соответствующими сигналами предыдущих измерений и на основании этих сравнений принятие решения об обнаружении и развитии дефектов.

Недостатком указанного способа является отсутствие возможности использования для сравнения намагничивающих и измерительных систем, имеющих разные характеристики намагничивания и фиксации результатов контроля.

Совокупность признаков, наиболее близкая к совокупности существенных признаков заявляемого изобретения, присуща известному способу выявления растущих дефектов магистральных трубопроводов [см. патент на изобретение № RU 2753108], согласно которому по результатам последовательных пропусков внутритрубного инспекционного прибора (ВИП) по испытательному трубопроводному полигону, имеющему как дефекты с постоянными параметрами, так и дефекты, параметры которых увеличиваются между пропусками ВИЛ, определяют пороговое значение изменения параметра, которое в дальнейшем используют в качестве критерия выявления растущих в межинспекционный период дефектов по результатам сопоставления последовательных пропусков ВИП по инспектируемым трубопроводам.

Общим для прототипа и заявляемого способа является определение параметров сигнала магнитного дефектоскопа, сравнение их с соответствующими сигналами предыдущих измерений и принятие решения об обнаружении и развитии дефектов на основании этих сравнений.

Недостатком указанного способа является необходимость проведения предварительных испытаний ВИП на испытательном трубопроводе, идентичном инспектируемому в части характеристик трубных секций с целью определения критерия выявления растущих в межинспекционный период дефектов.

Задачей, на которую направлено заявляемое техническое решение, является выявление развивающихся дефектов трубопровода по данным периодической внутритрубной диагностики в соответствии с определенным пороговым значением изменения параметра сигнала от датчиков магнитных ВИП, работающих по принципу регистрации утечки магнитного потока при намагничивании трубопровода в осевом (MFL) или окружном (TFI) направлениях, в том числе при отличающихся характеристиках намагничивающей системы ВИП и отличающихся характеристиках датчиков магнитной измерительной системы ВИП, регистрирующих утечку магнитного потока.

Техническим результатом изобретения является повышение точности определения межремонтных сроков магистрального трубопровода за счет выявления критических дефектов сварных швов и стенки трубы трубопроводов и ремонтных конструкций, установленных на трубопроводы, способных привести к нарушению целостности трубопровода в связи с повышенной скоростью развития таких дефектов, без необходимости проведения предварительных испытаний и настройки ВИП на испытательном полигоне.

Указанный технический результат достигается в предлагаемом способе выявления растущих (развивающихся) дефектов стенки трубы и сварных швов трубопроводов и ремонтных конструкций, установленных на трубопроводы, согласно которому определяют критерий выявления растущих дефектов, проводят сопоставление параметров сигналов от дефектов, зарегистрированных по данным текущей инспекции с параметрами сигналов тех же дефектов, зарегистрированных по данным предыдущих инспекций, вычисляют разницу параметров сигналов от дефектов, зарегистрированных по данным всех инспекций, оценивают изменение параметров дефектов в промежутке между инспекциями, и по результатам оценки осуществляют отнесение дефекта к растущему.

Дополнительно проводят анализ соответствия амплитуд сигнала данных предыдущих и текущей инспекций, а критерий выявления растущих дефектов определяют путем сопоставления амплитуд сигналов от дефектов, зарегистрированных по данным текущей инспекции с амплитудами сигналов от тех же дефектов, зарегистрированных по данным предыдущих инспекций, при котором

рассчитывают разницу амплитуд сигнала из полученной выборки ΔΑ удаляют значения «выбросов», при котором рассчитывают среднее разницы двух амплитуд сигнала рассчитывают среднеквадратичное отклонение СКО разницы двух амплитуд сигнала,

проводят исключение «выбросов» из выборки по критерию

повторяют вычисления по удалению значений «выбросов» из полученной выборки ΔΑ до тех пор, пока в выборке не останется значений, удовлетворяющих этому критерию,

рассчитывают среднеквадратичное отклонение разницы двух

амплитуд сигнала по отфильтрованной выборке,

определяют верхний порог 95% доверительного интервала разницы двух амплитуд сигнала по формуле

определяют граничное значение разницы амплитуд сигналов по формуле

при превышении которого дефект считают растущим, далее на исходную выборку накладывают полученный порог браковки и определяют растущие дефекты.

Кроме того, дефект также относят к растущему в случае наличия сигнала от дефекта на данных текущей инспекции при его отсутствии на данных предыдущих инспекций.

В частном случае, связанном с определением критерия выявления растущих дефектов, его определяют путем сопоставления максимальных амплитуд сигналов от дефектов, зарегистрированных по данным текущей инспекции с максимальными амплитудами сигналов от тех же дефектов, зарегистрированных по данным предыдущих инспекций.

