×
20.04.2023
223.018.4d24

Результат интеллектуальной деятельности: Способ порогового приема оптических сигналов

Вид РИД

Изобретение

Аннотация: Использование: изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума с помощью лавинных фотодиодов, и может быть использовано в локации, связи и любой области, где требуется обеспечение максимального отношения сигнал/шум. Сущность: способ порогового приема оптических сигналов с помощью лавинного фотодиода, включающий прием, усиление и пороговую обработку сигналов, а также формирование выходных импульсов при превышении сигналом заданного порога срабатывания, предварительную установку коэффициента лавинного умножения М фотодиода производят в наиболее критичных условиях температуры t° и мощности фоновой засветки Р, при этом на выходе фотодиода определяют среднеквадратическое значение выходного шума σ в безлавинном режиме, а затем увеличивают коэффициент лавинного умножения до величины М = М, при котором среднеквадратическое значение выходного шума увеличивается до величины σ = (1,7…1,8) σ, запоминают значение М, после чего в реальных условиях эксплуатации устанавливают коэффициент лавинного умножения , где - заранее заданный параметр, зависящий от окружающей температуры и яркости фона, и устанавливают порог срабатывания на уровне, при котором частота f ложных срабатываний от шумовых выбросов удовлетворяет условию f < f < f, где f и f - соответственно нижняя и верхняя границы допуска на частоту f, а после стабилизации частоты f в указанных пределах включают рабочий режим приема оптических сигналов. Технический результат: обеспечение предельной чувствительности во всех условиях эксплуатации. 2 з.п. ф-лы, 2 ил., 4 табл.

Предлагаемое изобретение относится к приему оптических сигналов, в частности к технике приема сигналов с помощью лавинных фотодиодов, и может быть использовано в локации, связи и других фотоэлектронных приложениях.

Известен способ приема оптических сигналов с помощью лавинных фотодиодов [1]. Известны также способы стабилизации лавинного режима фотодиода, например, путем термокомпенсации рабочей точки напряжения смещения [2].

Наиболее близким к предлагаемому техническому решению является способ приема импульсных оптических сигналов с помощью лавинного фотодиода, напряжение смещения которого поддерживают путем стабилизации частоты шумовых импульсов, возникающих при пороговой обработке смеси сигнала и шума [3].

Недостатком этого способа является зависимость лавинного режима от выставленного порога срабатывания. Это приводит к неправильному выбору рабочей точки фотодиода и ухудшению пороговой чувствительности [4]. Кроме того, в широком диапазоне условий эксплуатации коэффициент лавинного умножения может оказаться слишком высоким, что приводит к снижению помехоустойчивости и стойкости к перегрузкам.

Задачей изобретения является обеспечение наилучшей пороговой чувствительности во всех условиях эксплуатации.

Указанная задача решается за счет того, что в известном способе порогового приема оптических сигналов с помощью лавинного фотодиода, включающем прием, усиление и формирование выходных импульсов при превышении сигналом заданного порога срабатывания, предварительную установку коэффициента лавинного умножения М фотодиода производят в наиболее критичных условиях температуры t°кр и мощности фоновой засветки Рфкр, при этом на выходе фотодиода определяют среднеквадратическое значение выходного шума σ1 в безлавинном режиме, а затем увеличивают коэффициент лавинного умножения до величины М = Мкр, при котором среднеквадратическое значение выходного шума увеличивается до величины σM = (1,7…1,8) σ1, запоминают значение Мкр, после чего в реальных условиях эксплуатации устанавливают коэффициент лавинного умножения , где - заранее заданный параметр, зависящий от окружающей температуры и яркости фона, и устанавливают порог срабатывания на уровне, при котором частота f ложных срабатываний от шумовых выбросов удовлетворяет условию f1 < f < f2, где f1 и f2 - соответственно нижняя и верхняя границы допуска на частоту f, а после стабилизации частоты f в указанных пределах включают рабочий режим приема оптических сигналов.

Параметр может быть постоянным во всем диапазоне условий эксплуатации.

Параметр может изменяться в зависимости от условий эксплуатации в виде где I02=4kTΔf/R - квадрат неумножаемого шумового тока; k - постоянная Больцмана; Т - абсолютная окружающая температура; Δf - полоса пропускания линейного тракта до входа порогового устройства; R - сопротивление нагрузки фотодиода; IM2=2eI1Δf - квадрат умножаемого шумового тока; е - заряд электрона; I1 = Iт + Iф - первичный обратный ток фотодиода, включающий темновой ток Iт и фототок фона Iф; α - коэффициент, определяемый материалом фотодиода.

