×
20.04.2023
223.018.4c47

Результат интеллектуальной деятельности: Способ формирования пористого покрытия на рельефной поверхности

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу напыления трехмерных капиллярно-пористых (ТКП) покрытий на предварительно сформированную рельефную поверхность и может быть использовано в инженерной практике для повышения эффективности теплообмена на поверхности нагретых узлов в условиях смены агрегатного состояния хладагента, для формирования поверхностей носителей катализатора и для очистки жидкостей. Способ формирования металлического пористого покрытия на рельефной поверхности металлических деталей, работающих в условиях смены агрегатного состояния хладагента, включает формирование на поверхности детали рельефа путем создания прорезей в двух взаимно перпендикулярных направлениях, при этом в одном из направлений боковые поверхности рельефа наклонены под углами от 50 до 80° к его опорной поверхности, а плазменное покрытие в виде гребней и впадин напыляют под углом 90° к опорной поверхности рельефа. Изобретение направлено на повышение величины нормированной контактной поверхности. 4 пр., 4 ил.

Изобретение относится к области металлургии, а более конкретно к формированию рельефной пористой поверхности плазменным напылением и может быть использовано для повышения эффективности теплообмена на поверхности нагретых деталей и узлов в условиях смены агрегатного состояния хладагента, для формирования поверхностей носителей катализатора и для очистки жидкостей.

Известен способ нанесения пористого покрытия (Патент RU 623944 С1), когда покрытие наносится на базовую поверхность подложки сначала под углом 90°, а на второй стадии с углом меньшим 45° к ней. В этом случае на подложке формируется трехмерное капиллярно-пористое (ТКП) покрытие с бимодальной пористостью от 10 до 60%. Такие покрытия состоят из гребней и впадин с высотой равной толщине покрытия. Основной объем порового пространства этих покрытий составляют впадины с шириной от 50 до 600 мкм. Боковые стенки гребней содержат капилляры с размером менее 10 мкм. Недостатком данного способа напыления является невозможность формирования дополнительного пористого пространства с порами большего размера.

Известен способ плазменного напыления покрытий из проволоки (Рис. 1 позиция 1) на поверхность с локальным рельефом, который сформирован прорезями имеющими профиль типа «ласточкиного хвоста», полученными механической обработкой (Рис. 1 позиция 2) (Hoffmeister Н. W., Schnell С.Mechanical roughing of cylinder bores in light metal crankcases //Production Engineering. - 2008. - T. 2. - №. 4. - C. 365-370. Bobzin K. et al. Development of novel Fe-based coating systems for internal combustion engines //Journal of Thermal Spray Technology. - 2018. - T. 27. - №. 4. - C. 736-745.). Данный рельеф формируется для увеличения прочности соединения изделия с напыленным покрытием до 60 МПа. Глубина рельефа до напыления имеет размер 100-120 мкм. Углы наклона поверхности рельефа у его вершины составляют от 24 до 33°, а у основания 103-110°, относительно опорной поверхности рельефа. Ширина рельефа у основания 130-140 мкм, а ширина канавки между соседними элементами рельефа 170-190 мкм. Недостатком данного способа нанесения покрытий является невозможность формирования капиллярно-пористого покрытия на боковых поверхностях рельефа, так как они не образуют углов менее 45° относительно вектора движения напыляемых частиц.

Известна рельефная поверхность с покрытием, интенсифицирующая теплообмен при смене агрегатного состояния хладоагента (Авторское свидетельство SU1788425 А1). Рельеф формируется в виде ребер (Рис. 2, позиция 1), верхние части боковых поверхностей которых имеют однородное пористое покрытие (Рис. 2, позиция 2) с толщиной, переменной по высоте ребер, с увеличением толщины покрытия вершине ребра, а нижние части боковых поверхностей ребер снабжены микрорельефом (Рис. 2, позиция 3). Боковые поверхности ребер, на которые наносятся покрытия, имеют углы меньшие 90° относительно опорной поверхности рельефа. Опорная поверхность рельефа совпадает с базовой поверхности изделия. Поверхности покрытия на боковых поверхностях ребер перпендикулярны базовой поверхности изделия. В итоге поверхность изделия имеет два вида пористого пространства, бимодальная пористость: пористость покрытия на боковой поверхности ребер и пространство между ребрами.

