×
20.04.2023
223.018.4c0a

Результат интеллектуальной деятельности: Способ одновременной калибровки нескольких датчиков теплового потока

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу одновременной калибровки нескольких датчиков теплового потока при помощи лазерного излучения и может быть использовано в высокоскоростных газодинамических экспериментах, в газовой динамике, в исследовании пламени и химических реакций с выделением тепла. Технический результат – повышение точности и быстроты проведения калибровки и ее упрощение. В оптический тракт подают лазерное излучение в виде параллельного пучка. Установленным в оптическом тракте преобразователем излучения меняют форму, размер и угол расширения или сжатия лазерного пучка. Вращающимся плоским зеркалом сканируют полученное лазерное излучение и отраженное от вращающегося плоского зеркала по поверхности калибруемых датчиков. Полученные с калибруемых датчиков электрические сигналы подают на сумматор. Расстояние между калибруемыми датчиками выбирают больше размера лазерного пучка на калибруемых датчиках, поверхность калибруемых датчиков устанавливают перпендикулярно оси падающего на них лазерного излучения на равном расстоянии от центра вращения отражающего плоского зеркала, а сами калибруемые датчики поддерживают при заданной температуре размещением на теплоотводящей пластине. 2 ил.

Заявляемый способ одновременной калибровки нескольких датчиков теплового потока направлен на упрощение процесса калибровки и улучшение характеристик, а именно, на повышение точности и быстроты проведения калибровки.

Измерения температуры поверхности и теплового потока играют очень важную роль при проведении исследований процессов теплообмена. Регистрация изменения тепловых потоков в газодинамическом эксперименте в течение ультракоротких временных периодов является одним из наиболее существенных факторов при постановке и проведении исследований теплопередачи в импульсных сверх- и гиперзвуковых течениях. Характерные временные значения в таких газодинамических экспериментах составляют от сотен микросекунд до нескольких миллисекунд. В экспериментах, проводимых в ударных трубах, модель испытывает внезапную сильную тепловую нагрузку в очень коротком временном масштабе измерения. Чтобы откалибровать термодатчики для таких условий набегающего потока, проводятся эксперименты путем приложения тепловой нагрузки от лазерного луча с известной выходной мощностью. Для импульсных газодинамических процессов метод лазерной калибровки является наиболее подходящим, поскольку позволяет очень быстро подавать на датчик желаемое значение теплового потока. Используемое значение мощности излучения является фиксированным и может быстро меняться в процессе калибровки. Получаемая вольт-ваттная характеристика датчика является подходящей для его последующего применения при рассматриваемых режимах течения газа - короткие временные интервалы и высокие температурные нагрузки. При исследовании сложных тел в ударных трубах требуется использование нескольких датчиков, расположенных в различных местах поверхности. Желательно применение датчиков с одинаковыми параметрами, или, по крайней мере, с полученными экспериментально значениями вольт-ваттных характеристик для автоматической корректировки результатов экспериментов.

Известен способ калибровки датчиков теплового потока, принятый за аналог, приведенный в [1-3] ([1] Jan A. Gatowski, Mark K. Smith, Alex C. Alkidas. An Experimental Investigation of Surface Thermometry and Heat Flux, Experimental Thermal and Fluid Science 1989, 2, [2] David R Buttsworth et al 2005 Meas. Sci. Technol. 16 1487, [3] Penty Geraets, R. T., et al. Calibration and Processing Techniques for a Robust Fast-Response Surface Heat Transfer Gauge. American Institute of Aeronautics and Astronautics, 2018). Используемые калибровочные стенды имеют лазерный источник излучения и оптическую схему. По приходу лазерного излучения на калибруемый датчик теплового потока начинается процесс записи сигнала, выдаваемого датчиком. Оптическая ось располагаются параллельно горизонту, калибруемый датчик помещается вертикально и подключается к регистрирующему устройству через усилитель сигнала.

Известен способ калибровки датчиков теплового потока, принятый за аналог, приведенный в [4] ([4] Y. Heichal et al. Experimental Thermal and Fluid Science 30, 2005). При данном способе калибруемый датчик теплового потока располагается на горизонтальной платформе. Сфокусированный лазерный луч светит сверху, оптическая ось располагается перпендикулярно к горизонту.