На фиг. 1 представлены примеры зависимостей M(t°). На фиг. 2 показаны графики относительных зависимостей отношения сигнал/шум η для германиевого Ge (фиг. 2а) и кремниевого Si (фиг. 2б) лавинных фотодиодов при критической температуре 50°С, а также при отсутствии фона iф=0 и уровне фототока фона Iф=Iт.

Способ осуществляется следующим образом.

В процессе настройки систему помещают в наиболее критичные условия, например, при максимальной температуре t°макс и при воздействии максимального фонового излучения Рф. Напряжение смещения фотодиода уменьшают до минимума, при котором коэффициент лавинного умножения М = 1. Непосредственно на выходе фотодиода или после линейного усиления измеряют среднеквадратическое значение шума σ1. После этого увеличивают напряжение смещения фотодиода, соответственно увеличивая коэффициент лавинного умножения до тех пор, пока среднеквадратическое значение шума в той же точке не увеличится до уровня σМ = 1,73 сл. Достигнутый уровень напряжения смещения, соответствующий этому значению коэффициента лавинного умножения Мкр, сохраняют в настройках системы.

В рабочем режиме при работе в реальных условиях окружающей температуры и яркости фона воспроизводят величину Мкр с поправкой В условиях применения, где требуется постоянство характеристик приемной системы, устанавливают (фиг. 1 - режим постоянной чувствительности). Такой режим бывает необходим в системах передачи данных с высокими требованиями к точности привязки сигналов по времени. В этом случае требуется соблюдать постоянство усиления при обработке сигналов.

При обнаружении слабых оптических сигналов, когда требуется максимальная чувствительность во всех эксплуатационных условиях, поддерживают оптимальный коэффициент лавинного умножения (фиг. 1 - режим наилучшей чувствительности).

После установки лавинного режима устанавливают пороговый уровень так, чтобы частота шумовых превышений этого уровня находилась в заданных пределах. По истечении подготовительного периода приступают к приему сигналов в рабочем режиме.

Оптимальное значение коэффициента лавинного умножения М можно определить следующим образом. На выходе лавинного фотодиода действует эквивалентный квадрат шумового тока

I02 - квадрат неумножаемого шумового тока

е - заряд электрона;

I1 = IT + Iф - первичный обратный ток фотодиода;

IT - темновой ток;

Iф - фототок фона;

Δf - полоса пропускания линейного тракта до входа порогового устройства;

М - коэффициент лавинного умножения;

Мα - шум-фактор лавинного умножения;

α - коэффициент, определяемый материалом фотодиода [4].

Квадрат W отношения шум/сигнал, приведенного к величине М,

JM2=2eI1Δf.

Условие нуля производной

Или

Формула (6) означает, что во всех условиях эксплуатации, влияющих на параметры I02 и JM2 существует соответствующее им значение Мопт, реализуемое данным способом.

Пример 1 (Фиг. 2а).

Германиевый фотодиод. I1=10-7 A. JM2=3,2⋅10-19 А2. α = 1. Оптимальный коэффициент лавинного умножения М = Мопт = 3. Отношение сигнал/шум ц отличается от максимального не более чем на 2% при поддержании коэффициента лавинного умножения в пределах 2,5<М<3,5,

Пример 2 (Фиг. 2б).

Кремниевый фотодиод. I1=10-9 A. JM2=3,2⋅10-21 А2. α = 0,5. Рабочую точку фотодиода поддерживают при М = 25…40. При этом максимальное отношение сигнал/шум, отличается от максимального значения, обеспечиваемого при М = Мопт = 30, не более чем на 2%. На фиг. 2б) пунктиром показана зависимость η(М) при IT = Iф. Видно, что при этом Мопт снижается до уровня Мопт = 20.

Необходимая точность поддержания коэффициента лавинного умножения в окрестности Мопт определяется допустимым ухудшением отношения шум/сигнал следующим из расчетов по формулам (3), (6), относительные результаты которых приведены в таблицах 1-3 для разных значений α и I02.

Из приведенных данных видно, что при постоянном коэффициенте α ухудшение отношения сигнал/шум η = М/σ зависит только от неточности выставления Мопт. и не зависит от соотношения умножаемой и неумножаемой компонент шума. Это упрощает как заводскую регулировку системы, так и осуществление способа в широком диапазоне условий эксплуатации. Из фиг. 2 видно также, что правая часть зависимости W(M) имеет более пологий характер, что позволяет вдвое увеличить допуск на положительное отклонение М при тех же требованиях к стабильности W.

