×
20.04.2023
223.018.4c96

Результат интеллектуальной деятельности: Высокотемпературный слоисто-волокнистый композит, армированный оксидными волокнами, и способ его получения

Вид РИД

Изобретение

Аннотация: Изобретение относится к высокотемпературным конструкционным композитным материалам с металлической матрицей и способам их получения. Высокотемпературный слоисто-волокнистый композит, с матрицей на основе Nb, твердого раствора Nb(Al), а также интерметаллидов NbAl и NbAl содержит слои Мо, твердого раствора Mo(Al) и интерметаллида MoAl, армированный волокнами монокристаллического сапфира и/или иттрий-алюминиевого граната, муллита, или волокнами эвтектических соединений на основе оксида алюминия и оксидов редкоземельных металлов, которые расположены однонаправленно в пределах одного слоя и во всем объеме композита, или направление укладки волокон меняется от слоя к слою. Способ получения данного композита заключается в сборке элементов, в которых оксидные волокна размещаются между двумя алюминиевыми фольгами, промежутки между волокнами заполняются суспензией порошка Nb в полиэтиленгликоле, прокладывании элементов слоями молибденовой фольги и компактировании путем диффузионной сварки в условиях вакуума при давлении 10 МПа и температуре 1630°С в течение 0.5 часов. Изобретение обеспечивает понижение удельной массы, повышение рабочей температуры, трещиностойкости, прочности, жесткости и сопротивления ползучести высокотемпературного композиционного материала, в сокращении длительности процесса его получения. 2 н.п. ф-лы, 6 ил., 1 пр.

Изобретение относится к высокотемпературным конструкционным композитным материалам с металлической матрицей и способам их получения. Изобретение может быть использовано для изготовления нагруженных элементов конструкций высокотемпературных узлов, например, в авиационных двигателях.

Для решения этих задач используются металлические сплавы и интерметаллиды на основе никеля, ниобия и молибдена. Им присущи недостатки, связанные с ограниченностью потолка рабочих температур в связи с близостью температуры плавления сплавов, что приводит к низкому сопротивлению ползучести (для сплавов на основе никеля), характерна низкая трещиностойкость из-за сильного легирования, например, у сплавов на основе ниобия, высокая плотность и сложность обработки у сплавов на основе молибдена, газовая высокотемпературная коррозия.

Композитные материалы, представляющие собой металлическую матрицу и армирующие элементы в виде высокопрочных высокотемпературных волокон, являются одним из решений этих проблем.

Так, известен высокотемпературный композит с металлической (молибденовой) матрицей и монокристаллическими волокнами сапфира (Милейко С.Т., Получение композитов методом внутренней кристаллизации / С.Т. Милейко, В.И. Казьмин // Механика композитных материалов, 1991. - №5. - С. 898-908.) Композит представляет собой оксид-молибденовый блок с матрицей из чередующихся слоев молибденовой фольги и проволоки, а также протяженных армирующих оксидных волокон со специфическим поперечным сечением, образованным репликами поверхностей фольги и проволоки. Способ получения такого композита заключается в изготовлении молибденового каркаса с непрерывными каналами диффузионной сваркой набора молибденовой фольги и проволоки с дальнейшей пропиткой полученного каркаса расплавом оксида алюминия при температуре выше 2053°С погружением в расплав и заполнением каналов за счет капиллярных сил с последующим охлаждением и кристаллизацией расплава в каналах каркаса с образованием сапфира.

Известен также композит, являющийся модификацией описанного выше композита [Патент 2712333 (2019) Милейко С.Т. и др. Высокотемпературные композиты с молибденовой матрицей и способ их получения. Опубликовано: 2020.01.28]. При изготовлении каркаса вводятся шликеры - упрочняющие частицы, а сапфировые волокна «заменены» на волокна сложных оксидов с целью повышения трещиностойкости и высокотемпературной прочности.

Принципиальным ограничением такого типа композитов и методов их получения является узкий диапазон выбора материалов матрицы и их деградация под действием высоких температур, превышающих температуры плавления оксидов. На практике в настоящее время выбор матриц сведен к молибдену. Кроме того, формирующиеся в процессе изготовления композита оксидные волокна по прочности уступают волокнам круглого сечения, например, получаемым методом Степанова, а специфическая форма волокон создает концентраторы напряжений в композите, понижающие его прочность. К недостаткам способа можно также отнести сложность получения и энергоемкость всего технологического процесса в целом.