Недостатком описанных выше способов является неоднородность характерного профиля мощности излучения лазерного пучка, приходящего на калибруемый датчик. В оптических схемах отсутствуют элементы гомогенизации лазерного излучения для задания однородного распределения мощности на площадке калибруемого датчика. Этот факт затрудняет оценку мощности теплового потока, приходящего на датчик. Вследствие такой неоднородности калибрующий сигнал, получаемый от потока лазерного излучения, неравномерно приложенного к чувствительному элементу, будет отличаться от реальных условий, моделируемых в эксперименте. Получаемая при такой калибровке вольт-ваттная характеристика не может иметь высокую степень достоверности при применении датчика в реальном газодинамическом эксперименте.

Известен способ калибровки датчиков теплового потока [5] ([5] Патент RU 75467 U1), приведенный в [6] ([6] S. Sapozhnikov, V. Mityakov, A. Mityakov. Heatmetry: The Science and Practice of Heat Flux Measurement. Springer Nature 2020). При данном способе в качестве элемента подвода лазерного излучения к калибруемому датчику в оптической схеме использовался зеркальный расширитель пучка. За счет известного из уровня техники свойств гомогенизации излучения зеркальный расширитель может увеличивать пространственные характеристики градиентов мощности излучения и сглаживать резкие локальные границы их переходов, обусловленных такими неоднородностями.

Недостатком данного способа является отсутствие возможности перемещения лазерного луча по поверхности калибруемого датчика, что не позволяет моделировать тепловое воздействие, аналогичное возникающему в высокоскоростных газодинамических экспериментах. Кроме того, не предусмотрена одновременная калибровка нескольких датчиков.

Известен способ калибровки датчиков теплового потока, принятый за прототип, приведенный в [7] ([7] Dean Jennings, Patent US 7005601 B2 02/28/2006). В данном способе для размещения калибруемого датчика используется горизонтальная платформа, которая является подвижной в одном горизонтальном направлении. Благодаря этому имеется возможность двигать лазерный луч для задания при процессе калибровки датчика линии непрерывного теплового нагружения.

Недостатком данного способа является отсутствие возможностей регулировки положения лазерного излучения в широких пространственных и временных диапазонах. Данные ограничения обусловлены техническими характеристиками устройств, реализующих подвод и движение излучения, и также не позволяют моделировать тепловое воздействие, аналогичное возникающему в высокоскоростных газодинамических экспериментах, в том числе, при одновременной калибровке нескольких датчиков.

Заявляемый способ одновременной калибровки нескольких датчиков теплового потока направлен на упрощение процесса калибровки и улучшение характеристик, а именно на повышение точности и быстроты проведения калибровки.

Указанный результат достигается тем, что в способе одновременной калибровки нескольких датчиков теплового потока в оптический тракт подают лазерное излучение в виде параллельного пучка, при этом установленным в оптическом тракте преобразователем излучения меняют форму, размер и угол расширения или сжатия лазерного пучка, затем вращающимся плоским зеркалом сканируют полученное лазерное излучение, отраженное от вращающегося плоского зеркала, по поверхности калибруемых датчиков, а полученные с калибруемых датчиков электрические сигналы подают на суммирующую схему, причем расстояние между калибруемыми датчиками выбирают больше размера лазерного пучка на калибруемых датчиках, поверхность калибруемых датчиков устанавливают перпендикулярно оси падающего на них лазерного излучения на равном расстоянии от центра вращения отражающего плоского зеркала, а сами калибруемые датчики поддерживают при заданной температуре размещением на теплоотводящей пластине.

Сущность заявляемого изобретения поясняется примерами его реализации и графическими материалами.

На фиг. 1 представлен вариант осуществления изобретения.

На фиг. 2 приведен вариант стандартного сигнала, получаемого с датчика в экспериментах на ударных трубах [8] ([8] P A Popov et al 2020 J. Phys.: Conf. Ser. 1697 012225).