В частном случае, связанном с выявлением растущих дефектов при наличии в составе трубопровода участков труб с различной толщиной стенки,

критерий выявления растущих дефектов определяют путем сопоставления относительных амплитуд сигналов от дефектов, зарегистрированных по данным текущей инспекции с относительными амплитудами сигналов от тех же дефектов, зарегистрированных по данным предыдущих инспекций, определяемых по формуле:

где

- максимальное значение амплитуды сигнала в области дефекта;

- значение фоновой амплитуды.

Кроме того, сопоставление относительных амплитуд сигнала от дефекта осуществляют с использованием зависимости разброса относительной амплитуды от начального значения относительной амплитуды, для чего имеющуюся выборку дефектов разбивают на подвыборки по значению амплитуды сигнала предыдущей инспекции, при этом для каждой подвыборки определяют частный порог браковки, а общий порог браковки определяют как линию регрессии к частным порогам браковки.

В частном случае, связанном с определением критерия выявления растущих дефектов, расположенных под ремонтными конструкциями, значение фоновой амплитуды определяют как амплитуду сигнала бездефектной стенки трубопровода, расположенной под ремонтной конструкцией.

В частном случае, связанном с различными характеристиками датчиков ВИЛ, проводят анализ соответствия амплитуд сигнала данных предыдущей и текущей инспекции, при котором

определяют корреляционную функцию вида

вычисляют коэффициент приведения амплитуд сигнала k,

значения амплитуд сигнала текущей инспекции приводят к значениям относительных амплитуд сигнала предыдущей инспекции по формуле и далее для определения критерия выявления растущих дефектов проводят сопоставление приведенных относительных амплитуд сигналов.

Сущность заявляемого способа поясняется чертежами.

На фиг. 1 приведена диаграмма сопоставления максимальных амплитуд сигнала от дефектов на толщине стенки 15 мм.

На фиг. 2 приведена диаграмма сопоставления максимальных амплитуд сигнала от дефектов на толщине стенки 27 мм.

На фиг. 3 показано определение порога браковки дефектов по отклонениям максимальных амплитуд сигнала на толщине стенки 15 мм.

На фиг. 4 показано определение порога браковки дефектов по отклонениям максимальных амплитуд сигнала на толщине стенки 27 мм.

На фиг. 5 приведена диаграмма сопоставления максимальных амплитуд сигнала от дефектов на толщине стенки 15 мм с наложением определенного порога браковки.

На фиг. 6 приведена диаграмма сопоставления максимальных амплитуд сигнала от дефектов на толщине стенки 27 мм с наложением определенного порога браковки.

На фиг. 7 приведена диаграмма сопоставления относительных амплитуд сигнала от дефектов.

На фиг. 8 показано определение порога браковки дефектов по отклонениям относительных амплитуд сигнала от дефектов.

На фиг. 9 приведена диаграмма сопоставления относительных амплитуд сигнала от дефектов с наложением определенного порога браковки.

На фиг. 10 приведена диаграмма сопоставления относительных амплитуд сигнала от дефектов с наложением порога браковки, определенного по значению частных порогов браковки.

На фиг. 11 приведена диаграмма сопоставления относительных амплитуд сигнала от дефектов для последовательных пропусков ВИП, датчики которых имеют отличные характеристики по регистрации амплитуды сигнала магнитного поля рассеяния (до приведения).

На фиг. 12 приведена диаграмма сопоставления относительных амплитуд сигнала от дефектов для последовательных пропусков ВИП, датчики которых имеют отличные характеристики по регистрации амплитуды сигнала магнитного поля рассеяния (после приведения).

Сущность изобретения заключается в следующем. В соответствии с нормативной документацией внутритрубная диагностика трубопроводов проводится с заданной периодичностью. При каждом пропуске ВИП (инспекции) в процессе обработки диагностических данных магнитных секций MFL и TFI проводится регистрация амплитуды сигнала (в том числе максимальной) в месте расположения дефекта и амплитуды бездефектного участка трубопровода в области дефекта (фоновая амплитуда), записанные значения сохраняются в базу данных, содержащую результаты обнаружения дефектов. При наличии двух и более последовательных пропусков ВИП (инспекций) с магнитными секциями MFL и TFI проводится сопоставление амплитуды сигнала от дефекта, зарегистрированного по данным текущей инспекции с амплитудой сигнала того же дефекта, зарегистрированного по данным предыдущих инспекций. Оценивается изменение параметров дефекта в промежутке между инспекциями. Дефект определяется как растущий при соблюдении следующих условий:

- наличие сигнала от дефекта на данных текущей инспекции при отсутствии на данных предыдущих инспекций;

- превышении определенного значения разницы параметров дефекта, определенных по данным текущей инспекции над параметрами дефекта, определенных по данным предыдущих инспекций.