Этот источник является наиболее близким к способу формирования пористого покрытия на рельефной поверхности для формирования развитой поверхности изделия, его взяли в качестве прототипа.

Способ формирования пористости на рельефной поверхности, реализуемый в прототипе имеет недостатки, пористое покрытие, сформированное таким способом, состоит из равномерно распределенных плотных частиц и пор, а толщина пористого покрытие увеличивается по мере удаления от опорной поверхности рельефа. Такое пористое покрытие имеет небольшую величину контактной поверхности, не более чем в 1,5 раза превышающую площадь опорной поверхности, на которой сформировано покрытие. Это снижает эффективность отвода тепла от изделия. Такая пористая структура недостаточно эффективна, например, в процессе теплообмена, так через такую пористую структуру должен одновременно происходить подвод к изделию жидкого хладагента и обратный выброс газовой фазы из пористого пространства. Создание микрорельефа у основания ребер, требует дополнительной сложной механической обработки.

Задачей изобретения является: создание способа формирования пористого покрытия с большей величиной нормированной контактной поверхности на поверхности с предварительно сформированным рельефом.

Техническим результатом изобретения является: трехмерное капиллярно -пористое (ТКП) покрытие на рельефе, сформированном до напыления и образованном двумя рядами прорезей во взаимно перпендикулярных направлениях, в одном из рядов боковые поверхности наклонены под углами от 50° до 80° к опорной поверхности рельефа. ТКП покрытие состоит из гребней, высота которых равна толщине покрытия, и впадин между ними. У такого покрытия величина нормированной контактной поверхности повышается в 7-14 раз по отношению к опорной поверхности.

Технический результат достигается тем, что рельеф формируется прорезями в двух взаимно перпендикулярных направлениях, в одном из направлений боковые поверхности наклонены под углами от 50° до 80° к опорной поверхности рельефа, а покрытие в виде гребней и впадин напыляют под углом 90° к опорной поверхности рельефа.

Сущность получаемого технического результата заключается в том, что предварительный рельеф формируется рядами взаимно перпендикулярных прорезей (Рис. 3, параметры b и с), в одном из направлений боковые поверхности наклонены под углами от 50° до 80° (Рис. 3, параметр α) к опорной поверхности рельефа (Рис. 3, позиция 1). Процесс напыления ведут при угле 90° между траекторией движения напыляемых частиц и опорной поверхностью рельефа. Угол наклона боковых поверхностей рельефа от 50° до 80° определяет угол соударения напыляемых частиц с боковой поверхностью рельефа 40°-10°. При таких углах соударения за затвердевшими на боковых поверхностях рельефа частицами образуются теневые зоны, куда не могут попасть следующие напыляемые частицы. Из теневых зон формируются впадины ТКП покрытия (Рис. 4, позиция 1), а на уже закрепившихся на боковых поверхностях рельефа частицах осаждаются новые частицы и растут гребни (Рис. 4, позиция 2). Высота гребней и впадин равна толщине покрытия (Рис. 4, параметр δ). В результате пористость в ТКП покрытии формируется за счет объема впадин и капилляров между частицами покрытия, сформированных в боковых стенках гребней (Рис. 4, позиция 3). Впадины служат для подвода жидкого хладагента и удаления паровой фазы. Капилляры удерживают жидкую фазу и таким образом интенсифицируют теплообмен. Количественно рост эффективности теплообмена характеризуется увеличением нормированной контактной поверхности ТКП покрытия (отношения площади поверхности ТКП покрытия контактирующей с хладагентом к площади боковой поверхности рельефа, на который было нанесено покрытие) со значения 1,5 в прототипе и до 7-14 в данном изобретении.

Пример 1. Покрытие из бронзового порошка ПР-БрМц9-2 фракционного состава 20-32 мкм напыляли на латунную трубку с предварительно нанесенным на нее поверхностным рельефом двумя рядами взаимно перпендикулярных прорезей, в одном из которых угол наклона боковых поверхностей к базовой поверхности рельефа α=50°, высота рельефа h=0,1 мм, расстояние между элементами рельефа b=0,1 мм, с=0,5 мм. Отношение h/b=1.

Эффективная мощность плазменной струи 5,6 кВт, расход плазмообразующего газа Ar+10%N2 34 л/мин. На боковых поверхностях рельефа сформировалось ТКП покрытие толщиной 5=0,075 мм. Величина нормированной контактной поверхности ТКП покрытия равна 7.