Способ калибровки датчиков теплового потока реализуется устройством, которое состоит из лазера 1, генерирующего параллельный пучок лазерного излучения 2, оптического тракта с установленным преобразователем излучения 3, который предназначен для изменения формы, угла расширения или сжатия лазерного луча и представляет собой прибор, состоящий, например, из комбинации линз и диафрагм, в том числе, известных из уровня техники аподизирующих диафрагм, задающих форму и размер пучка лазерного излучения, попадающего на вращающееся плоское зеркало 4, на котором точкой показан центр его вращения, а стрелками – условное направление вращения. Вращение плоского зеркала 4 может осуществляться, например, электрическим двигателем (на фиг. 1 не показан). Отраженный от вращающегося плоского зеркала 4 пучок лазерного излучения, в качестве примера изображенный сходящимся, направляют на калибруемые датчики 5 (в качестве примера на фиг. 1 показаны 3 калибруемых датчика), установленные на теплоотводящей пластине 6. Пластина 6 имеет цилиндрическую форму с центром в точке вращения плоского зеркала 4. При вращении плоского зеркала 4 пучок лазерного излучения, отражаясь от плоского зеркала 4, последовательно перемещается по калибруемым датчикам 5. Стрелками вблизи калибруемых датчиков 5 условно показано направление его перемещения. При равном расстоянии поверхности калибруемых датчиков 5 от центра вращения плоского зеркала 4 форма и интенсивность лазерного излучения на поверхности каждого калибруемого датчика 5 будет одинаковой. Температура пластины 6, а значит, и калибруемых датчиков 5, может поддерживаться постоянной при помощи воздушного или водяного охлаждения. Электрические сигналы с калибруемых датчиков 5 передают на сумматор 7, представляющий собой известную из уровня техники электронную схему, реализованную на базе операционных усилителей или микропроцессора. С выхода сумматора 7 электрический сигнал, равный сумме электрических сигналов с калибруемых датчиков 5, подают на регистратор 8, представляющий собой, например, осциллограф, или цифровой регистратор на основе аналого-цифрового преобразователя и запоминающего устройства, которые известны из уровня техники. Электрические сигналы, передающиеся от калибруемых датчиков 5 к сумматору 7 и далее к регистратору 8, условно показаны на фиг. 1 в виде сплошных линий.

Изобретение работает следующим образом. Генерируемый лазером 1 пучок параллельного излучения 2 направляют по оптическому тракту через преобразователь излучения 3, в котором может быть изменена его форма, угол расширения или сжатия пучка. Далее преобразованный пучок лазерного излучения направляют на приводимое во вращение электродвигателем (на фиг. 1 не показан) плоское зеркало 4 и отражают от него в сторону калибруемых датчиков 5. Отраженный от вращающегося плоского зеркала 4 пучок лазерного излучения за счет вращения плоского зеркала 4 перемещают по поверхности теплоотводящей пластины 6, на которой установлены калибруемые датчики 5, поверхность которых располагают на равном расстоянии от центра вращения плоского зеркала 4. Преобразованный преобразователем излучения 3 лазерный пучок требуется равномерно распределить по всей поверхности каждого из калибруемых датчиков 5 таким образом, чтобы суммарный (интегральный) импульс теплового воздействия был одинаков в каждой точке поверхности каждого калибруемого датчика 5 при прохождении по нему пучка лазерного излучения, как это происходит в реальном газодинамическом эксперименте. Это достигается в преобразователе излучения 3 расширением или сужением лазерного пучка для заполнения лазерным излучением всей поверхности каждого из калибруемых датчиков 5 при помощи линз и ограничивающих диафрагм. В случае, если лазерный пучок 2, генерируемый лазером 1, имеет неравномерное распределение интенсивности в поперечном сечении, как, например, известный из уровня техники гауссов пучок, в преобразователе излучения 3 используют также аподизирующую диафрагму, поглощение которой в различных областях поверхности пропорционально интенсивности лазерного излучения в этой области. Таким образом формируется равномерный пучок лазерного излучения, соответствующий по форме и размерам каждому калибруемому датчику 5. Пучок лазерного излучения попадает последовательно на калибруемые датчики 5, вызывая на каждом калибруемом датчике 5 тепловой импульс, аналогичный тепловому импульсу при воздействии ударной волны. Калибруемые датчики 5 располагают на теплоотводящей пластине 6 таким образом, что пучок лазерного излучения достигает следующего калибруемого датчика 5 только полностью закончив перемещение по предыдущему калибруемому датчику 5. То есть между электрическими сигналами от последовательно облучаемых пучком лазерного излучения калибруемых датчиков 5 образуется промежуток времени, когда ни на один из калибруемых датчиков 5 не попадает лазерное излучение, что соответствует на выходе сумматора 7 нулевому уровню теплового воздействия. На регистраторе 8, например, на экране осциллографа, суммарный сигнал от калибруемых датчиков 5 (в рассматриваемом случае от трех калибруемых датчиков 5) будет иметь форму, состоящую из трех последовательных импульсов с промежутками, соответствующими нулевому тепловому воздействию. При вращении плоского зеркала 4 указанный процесс повторяется периодически при каждом обороте плоского зеркала 4, приводимого во вращение электродвигателем. При этом по форме и амплитуде сигналов с калибруемых датчиков 5 возможна настройка калибруемых датчиков 5 в реальном времени, например, введением корректирующих RC-цепочек, резистивных и емкостных делителей, промежуточных усилителей сигнала с требуемыми характеристиками. Калибруемые датчики 5 располагают перпендикулярно падающему на них лазерному излучению на равном расстоянии их поверхности от центра вращения плоского зеркала 4 с целью получения одинакового теплового воздействия на каждый калибруемый датчик и попадания большей части лазерного излучения на поверхность калибруемых датчиков 5. Для увеличения коэффициента поглощения лазерного излучения возможно покрытие поверхности калибруемых датчиков 5 поглощающим материалом. Калибруемые датчики 5 устанавливают на теплоотводящей пластине 6 с целью охлаждения калибруемых датчиков 5 при воздействии тепловых импульсов, так как калибруемые датчики 5 могут иметь температурную зависимость своих показаний. Из-за возможной температурной зависимости свойств калибруемых датчиков теплоотводящая пластина 6 поддерживается при постоянной температуре воздушным или водяным охлаждением, либо элементами Пельтье, либо другими известными из уровня техники способами. Теплоотводящая пластина 6 может быть выполнена из металла или керамики с высокой теплопроводностью.