Применение формул (1) и (6) с учетом результатов таблиц 1-3 позволяет установить значения λ = σM1, необходимые для установки оптимального коэффициента лавинного умножения. Эти результаты приведены в таблице 4.

Подстановка в выражение (7) оптимального значения Мопт (6) с учетом неравенства I02 >> JM2 дает значение

которое выполняется во всех реальных условиях (см. табл. 4).

Принципиальное постоянство λ, независимо от типа фотодиода и соотношения неумножаемой и умножаемой составляющих шума обеспечивает методическую состоятельность способа и надежность его реализации.

Таким образом, способ обеспечивает решение поставленной задачи - достижение предельной чувствительности во всех условиях эксплуатации.

Источники информации

1. Росс М. Лазерные приемники. - «Мир», М., 1969 г. - 520 с.

2. Патент РФ №2 248670. Устройство включения лавинного фотодиода в приемнике оптического излучения. 2005 г.

3. US pat. 4,077,718. Receiver for optical radar. 1978. - прототип.

4. Вильнер В.Г., Лейченко Ю.А., Мотенко Б.Н. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. Оптико-механическая промышленность, 1981, №9. - С. 59.

5. Вильнер В. Г. Проектирование пороговых устройств с шумовой стабилизацией порога. - Оптико-механическая промышленность, 1984, №5, с. 39-41.

Источник поступления информации: Роспатент

Showing 11-20 of 71 items.
10.05.2018
№218.016.4358

Способ очистки подложек из ситалла в струе высокочастотной плазмы пониженного давления

Изобретение относится к способу очистки подложек из ситалла. Способ включает химическую очистку и промывку в деионизованной воде. После промывки в деионизованной воде подложки из ситалла предварительно нагревают в струе высокочастотной плазмы на расстоянии от 60 до 120 мм от среза...
Тип: Изобретение
Номер охранного документа: 0002649695
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.476c

Лазерный дальномер

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит лазерный полупроводниковый излучатель с датчиком тока накачки, двухканальное приемное устройство с коммутатором входов, на выходе которого включен вычислитель дальности, причем...
Тип: Изобретение
Номер охранного документа: 0002650851
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4b60

Способ измерения угловой скорости лазерного гироскопа со знакопеременной частотной подставкой

Изобретение относится к измерительной лазерной технике и может найти применение в при измерении угловой скорости лазерного гироскопа со знакопеременной частотной подставкой. Технический результат – повышение точности. Для этого обеспечено формирование на основе выходного сигнала вращения...
Тип: Изобретение
Номер охранного документа: 0002651612
Дата охранного документа: 23.04.2018
29.05.2018
№218.016.5701

Приемник импульсных лазерных сигналов

Изобретение относится к лазерной технике, а именно к аппаратуре приема лазерного излучения. Приемник импульсных лазерных сигналов содержит фоточувствительный элемент, схему обработки сигнала, выполненный в виде полупрозрачной шторки оптический затвор, привод шторки и логический модуль. Шторка...
Тип: Изобретение
Номер охранного документа: 0002655006
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.570b

Лазерный дальномер

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. Лазерный дальномер содержит передающий канал, включающий лазерный излучатель с передающим объективом и схемой запуска, и приемный канал, включающий фотоприемное устройство с приемным объективом. Причем...
Тип: Изобретение
Номер охранного документа: 0002655003
Дата охранного документа: 23.05.2018
25.08.2018
№218.016.7ef4

Лазерный излучатель

Изобретение относится к лазерной технике, а именно к импульсным твердотельным лазерам. Лазерный излучатель содержит активный элемент и параллельно расположенный источник накачки в виде линейки лазерных диодов, между источником накачки и активным элементом введена призма, в поперечном сечении...
Тип: Изобретение
Номер охранного документа: 0002664768
Дата охранного документа: 22.08.2018
29.03.2019
№219.016.ee10

Способ определения ошибок ориентации измерительных осей лазерных гироскопов и маятниковых акселерометров в бесплатформенной инерциальной навигационной системе

Изобретение относится к приборостроению и может быть использовано для определения ошибок ориентации измерительных осей гироскопов и маятниковых акселерометров в БИНС после температурных, вибрационных или ударных воздействий, а также в процессе эксплуатации. Способ определения ошибок ориентации...
Тип: Изобретение
Номер охранного документа: 0002683144
Дата охранного документа: 26.03.2019
25.04.2019
№219.017.3b2e

Способ компенсации влияния медленного меандра на показания лазерного гироскопа

Изобретение относится к приборостроению и измерительной технике. Сущность изобретения заключается в том, что способ компенсации влияния медленного меандра на показания лазерного гироскопа содержит этапы, на которых предварительно проводят климатические испытания лазерного гироскопа и определяют...
Тип: Изобретение
Номер охранного документа: 0002685795
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3d27