Пример 2. Покрытие из порошка нержавеющей стали Х18Н25 фракционного состава 32-56 мкм напыляли на медный цилиндр с предварительно нанесенным на него поверхностным рельефом из прорезей в двух взаимно перпендикулярных направлениях, в одном из направлений угол наклона боковых поверхностей к базовой поверхности рельефа α=80°, высота рельефа h=1 мм, расстояние между элементами рельефа b=0,5 мм, с=0,5 мм. Отношение h/b=2. Эффективная мощность плазменной струи 5,6 кВт, расход плазмообразующего газа Ar+10%N2 34 л/мин. На боковых поверхностях рельефа сформировалось пористое покрытие толщиной δ=0,150 мм. Величина нормированной контактной поверхности ТКП покрытия равна 14.

Пример 3. Покрытие из бронзового порошка ПР-БрМц9-2 фракционного состава 20-32 мкм напыляли на алюминиевую трубку с предварительно нанесенным на нее поверхностным рельефом из прорезей в двух взаимно перпендикулярных направлениях, на одном из которых угол наклона боковых поверхностей к базовой поверхности рельефа α=60°, высота рельефа h=3 мм, расстояние между элементами рельефа b=1 мм с=1 мм. Отношение h/b=3. Эффективная мощность плазменной струи 4,8 кВт, расход плазмообразующего газа Ar+10%N2 20 л/мин. На боковых поверхностях рельефа сформировалось пористое покрытие толщиной δ=0,315 мм. Величина нормированной контактной поверхности ТКП покрытия равна 9.

Пример 4. Покрытие из бронзового порошка ПР-БрМц9-2 фракционного состава 71-100 мкм напыляли на латунную трубку с предварительно нанесенным на нее поверхностным рельефом из прорезей в двух взаимно перпендикулярных направлениях, на одном из которых угол наклона боковых поверхности к базовой поверхности рельефа α=75°, высота рельефа h=3,0 мм, расстояние между элементами рельефа b=0,1 мм с=0,5 мм. Отношение h/b=30. Эффективная мощность плазменной струи 8,5 кВт, расход плазмообразующего газа Ar+10%N2 34 л/мин. На боковых поверхностях рельефа сформировалось пористое покрытие толщиной δ=0,075 мм. Величина нормированной контактной поверхности ТКП покрытия равна 12.

Способ формирования металлического пористого покрытия на рельефной поверхности металлических деталей, работающих в условиях смены агрегатного состояния хладагента, включающий плазменное нанесение металлического покрытия на поверхность металлической детали с предварительно нанесенным на нее рельефом, отличающийся тем, что рельеф формируют путем создания прорезей в двух взаимно перпендикулярных направлениях, при этом в одном из направлений боковые поверхности рельефа наклонены под углами от 50 до 80° к его опорной поверхности, а плазменное покрытие в виде гребней и впадин напыляют под углом 90° к опорной поверхности рельефа.
Источник поступления информации: Роспатент

Showing 81-90 of 108 items.
04.11.2019
№219.017.de5f

Способ получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция

Изобретение может быть использовано в реконструктивно-пластической хирургии для пластической реконструкции поврежденных костных тканей. Для получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция, для заполнения костных дефектов проводят синтез in...
Тип: Изобретение
Номер охранного документа: 0002705084
Дата охранного документа: 01.11.2019
29.11.2019
№219.017.e7ff

Сферический порошок псевдосплава на основе вольфрама и способ его получения

Изобретение относится к сферическому порошку псевдосплава на основе вольфрама. Ведут гранулирование порошка наноразмерного композита, состоящего из металлических частиц с размерами менее 100 нм и полученного водородным восстановлением в термической плазме смеси порошков оксидов вольфрама с...
Тип: Изобретение
Номер охранного документа: 0002707455
Дата охранного документа: 26.11.2019
27.12.2019
№219.017.f28e

Керамический материал с низкой температурой спекания на основе системы диоксида циркония - оксида алюминия - оксида кремния

Изобретение относится к области получения высокоплотной керамики на основе ZrO-AlO-SiO. Разработанные материалы могут быть использованы для получения огнеупорных изделий, высокотемпературных деталей машин и печного оборудования. Керамический материал имеет следующий химический состав, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002710341
Дата охранного документа: 25.12.2019
31.12.2020
№219.017.f4a9