В отличие от ударной волны, действующей на датчики однократно, периодическое воздействие позволяет оперативно откалибровать датчики 5 при различных мощностях лазерного излучения, скоростях нарастания теплового воздействия и длительности теплового импульса, которые можно варьировать в широких пределах изменением формы, размера и угла схождения и расхождения пучка лазерного излучения, установленным преобразователем излучения 3, и скоростью вращения плоского зеркала 4.

Для оценки применимости изобретения предположим, что скорость вращения плоского зеркала 4 составляет 60000 оборотов в минуту, что можно обеспечить, например, стандартным станочным электрическим шпинделем. Тогда при расстоянии от вращающегося плоского зеркала 4 до калибруемых датчиков 5, например, R= 50 см получим при угловой скорости W = 1000 оборотов в секунду линейную скорость на калибруемых датчиках 5 (следует из геометрической оптики) V = 2πR•2W = 2 х 3,14 х 50 х 2 х 1000 = 628000 см/с. При стандартном размере калибруемого датчика, например, 0,5 см получится длительность нарастания фронта приблизительно 0,8 мкс, что сопоставимо с экспериментальными данными, представленными на фиг. 2.

Характерная особенность заявляемого изобретения состоит в простом способе одновременной калибровки нескольких датчиков моделированием тепловой нагрузки, аналогичной возникающей в высокоскоростных газодинамических экспериментах, с помощью лазерного излучения, отражающегося от вращающегося зеркала. При этом сигнал с датчиков подается на суммирующую схему, позволяющую одновременно регистрировать форму импульсов всех датчиков на одном экране. В отличие от трудоемких и дорогостоящих однократных газодинамических экспериментов заявляемое изобретение позволяет в многократно повторяющемся режиме точно измерять отклик калибруемых датчиков на тепловой поток, сравнивать в реальном времени их характеристики и при необходимости осуществлять калибровку, настройку или отбраковку датчиков.

Способ одновременной калибровки датчиков теплового потока, при котором калибровку выполняют посредством лазерного излучения, которое подают в оптический тракт в виде параллельного пучка, отличающийся тем, что в оптический тракт устанавливают преобразователь лазерного излучения и посредством него меняют форму, размер и угол расширения или сжатия пучка лазерного излучения, а вращающимся плоским зеркалом полученное лазерное излучение сканируют последовательно по поверхности калибруемых датчиков и полученные с калибруемых датчиков электрические сигналы подают на сумматор, причем расстояние между калибруемыми датчиками выбирают больше размера лазерного пучка на калибруемых датчиках и поверхность калибруемых датчиков устанавливают перпендикулярно оси падающего на них лазерного излучения на равном расстоянии от центра вращения отражающего плоского зеркала, при этом преобразованный преобразователем излучения лазерный пучок равномерно распределяют по всей поверхности каждого из калибруемых датчиков с обеспечением суммарного импульса теплового воздействия, одинакового в каждой точке поверхности каждого калибруемого датчика при прохождении по нему пучка лазерного излучения, причем пучок лазерного излучения перемещают до следующего калибруемого датчика при условии, что полностью закончено перемещение по предыдущему калибруемому датчику, и при обеспечении между электрическими сигналами от последовательно облучаемых пучком лазерного излучения калибруемых датчиков промежутка времени, когда ни на один из калибруемых датчиков не попадает лазерное излучение, что соответствует на выходе сумматора нулевому уровню теплового воздействия, причем калибруемые датчики поддерживают при заданной температуре размещением на теплоотводящей пластине.
Источник поступления информации: Роспатент