Ниже приведены примеры осуществления заявляемого способа.

Пример 1. Для трубопровода с толщиной стенки 15 мм способ осуществляют следующим образом.

Проводят сопоставление максимальных амплитуд сигнала от дефектов, зарегистрированных на участке трубопровода с толщиной стенки 15 мм (фиг. 1) для каждого дефекта, зарегистрированного по данным обоих последовательных инспекций, при котором рассчитывают разницу амплитуд сигнала по формуле Из полученной выборки ΔΑ удаляют значения «выбросов». Данная операция необходима для определения границ порога разброса отклонения амплитуды сигнала для нерастущих дефектов. Исключение «выбросов» проводят по следующему алгоритму:

1) рассчитывают среднее разницы двух амплитуд сигнала по формуле где n - количество дефектов;

2) рассчитывают среднеквадратичное отклонение разницы двух амплитуд сигнала (СКО) по формуле

3) проводят исключение «выбросов» из выборки по критерию

4) для полученной в результате исключения «выбросов» выборки повторяют операции по п. 1) - 3) до тех пор, пока в выборке не останется значений Далее рассчитывают среднеквадратичное отклонение разницы двух амплитуд сигнала по отфильтрованной выборке Определяют верхний порог 95% доверительного интервала разницы двух амплитуд сигнала по формуле Определяют граничное значение разницы амплитуд сигналов при превышении которого дефект считают растущим (фиг. 3). После этого на исходную выборку накладывают полученный порог браковки и определяют растущие дефекты (фиг. 5).

Пример 2. Для трубопровода с толщиной стенки 27 мм способ осуществляют аналогично примеру 1. Полученные данные для трубопровода с толщиной стенки 27 мм при осуществлении способа представлены на фиг. 2, 4, 6.

Пример 3. Для выявления растущих дефектов при наличии в составе трубопровода участков труб с различной толщиной стенки способ осуществляют аналогично примеру 1, при этом проводят сопоставление относительных амплитуд сигнала от дефектов, определяемых по формуле Фоновую амплитуду сигнала определяют как медиану всех значений амплитуд сигнала, зарегистрированных в секции трубопровода. Данная операция позволяет проводить анализ выявления растущих дефектов без разделения выборки дефектов по участкам труб с различной толщиной стенки (фиг. 7, 8, 9).

Пример 4. Для того, чтобы учитывать неравномерность разброса отклонения амплитуды сигнала для нерастущих дефектов в зависимости от значения амплитуды сигнала от дефекта, способ осуществляют по результатам сравнения относительных амплитуд с наложением порога браковки, определенного по значению частных порогов браковки, аналогично примеру 1, при этом проводят сопоставление относительных амплитуд сигнала от дефектов с использованием зависимости разброса относительной амплитуды от начального значения относительной амплитуды, для чего имеющуюся выборку дефектов разбивают на подвыборки по значению амплитуды сигнала предыдущего пропуска. Для каждой подвыборки определяют частный порог браковки, а общий порог браковки определяют как линию регрессии к частным порогам браковки (фиг. 10).

Пример 5. Для выявления растущих дефектов при различных характеристиках датчиков ВИП по регистрации амплитуды сигнала магнитного поля рассеяния способ осуществляют аналогично примеру 1, при этом проводят анализ соответствия амплитуд сигнала данных предыдущей и текущей инспекции (фиг. 11). Данная операция необходима для приведения значения амплитуд сигнала текущего пропуска к значениям относительных амплитуд сигнала предыдущего пропуска для осуществления возможности их сравнения.

Приведение осуществляют следующим образом:

- по значениям относительных амплитуд сигнала данных предыдущей и текущей инспекции определяют корреляционную функцию вида

- значения амплитуд сигнала текущего пропуска приводят к значениям относительных амплитуд сигнала предыдущего пропуска (фиг.12) по формуле

- далее проводят определение значения порогов браковки аналогично примеру 1.

Изобретение позволяет выявлять растущие в межинспекционный период дефекты (которые являются наиболее опасными) по результатам сопоставления данных последовательных пропусков (инспекций) ВИП по магистральным трубопроводам, что позволяет предотвратить разрушение трубопровода по развивающимся плоскостным дефектам (трещинам в сварных швах и телу трубы), оптимизировать ремонт коррозионных дефектов, выявляя участки трубопровода с развивающейся коррозией, оценить работоспособность систем защиты трубопровода от коррозии и более точно определить межремонтные сроки участков трубопроводов.

Данный способ выявления растущих дефектов подтвержден при проведении испытаний на полигоне АО «Транснефть - Диаскан».