Известным композитом с пластичной металлической матрицей и упрочняющими волокнами является слоисто-волокнистый композит с матрицей на основе ниобия, армированный монокристаллическими сапфировыми волокнами. (В.М Кийко, В.П. Коржов, В.Н. Курлов, К.А. Хвостунков. Слоисто-волокнистый композит с матрицей на основе ниобия, армированный монокристаллическими сапфировыми волокнами. Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2020, 11, с. 17-23). В представляемом композите монокристаллические волокна сапфира с круглым сечением однонаправленно расположены между слоями ниобия и интерметаллидов ниобий - алюминия, которые также заполняют промежутки между волокнами. Известным способом получения таких композитов является твердофазный метод диффузионной сварки исходных компонентов под нагрузкой. Метод включает сборку пакетов, в которых сапфировые волокна уложены однонаправленно между двумя слоями алюминиевой фольги, промежутки между ними заполнены суспензией порошка технически чистого ниобия в поли-этиленгликоле, после чего пакеты прокладываются слоями Nb(0,1%C) фольги и скрепляются путем диффузионной сварки в условиях вакуума при повышенной температуре и давлении в три этапа: на первом этапе - 1400°С - 0.5 ч - 12 МПа, на втором - дополнительно к первому - 1750°С - 2 ч - 0.16 МПа, на третьем - 1950°С - 2 ч - 0.28 МПа.

Режимы поэтапной диффузной сварки позволяют при относительно сохраненной форме (толщины, плоскостности) разделительных слоев (фолы ниобия), получить и новые соединения, в частности, интерметаллиды, повышающие механические свойства композита. Кроме того, твердые растворы, образующиеся в процессах диффузии, обладают известной пластичностью, тормозящей развитие трещин. При технологических процедурах формируются также границы разделов между компонентами композитной структуры, представляющие особый вид неоднородности, играющей важную роль в процессах диссипации энергии при нагружении материала, определяющей сопротивление разрушению.

К недостаткам композита можно отнести общий невысокий модуль упругости, определяемый модулем упругости матрицы, а, следовательно, потециально невысокую прочность матрицы на сдвиг, не позволяющую реализовать высокую прочность волокон сапфира.

Технический результат заключается в повышении рабочей температуры, понижении удельной массы, повышении трещиностойкости, прочности, жесткости и сопротивления ползучести высокотемпературного композиционного материала, а также в сокращении длительности процесса получения высокотемпературного композиционного материала.

Технический результат достигается за счет того, что в высокотемпературном слоисто-волокнистый композите, армированном оксидными волокнами с матрицей на основе Nb, твердого раствора Nb(Al), а также интерметаллидов Nb2Al и Nb3Al, в матрице дополнительно имеются слои Мо, твердый раствор Мо(Al) и интерметаллид Mo3Al, оксидные волокна представляют собой волокна монокристаллического сапфира и/или другого типа оксидных волокон, а именно, волокна иттрий-алюминиевого граната, муллита, эвтектических соединений на основе оксида алюминия и оксидов редкоземельных металлов, оксидные волокна в пределах одного слоя расположены однонаправленно, во всем объеме композита направление укладки волокон одинаковое или меняется от слоя к слою.

Технический результат также достигается за счет того, что в способе получения высокотемпературного слоисто-волокнистого композита, армированного оксидными волокнами, заключающемся в том, что волокна размещаются между двумя алюминиевыми фольгами, промежутки между волокнами заполняются суспензией порошка Nb в полиэтиленгликоле, образуя элемент, элементы прокладываются слоями металлической фольги и компактируются путем диффузионной сварки в условиях вакуума при повышенной температуре и давлении, в качестве металлической фольги берется молибденовая фольга, диффузионная сварка производится при давлении 10 МПа и температуре 1630°С в течение 0.5 часов.

Использование молибдена в качестве промежуточного слоя позволяет существенно уменьшить его толщину, в результате чего повышается объемное содержание высокопрочных высокомодульных оксидных волокон, увеличивая наряду с интерметаллидами модуль упругости и прочность композита, а также уменьшая его удельную массу. За счет увеличения площади границ раздела между компонентами структуры также повышается его трещиностойкость, а за счет внесения более тугоплавких соединений повышается и его рабочая температура.