Showing 1-10 of 31 items.
10.04.2013
№216.012.34d0

Способ определения рельефа поверхности

Изобретение относится к измерительной технике. Технический результат - повышение информативности о профиле поверхности, скорости съема и обработки информации. Способ определения рельефа поверхности включает перемещение вдоль исследуемой поверхности набора чувствительных элементов и регистрацию...
Тип: Изобретение
Номер охранного документа: 0002479063
Дата охранного документа: 10.04.2013
27.02.2014
№216.012.a6ed

Способ и устройство для определения пластов, содержащих углеводороды

Изобретения относятся к нефтегазовой промышленности и могут быть использованы для определения местонахождения углеводородного сырья при бурении скважин. Техническим результатом является упрощение и повышение достоверности способа и устройства определения пластов, содержащих углеводороды. Способ...
Тип: Изобретение
Номер охранного документа: 0002508448
Дата охранного документа: 27.02.2014
10.08.2015
№216.013.6e4f

Способ дилатометрии

Изобретение относится к области исследования физических свойств материалов и может быть использовано преимущественно в дилатометрии, например, для измерения коэффициента линейного расширения. Заявленный способ дилатометрии включает снятие спекл-интерферограммы поля нормальных перемещений с...
Тип: Изобретение
Номер охранного документа: 0002559797
Дата охранного документа: 10.08.2015
13.01.2017
№217.015.7526

Микросистемный захват

Изобретение относится к микросистемной технике, в частности к микроробототехнике, и может быть использовано в исполнительных устройствах роботов при манипулировании микрообъектами сложных конфигураций и сыпучих материалов, например, в космической технике, для забора проб грунта планет, комет и...
Тип: Изобретение
Номер охранного документа: 0002598416
Дата охранного документа: 27.09.2016
25.08.2017
№217.015.c16c

Способ регистрации параметров разрушения материалов

Изобретение относится к области исследования механических свойств проводящих и диэлектрических материалов при их обработке и может быть использовано при получении информации в процессе различных работ, связанных с токарной обработкой, сверлением, фрезерованием, шлифованием, прокаткой и другими...
Тип: Изобретение
Номер охранного документа: 0002617566
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.d109

Гиперзвуковая ударная аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики, в частности к вакуумным аэродинамическим установкам, обеспечивающим моделирование условий полета летательных аппаратов (ЛА) в верхних слоях атмосферы и в космическом пространстве, и может быть использовано для получения...
Тип: Изобретение
Номер охранного документа: 0002621367
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.d38f

Кремниево-полиимидное гибкое сочленение для микросистем

Использование: для создания систем, обеспечивающих микроперемещения. Сущность изобретения заключается в том, что кремниево-полиимидное гибкое сочленение для микросистем содержит соединяемые полиимидной вставкой кремниевые элементы, при этом в кремниевых элементах выполнены отверстия,...
Тип: Изобретение
Номер охранного документа: 0002621465
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.e8fc

Способ изготовления образцов для триботехнических испытаний сопряжения типа "вал-вкладыш"

Изобретение относится к области исследования механических свойств металлов, в частности их износостойкости, и касается подготовки образцов типа «вкладышей» для испытаний. Способ изготовления образцов для испытания трибосопряжения типа «вал-вкладыш» включает механическую обработку заготовок...
Тип: Изобретение
Номер охранного документа: 0002627397
Дата охранного документа: 08.08.2017
23.09.2018
№218.016.8a1e

Ступня ноги шагающего космического микроробота

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса и выполнения задач напланетных миссий. Ступня ноги шагающего космического микроробота выполнена в виде...
Тип: Изобретение
Номер охранного документа: 0002667594
Дата охранного документа: 21.09.2018
23.09.2018
№218.016.8a2a

Ступня ноги шагающего космического микромеханизма

Изобретение относится к робототехнике, а именно к шагающим мобильным роботам, и предназначено для осуществления работ в экстремальных ситуациях, преимущественно в условиях открытого космоса, и выполнения задач напланетных миссий. Ступня выполнена в виде пластины с нанесенным на площадь ее...
Тип: Изобретение
Номер охранного документа: 0002667593
Дата охранного документа: 21.09.2018
Showing 1-10 of 24 items.
20.06.2014
№216.012.d2ef