Керамический композиционный материал

Изобретение относится к керамическому материаловедению, получению композиционного материала с матрицей диоксида циркония, стабилизированного в тетрагональной форме, и оксида алюминия. Материал может быть использован для изготовления изделий конструкционного и медицинского назначения, в...
Тип: Изобретение
Номер охранного документа: 0002710648
Дата охранного документа: 30.12.2019
15.02.2020
№220.018.02b4

Способ получения окрашенного однофазного пирофосфата кальция

Изобретение может быть использовано в производстве материалов для восстановления дефектов костной ткани, зубных пломб. Способ получения окрашенного однофазного пирофосфата кальция включает смешение лактата кальция с двузамещенным фосфатом аммония при их мольном соотношении, равном 1. Смешение...
Тип: Изобретение
Номер охранного документа: 0002714188
Дата охранного документа: 12.02.2020
15.02.2020
№220.018.02d1

Способ определения площади контакта оправки и заготовки при винтовой прошивке

Изобретение относится к области обработки металлов давлением. Способ заключается в том, что заготовку прошивают на глубину, равную 0,5÷0,75 от ее исходной длины, процесс прошивки останавливают, заготовку снимают с оправки. Далее определяют размеры заготовки и оправки. На основе измерений в...
Тип: Изобретение
Номер охранного документа: 0002714225
Дата охранного документа: 13.02.2020
17.02.2020
№220.018.0325

Керметный порошок для плазменного напыления

Изобретение относится к материалу керметного порошка для плазменного напыления и может использоваться для формирования износостойких покрытий. Керметный порошок содержит 20-80 массовых процентов карбида титана, упрочняющие фазы CrC, WC, TiN в количестве 20-45% относительно карбида TiC и...
Тип: Изобретение
Номер охранного документа: 0002714269
Дата охранного документа: 13.02.2020
15.04.2020
№220.018.1473

Способ изготовления керамики на основе карбида кремния, армированного волокнами карбида кремния

Изобретение относится к способу получения керамического композита из карбида кремния, упрочненного волокном из карбида кремния, который может быть использован для работы в кислых и агрессивных средах, в условиях высоких температур и длительного механического воздействия. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002718682
Дата охранного документа: 13.04.2020
07.06.2020
№220.018.24b3

Способ раскатки трубных заготовок

Изобретение относится к области обработки металлов давлением и может быть использовано для получения бесшовных труб раскаткой полых трубных заготовок в стане винтовой прокатки. Полую трубную заготовку - гильзу подвергают раскатке в четырехвалковом стане винтовой прокатки, все валки которого...
Тип: Изобретение
Номер охранного документа: 0002722952
Дата охранного документа: 05.06.2020
18.06.2020
№220.018.2779

Способ получения биомедицинского материала "никелид титана-полилактид" с возможностью контролируемой доставки лекарственных средств

Изобретение относится к технологии получения композиционного биомедицинского материала никелид титана-полилактид с возможностью контролируемой доставки лекарственных средств. Предложенный способ получения биомедицинского материала никелид титана-полилактид включает получение раствора...
Тип: Изобретение
Номер охранного документа: 0002723588
Дата охранного документа: 16.06.2020
Showing 31-32 of 32 items.
01.06.2023
№223.018.74c6

Способ упрочнения цилиндрического изделия с покрытием поверхностно-пластическим деформированием

Изобретение относится к области металлургии, а более конкретно к формированию коррозионно- и износостойких покрытий с высокой плотностью и твердостью. Способ упрочнения цилиндрического изделия с покрытием поверхностно-пластическим деформированием включает равномерное перемещение покрытия...
Тип: Изобретение
Номер охранного документа: 0002765559
Дата охранного документа: 01.02.2022
19.06.2023
№223.018.824f

Способ получения мезопористых порошков гидроксиапатита методом химического соосаждения

Изобретение относится к методу получения мезопористых порошков гидроксиапатита, применяемых в катализе. Описан способ получения мезопористых порошков гидроксиапатита методом химического соосаждения, включающий приготовление растворов нитрата кальция и фосфата аммония, перемешивание раствора...
Тип: Изобретение
Номер охранного документа: 0002797213
Дата охранного документа: 31.05.2023
+ добавить свой РИД