Источник поступления информации: Роспатент

Showing 1-10 of 159 items.
27.05.2015
№216.013.4f2d

Единая система управления трубопроводной системой "восточная сибирь - тихий океан - ii" (есу тс "всто-ii")

Изобретение относится к системам управления, предназначенным для обеспечения дистанционного контроля технологическим процессом транспортировки нефти по магистральным нефтепроводам. Технический результат - обеспечение надежности и безопасности перекачки нефти. Система содержит связанные каналами...
Тип: Изобретение
Номер охранного документа: 0002551787
Дата охранного документа: 27.05.2015
12.01.2017
№217.015.58f6

Централизованная система противоаварийной автоматики магистральных нефтепроводов и нефтепродуктопроводов

Изобретение относится к нефтяной промышленности и может быть использовано на трубопроводах в качестве централизованной системы автоматических защит от превышения давления, обеспечивающей безаварийность технологического процесса транспортировки нефти (нефтепродуктов). Централизованная система...
Тип: Изобретение
Номер охранного документа: 0002588330
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.634c

Способ неразрушающего контроля литых корпусных деталей

Использование: для неразрушающего контроля литых корпусных деталей. Сущность изобретения заключается в том, что выполняют секторное сканирование датчиком ФАР посредством качания луча с одновременным перемещением датчика ФАР по участку контроля сначала в поперечной, а затем в продольной...
Тип: Изобретение
Номер охранного документа: 0002589456
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.67cd

Способ построения карты экзогенных геологических процессов местности вдоль трассы магистрального нефтепровода

Изобретение относится к области получения топографической информации о рельефе земной поверхности по данным аэрофотосъемки и лазерного сканирования местности с борта воздушного судна, в частности к мониторингу участков трассы магистрального нефтепровода (МН) для выявления признаков экзогенных...
Тип: Изобретение
Номер охранного документа: 0002591875
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.8242

Опора подвесная для участков подземной прокладки трубопроводов

Изобретение относится к области строительства подземных трубопроводов в условиях вечной мерзлоты. Опора подвесная содержит подвижную и неподвижную части, соединенные гибкой цепной подвеской. Подвижная часть включает ложемент в виде полуцилиндра с полукольцевыми шпангоутами на внешней стороне....
Тип: Изобретение
Номер охранного документа: 0002601651
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8247

Сейсмостойкая двухсвайная подвижная опора трубопровода и демпферное устройство для сейсмостойкой двухсвайной подвижной опоры трубопровода

Группа изобретений относится к области строительства надземных трубопроводов. Опора состоит из закрепленного на двух сваях через опорные муфты опорного стола-ростверка с подвижно установленной на нем подошвой опоры, шарнирно соединенной с ложементом опоры. Ложемент разъемно соединен с по...
Тип: Изобретение
Номер охранного документа: 0002601683
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8588

Устройство механохимической очистки внутренней полости трубопровода

Изобретение относится к области транспортирования и хранения нефтепродуктов, в частности к очистке внутренних полостей магистральных нефтепроводов и нефтепродуктопроводов от отложений и остатков транспортировавшегося продукта перед сменой вида транспортируемого продукта. Устройство...
Тип: Изобретение
Номер охранного документа: 0002603155
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.99a7

Способ подготовки магистрального нефтепровода для транспортировки светлых нефтепродуктов

Изобретение относится к области трубопроводного транспорта, в частности к способам очистки внутренней поверхности магистральных нефтепроводов. Осуществляют химическую очистку внутренней поверхности нефтепровода, предварительного разделенного на очищаемые участки, путем пропуска по всей длине...
Тип: Изобретение
Номер охранного документа: 0002609786
Дата охранного документа: 03.02.2017
25.08.2017
№217.015.a14f

Эжекторное устройство установки для очистки резервуаров от отложений нефти и нефтепродуктов

Изобретение относится к оборудованию для очистки внутренней полости резервуаров, в частности железнодорожных цистерн, от вязких отложений нефти и нефтепродуктов. Эжекторное устройство выполнено в виде гидромонитора и содержит по меньшей мере одну полую штангу с установленным на ее конце...
Тип: Изобретение
Номер охранного документа: 0002606604
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a33e

Способ внутритрубного ультразвукового контроля

Использование: для обнаружения дефектов в стенке трубопровода. Сущность изобретения заключается в том, что с помощью ультразвуковых преобразователей возбуждают импульсы упругой волны в перекачиваемой по трубопроводу жидкости под заданным углом к внутренней поверхности трубопровода по ходу...
Тип: Изобретение
Номер охранного документа: 0002607258
Дата охранного документа: 10.01.2017
+ добавить свой РИД