Однонаправленное расположение сапфировых волокон в пределах одного слоя и во всем объеме композита позволяют увеличить механические характеристики материала в одном из направлений. Изменение направления укладки волокон от слоя к слою позволяет получить высокие механические свойства композиционного материала с требуемым пространственным распределением.

Иттрий-алюминиевый гранат (Y3Al2O12) наряду с муллитом (mAlO3⋅SiO2, m=1,5-2,05) обладают большим сопротивлением ползучести и жаростойкостью при высоких температурах. Направленно кристаллизованные эвтектические волокна (Al2O3-Y3Al5O12, Al2O3-Er3Al5O12, Al2O3-Y3Al5O12-ZrO2, Al2O3-GdAlO3) кроме высокой прочности и большого сопротивления ползучести также обладают большой пластичностью при высоких температурах. Использование тех или иных оксидных волокон в слоисто-волоконном композите позволяет управлять структурой границы раздела волокна и матрицы и повышать прочность, жаростойкость, сопротивление ползучести и рабочие температуры композитов.

Изобретение поясняется рисунками и примером.

Фиг. 1 сборка слоисто-волокнистого композитного образца;

Фиг. 2 а) схема пакета элементов с указанием направления прессования, б) схема композита после диффузионной сварки;

Фиг. 3 микроструктура слоисто-волокнистого композита в сечении, перпендикулярном волокнам;

Фиг. 4 а) поверхность разрушения композитного образца по изобретению (объемная доля сапфировых волокон 34%) после испытаний на прочность; б) - участок поверхности разрушения: 1 - волокно, 2 - слой ниобия с интерметаллидами, 3 - слой молибдена с примыкающими слоями интерметаллидов молибдена и алюминия;

Фиг. 5 зависимость прочности композитных образцов с матрицей на основе ниобия и молибдена при испытаниях на прочность от температуры;

Фиг. 6 зависимость прогибов образцов от нагрузки при температурах: а) 20°С, б) 1200°С.

Многослойная структура заготовки представляет собой плоский пакет, набранный из повторяющихся отдельных элементов (Фиг. 1). Исходные компоненты собираются последовательной укладкой следующим образом: однонаправленно с заданным шагом укладываются оксидные волокна 1 на лист алюминиевой фольги 2, промежутки между волокнами заполняются суспензией порошка технически чистого ниобия в полиэтиленгликоле 3, после чего на волокна укладывается второй слой алюминиевой фольги 4. Затем собранный таким образом элемент 5 укладывается на лист фольги из молибдена 6. Необходимое количество элементов 5 собирается в полную заготовку многослойного композитного материала. Диффузионная сварка производится путем двустороннего прессования с приложением давления перпендикулярно слоям при высокой температуре (Фиг. 2а). В результате обработки алюминий, содержащийся первоначально в фольге, полностью переходит в соединения с ниобием и молибденом. На границах молибденовой фольги образуется слой из Mo3Al, и твердых растворов Mo-Al 7, со стороны ниобия - слой из интерметаллидов Nb2Al, Nb3Al и твердых растворов Nb - Al 8 (Фиг. 2б).

Пример получения структуры слоисто-волокнистого композита с оксидными волокнами и матрицей на основе ниобия и молибдена.

Композит изготавливался твердофазным методом диффузионной сварки исходных компонентов под нагрузкой. В качестве волокон брались монокристаллические волокна сапфира, выращенные методом Степанова из расплава оксида алюминия, фольги молибдена и алюминия, а также порошок ниобия использовались промышленного изготовления. Собиралась полная заготовка многослойного композиционного материала в соответствии с описанной схемой. Далее пакет помещался в вакуумную камеру (вакуум не ниже 10-4 рт.ст.) установки для горячего прессования, в которой осуществлялась диффузионная сварка при давлении 10 МПа и температуре 1630°С в течение 0.5 часов.

Микрофотография поперечного сечения полученного композита показана на (Фиг. 3). Структура представляет собой плотную упаковку волокон сапфира, объемная доля которых в композите составляет 34%. В матрице расположены исходные материалы, а в зонах контактов исходных компонентов за счет диффузии образуются твердые растворы Nb-Al и Мо-Al, а также Mo3Al.

Композит был испытан на прочность в диапазоне температур 20-1400°С. Определена эффективная поверхностная энергия разрушения композита. Полученные значения прочности, превышающие 700 МПа при комнатной температуре, и эффективной поверхностной энергии (до 12⋅103 Дж/м2) удовлетворяют уровню рабочих характеристик высокотемпературных композитов.