Оптический приемник

Изобретение относится к области приема оптического излучения и касается оптического приемника. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с двумя...
Тип: Изобретение
Номер охранного документа: 0002686386
Дата охранного документа: 25.04.2019
27.04.2019
№219.017.3d72

Приемник лазерного излучения

Изобретение относится к области приема оптического излучения и касается приемника лазерного излучения. Приемник включает в себя фоточувствительный элемент, схему обработки сигнала и оптический затвор, установленный перед фоточувствительным элементом. Оптический затвор выполнен в виде шторки с...
Тип: Изобретение
Номер охранного документа: 0002686406
Дата охранного документа: 25.04.2019
Showing 11-20 of 97 items.
27.06.2015
№216.013.58f6

Импульсный твердотельный лазер

Изобретение относится к лазерной технике. Импульсный твердотельный лазер содержит активный элемент, осветитель, включающий лампу накачки и отражатель, а также резонатор, включающий призму-крышу и плоское зеркало, установленные с противоположных торцов активного элемента таким образом, что ребро...
Тип: Изобретение
Номер охранного документа: 0002554315
Дата охранного документа: 27.06.2015
10.08.2015
№216.013.6a05

Способ определения высоты летательного аппарата

Изобретение относится к способу определения высоты летательного аппарата. При реализации способа осуществляется N-кратное зондирование подстилающей поверхности импульсами лазерного излучения и его некогерентное накопление принятого отражённого от объекта сигнала. По результатам статистической...
Тип: Изобретение
Номер охранного документа: 0002558694
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.6f19

Лазерный дальномер

Изобретение относится к измерительной технике и может быть использовано в любой области, где необходимо определить скорость движущегося объекта и расстояние до него, в частности для автоматического определения высоты и вертикальной скорости летательного аппарата. Лазерный дальномер содержит...
Тип: Изобретение
Номер охранного документа: 0002560011
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.775e

Устройство для определения дальности и скорости

Изобретение относится к измерительной технике определения высоты и вертикальной скорости летательного аппарата. Устройство обеспечивает возможность работы в двух режимах. Сигнал от источника направляется на объект, и приемник излучения фиксирует отраженный от объекта сигнал. От приемника...
Тип: Изобретение
Номер охранного документа: 0002562147
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.775f

Способ определения дальности и скорости удаленного объекта

Изобретение относится к способу определения высоты и вертикальной скорости летательного аппарата. Способ включает в себя многократное зондирование объекта импульсами лазерного излучения, прием и регистрацию отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты,...
Тип: Изобретение
Номер охранного документа: 0002562148
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7761

Устройство для измерения высоты и вертикальной скорости летательного аппарата

Изобретение относится к устройству для автоматического определения высоты и вертикальной скорости летательного аппарата. Устройство содержит лазерный передатчик, приемник отраженного объектом излучения, последовательно включенные многоканальный накопитель, связанный с тактовым генератором, и...
Тип: Изобретение
Номер охранного документа: 0002562150
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d0a

Способ измерения высоты и вертикальной скорости ла

Способ измерения высоты и вертикальной скорости летательного аппарата (ЛА) заключается в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты. При этом в рабочем режиме полета...
Тип: Изобретение
Номер охранного документа: 0002563607
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d0b

Способ оценки дальности и скорости удаленного объекта

Способ определения дальности и скорости удаленного объекта заключается в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты и статистической обработке зарегистрированных...
Тип: Изобретение
Номер охранного документа: 0002563608
Дата охранного документа: 20.09.2015
10.04.2016
№216.015.2c63

Лазер с модулированной добротностью резонатора

Изобретение относится к лазерной технике. Лазер с модулированной добротностью резонатора включает активный элемент и резонатор, состоящий из двух зеркал, одно из которых закреплено неподвижно, а второе снабжено приводом и имеет возможность вращения таким образом, чтобы в рабочем положении...
Тип: Изобретение
Номер охранного документа: 0002579548
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c75

Лазер с оптико-механическим затвором

Изобретение относится к лазерной технике. Лазер с оптико-механическим затвором включает корпус, активный элемент и резонатор, состоящий из двух зеркал, одно из которых закреплено неподвижно относительно корпуса, а второе снабжено приводом и имеет возможность вращения таким образом, чтобы в...
Тип: Изобретение
Номер охранного документа: 0002579642
Дата охранного документа: 10.04.2016
+ добавить свой РИД