Способ закрепления полимерного стента на баллонном катетере

Изобретение относится к медицине, в частности к внутрисосудистым стентам для имплантации в живой организм, которые расширяются с помощью накачиваемого баллонного катетера. Способ закрепления полимерного стента на баллонном катетере предусматривает использование приспособления в виде образующей...
Тип: Изобретение
Номер охранного документа: 0002519770
Дата охранного документа: 20.06.2014
20.12.2015
№216.013.9b80

Способ генерации широкополосного оптического излучения с высокой яркостью

Изобретение относится к области оптического приборостроения и касается способа генерации широкополосного оптического излучения с высокой спектральной яркостью. Способ включает в себя создание начальной ионизации в камере, заполненной газовой смесью высокого давления, и освещение камеры...
Тип: Изобретение
Номер охранного документа: 0002571433
Дата охранного документа: 20.12.2015
25.08.2017
№217.015.d109

Гиперзвуковая ударная аэродинамическая труба

Изобретение относится к области экспериментальной аэродинамики, в частности к вакуумным аэродинамическим установкам, обеспечивающим моделирование условий полета летательных аппаратов (ЛА) в верхних слоях атмосферы и в космическом пространстве, и может быть использовано для получения...
Тип: Изобретение
Номер охранного документа: 0002621367
Дата охранного документа: 02.06.2017
20.02.2019
№219.016.bc34

Способ генерации широкополосного оптического излучения с высокой яркостью

Изобретение относится к способам генерации широкополосного оптического излучения с высокой спектральной яркостью и представляет интерес для приложений в микроэлектронике, спектроскопии, фотохимии, медицине и других областях. Технический результат - повышение спектральной яркости, стабилизация...
Тип: Изобретение
Номер охранного документа: 0002680143
Дата охранного документа: 18.02.2019
04.02.2020
№220.017.fd14

Расширяемый медицинский стент и способ его расширения

Изобретение относится к медицинской технике, а именно к расширяемым внутрипросветным графтам (стентам), предназначенным для установки в канале или протоке организма и применяемым, в частности, для восстановления кровеносных сосудов, суженных или окклюзированных вследствие заболевания. Средство...
Тип: Изобретение
Номер охранного документа: 0002712868
Дата охранного документа: 31.01.2020
04.02.2020
№220.017.fd2e

Расширяемый медицинский стент и способ его установки

Изобретение относится к медицинской технике, а именно к расширяемым внутрипросветным графтам (стентам), предназначенным для установки в канале или протоке организма, и применяемым, в частности, для восстановления кровеносных сосудов, суженных или окклюзированных вследствие заболевания. Средство...
Тип: Изобретение
Номер охранного документа: 0002712852
Дата охранного документа: 31.01.2020
04.02.2020
№220.017.fd9d

Расширяемый медицинский стент и способ его имплантации

Изобретение относится к медицинской технике, а именно к расширяемым внутрипросветным графтам (стентам), предназначенным для установки в канале или протоке организма, и применяемым, в частности, для восстановления кровеносных сосудов, суженных или окклюзированных вследствие заболевания. Средство...
Тип: Изобретение
Номер охранного документа: 0002712864
Дата охранного документа: 31.01.2020
05.02.2020
№220.017.fe26

Расширяемый медицинский стент и способ его внедрения

Изобретение относится к медицинской технике, а именно к расширяемым внутрипросветным графтам (стентам), предназначенным для установки в канале или протоке организма, и применяемым, в частности, для восстановления кровеносных сосудов, суженных или окклюзированных вследствие заболевания. Средство...
Тип: Изобретение
Номер охранного документа: 0002712957
Дата охранного документа: 03.02.2020
12.04.2023
№223.018.439f

Генератор импульсов ионизации

Изобретение относится к области лазерной техники и может быть использовано при создании мощных технологических электроразрядных лазеров импульсно-периодического действия на углекислом газе и окиси углерода с несамостоятельным тлеющим разрядом с импульсной емкостной ионизацией. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002793569
Дата охранного документа: 04.04.2023
20.04.2023
№223.018.4b2a

Генератор импульсов ионизации

Изобретение относится к области лазерной техники для мощных электроразрядных газовых лазеров импульсно-периодического действия с несамостоятельным тлеющим разрядом с импульсной емкостной ионизацией. Генератор импульсов ионизации дополнительно содержит три реле, второй тумблер и перемычку,...
Тип: Изобретение
Номер охранного документа: 0002774628
Дата охранного документа: 21.06.2022
+ добавить свой РИД