Топография поверхности разрушения композита (Фиг. 4) свидетельствует о нехрупком разрушении образцов и возникновении различных механизмов микроразрушений при нагружении материала: множественного дробления волокон, вытягивания волокон из матрицы, расслоений по границам раздела компонентов, служащих стопорами трещин, пластической деформации твердых растворов, которые в совокупности обеспечивают необходимую трещиностойкость структуры композита, содержащего хрупкие компоненты. Достаточно пластичные твердые растворы вносят существенный вклад в трещиностойкость композита, а интерметаллиды - в повышение жесткости и прочности и сопротивления ползучести.

Образцы композитного материала с матрицей на основе ниобия и молибдена были испытаны на трехточечный изгиб в диапазоне температур 20-1400°C с записью зависимостей нагрузка - прогиб, которая позволяет оценить деформационные характеристики образцов. На Фиг. 5а приведены значения прочности композитных образцов в зависимости от температуры. Показанные деформационные зависимости при температурах 20°С (Фиг. 6а) и 1200°С (Фиг. 6б) свидетельствуют о заметной роли пластических деформаций в структуре композита при высоких температурах.

Композитные структуры со слоистой матрицей из высокотемпературных материалов на основе ниобия, молибдена, твердых растворов алюминия в ниобии и молибдене, а также интерметаллидов Nb2Al, Nb3Al, Mo3Al, армированные высокотемпературными высокопрочными оксидными волокнами, использование твердофазного метода для их изготовления позволяют в значительной мере обеспечить повышенные эксплуатационные характеристики высокотемпературных материалов.

Источник поступления информации: Роспатент

Showing 31-40 of 91 items.
25.08.2017
№217.015.bfac

Способ изготовления изделия с фильтром для агрессивных жидкостей и газов

Изобретение относится к области химической технологии и может быть использовано для изготовления фильтров, способных применяться для очистки агрессивных жидкостей и газов от инородных включений при высоких температурах эксплуатации, в том числе диметилгидразина, используемого в качестве...
Тип: Изобретение
Номер охранного документа: 0002617105
Дата охранного документа: 20.04.2017
25.08.2017
№217.015.cee8

Способ получения полых нагревателей сопротивления на основе углеродкарбидокремниевого материала

Предложен способ получения полых трубчатых нагревателей из композиционного материала на основе углерода, кремния и карбида кремния путем пропитки расплавленным кремнием предварительно сформированной трубы из углеграфитовых тканей. Заготовку перемещают в вакуумной среде относительно капиллярного...
Тип: Изобретение
Номер охранного документа: 0002620688
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d64a

Устройство квантовой криптографии (варианты)

Устройство квантовой криптографии включает источник излучения, первый волоконный светоделитель, волоконный интерферометр, второй волоконный светоделитель, первый фазовый модулятор, третий волоконный светоделитель, детектор, аттенюатор, линию задержки, поляризационный фильтр, второй фазовый...
Тип: Изобретение
Номер охранного документа: 0002622985
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d8c0

Способ получения сульфида галлия (ii)

Изобретение относится к неорганической химии, а именно к получению сульфида галлия (II), являющегося перспективным материалом для полупроводниковой оптоэлектронной техники и инфракрасной оптики. Cинтез GaS проводили в замкнутом объеме из элементарных галлия и серы, взятых в стехиометрическом...
Тип: Изобретение
Номер охранного документа: 0002623414
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e440

Модулятор электромагнитного излучения субтерагерцового и терагерцового диапазона для систем высокоскоростной беспроводной связи

Изобретение относится к оптоэлектронике, а именно к модуляторам электромагнитного излучения, в частности, работающим в субтерагерцовом и терагерцовом диапазонах частот (100-10000 ГГц). Изобретение может использоваться в областях науки и техники, использующих данные диапазоны частот, в...
Тип: Изобретение
Номер охранного документа: 0002626220
Дата охранного документа: 24.07.2017
19.01.2018
№218.016.0759

Способ получения кремниевых мишеней для магнетронного распыления

Изобретение относится к литейному производству, в частности к получению кремниевых профильных отливок для мишеней магнетронного распыления. Шихту полупроводникового поликристаллического кремния расплавляют в графитовом тигле, который перемещают вертикально в полости нагревателя. В донном...
Тип: Изобретение
Номер охранного документа: 0002631372
Дата охранного документа: 21.09.2017
10.05.2018
№218.016.4d2f

Способ выращивания кристаллов фуллерена с60

Изобретение может быть использовано в полупроводниковой оптоэлектронике. Навеску порошка исходного фуллерена С60 загружают в кварцевую ампулу, внутренняя поверхность которой покрыта пироуглеродом для защиты исходного порошка от воздействия УФ излучения. Затем проводят низкотемпературную...
Тип: Изобретение
Номер охранного документа: 0002652204
Дата охранного документа: 25.04.2018
12.07.2018
№218.016.6fa1

Способ изготовления смесей для калибровки газоаналитического оборудования с использованием твердотельного электролизера

Изобретение относится к исследованию и анализу газов. Способ изготовления смесей для калибровки газоаналитического оборудования, включает: электролиз поступающих в электролизер газовых компонентов с контролируемым выходом продуктов, их смешивание с известным потоком инертного газа и получение...
Тип: Изобретение
Номер охранного документа: 0002661074
Дата охранного документа: 11.07.2018
09.08.2018
№218.016.78ff

Материал шпонки для высокотемпературных применений

Изобретение относится к области машиностроения и может быть использовано в устройствах, при работе которых возможно выделение большого количества тепла, приводящего к тепловому расширению шпонки и заклиниванию устройства. Композиционный материал шпонки представляет собой матрицу из...
Тип: Изобретение
Номер охранного документа: 0002663146
Дата охранного документа: 01.08.2018
14.03.2019
№219.016.dfbb

Способ прочного соединения изделий из графита

Изобретение относится к области химической технологии и может быть использовано для изготовления блоков из графитовых деталей, способных использоваться при высоких температурах. Сначала на торцевые поверхности подлежащих соединению графитовых деталей наносят слои поливинилацетата, в полученный...
Тип: Изобретение
Номер охранного документа: 0002681628
Дата охранного документа: 11.03.2019
Showing 11-15 of 15 items.
31.05.2020
№220.018.22bb

Сапфировый роликовый аппликатор для криохирургии и криотерапии

Изобретение относится к криогенной технике, а именно криоаппликаторам иммерсионного типа, и может использоваться в криомедицине и ветеринарии. Криоаппликатор содержит ролик и ручку, ролик выполнен из сапфира в виде шлифованного или полированного шара или цилиндра с углублениями на торцах, в...
Тип: Изобретение
Номер охранного документа: 0002722352
Дата охранного документа: 29.05.2020
20.04.2023
№223.018.4ab9

Композиция для высокотемпературной керамики и способ получения высокотемпературной керамики на основе карбида кремния и силицида молибдена

Группа изобретений относится к области получения керамических материалов на основе карбида кремния (SiC) и силицида молибдена, которые могут использоваться при получении изделий повышенной термостойкости, при изготовлении деталей турбин, авиационных двигателей, фрикционных элементов,...
Тип: Изобретение
Номер охранного документа: 0002788686
Дата охранного документа: 24.01.2023
21.04.2023
№223.018.4fc0

Волновод с субволновой фокусировкой для терагерцовой эндоскопии

Изобретение относится к оптике, а именно к устройствам для передачи и преобразования пучков терагерцового излучения. Заявленный волновод с субволновой фокусировкой для терагерцовой эндоскопии включает полую трубку, на внешней поверхности которой имеется оболочка. Внутренний диаметр трубки...
Тип: Изобретение
Номер охранного документа: 0002790924
Дата охранного документа: 28.02.2023
23.04.2023
№223.018.51d2

Композиция с углеродными нанотрубками для получения углеродной заготовки для высокоплотной sic/c/si керамики и способ получения изделий из sic/c/si керамики

Композиция и способ изобретения относятся к получению изделий из высокоплотной карбидокремниевой SiC/C/Si керамики для различных отраслей промышленности. Технический результат состоит в увеличении глубины силицирования углеродных заготовок, увеличении размеров изделий из силицированых графитов,...
Тип: Изобретение
Номер охранного документа: 0002730092
Дата охранного документа: 17.08.2020
24.04.2023
№223.018.5275

Способ получения изделий из карбидокремниевой керамики

Способ изобретения относится к области получения карбидокремниевых керамических изделий, в том числе крупногабаритных, обладающих повышенными эксплуатационными характеристиками, в том числе при высоких температурах для применения в различных областях промышленности. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002740984
Дата охранного документа: 22.01.2021
+ добавить свой РИД