×
12.04.2023
223.018.4964

Результат интеллектуальной деятельности: ЭЛЕКТРООПТИЧЕСКИЙ ЖИДКОКРИСТАЛЛИЧЕСКИЙ ЭЛЕМЕНТ С НИЗКИМ УПРАВЛЯЮЩИМ НАПРЯЖЕНИЕМ И ВЫСОКИМ КОНТРАСТОМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к оптоэлектронной технике и предназначено для управления интенсивностью проходящего света с использованием электрического поля. Электрооптический элемент состоит из двух параллельно расположенных пластин с прозрачными электродами на внутренних сторонах и расположенной между электродами полимерной пленкой с капсулированными в ней каплями нематического жидкого кристалла. Компоненты для композиции «полимер - нематический жидкий кристалл» подобраны так, что n=n. Используемая композиция обеспечивает коническое поверхностное сцепление с углом наклона директора в интервале от 30 до 50° к нормали для нематического жидкого кристалла на межфазной границе полимер-ЖК, в результате чего в каплях формируется аксиал-биполярная ориентационная структура. Техническим результатом является создание электрически управляемого элемента, обладающего низким управляющим напряжением и высоким контрастом. 1 ил.

Изобретение относится к оптоэлектронной технике, в частности к устройствам и элементам, основанным на жидких кристаллах (ЖК) и предназначенным для управления интенсивностью проходящего света с использованием электрического поля.

Известны электрооптические элементы на основе светорассеяния [Drzaic P.S. Liquid crystal dispersions. - Singapore: World Scientific, 1995. - 448 p.], состоящие из двух подложек с электродами, между которыми располагается полимерная пленка с капсулированными в ней каплями нематического жидкого кристалла, имеющими биполярную ориентационную структуру вследствие тангенциального (планарного) сцепления палочкообразных молекул ЖК с поверхностью полимера. Полимер и ЖК подбираются таким образом, чтобы перпендикулярная компонента показателя преломления ЖК n была близка к показателю преломления np полимера (n=np), а величина двулучепреломления ЖК (Δn=n|| - n) была максимальной. Здесь значками || и 1 отмечается поляризация света параллельно и перпендикулярно директору ЖК (преимущественному направлению ориентации палочкообразных молекул ЖК), соответственно. В исходном состоянии биполярные оси в каплях ЖК ориентированы произвольно в плоскости композитной пленки. Управление интенсивностью света, прошедшего через композитную пленку, осуществляется путем приложения электрического поля перпендикулярно подложкам, которое вызывает переориентацию директора в каплях ЖК вдоль поля, если диэлектрическая анизотропия ЖК положительна. В отсутствие электрического поля пленка сильно рассеивает ортогонально падающий на элемент свет вследствие большого градиента показателя преломления (n|| - n) на межфазной границе между полимерной матрицей и жидким кристаллом. Под действием электрического поля композитная пленка переходит в практически прозрачное состояние (состояние с малым светорассеянием), поскольку градиент показателя преломления на границе полимер-ЖК становится минимальным, так как n=np. Основными характеристиками таких электрооптических элементов являются пороговое напряжение Vth, напряжение насыщения Vsat и коэффициент контрастности CR. Пороговым напряжением Vth и напряжением насыщения Vsat обычно считают значения прикладываемого напряжения, необходимые для достижения 10% и 90% от разности между максимальной и минимальной величиной светопропускания, соответственно. Величина светопропускания T, в свою очередь, определяются отношением интенсивности I света, прошедшего через ячейку, к интенсивности I0 падающего света: T=(I/I0)⋅100%. Коэффициентом контрастности CR является отношение максимального светопропускания ячейки Tmax к минимальному светопропусканию Tmin:CR=Tmax/Tmin.

Наиболее близким по совокупности существенных признаков аналогом является элемент с электрически управляемым светопропусканием [Liu F., Сао Н., Мао Q., Song Р., Yang Н. Effects of monomer structure on the morphology of polymer networks and the electro-optical properties of polymer-dispersed liquid crystal films // Liq. Cryst. - 2012. - Vol. 39, No. 12. P. 419-424], содержащий две стеклянные подложки с прозрачными электродами на внутренних сторонах, между которыми расположен капсулированный полимером жидкий кристалл (polymer dispersed liquid crystal). Капсулированный полимером жидкий кристалл представляет собой полимерную пленку толщиной 20 мкм с капсулированными в ней каплями нематического жидкого кристалла с биполярной ориентационной структурой. Композитная пленка в исходном состоянии интенсивно рассеивает падающий на нее свет и светопропускание составляет 0.44%. При подаче переменного напряжения пленка переходит в прозрачное состояние с максимальным светопропусканием Tmax=80%. При этом величина порогового напряжения составляет 9.0 В, напряжение насыщения Vsat=28.6 В, а коэффициент контрастности CR=180.

Недостатками известного устройства являются малое значение коэффициента контрастности и достаточно большие значения порогового напряжения и напряжения насыщения.

Техническим результатом изобретения является создание элемента с электрически управляемым светопропусканием на основе пленки капсулированного полимером жидкого кристалла с коническим поверхностным (межфазным) сцеплением, обладающего высоким значением коэффициента контрастности и низкими значениями порогового напряжения и напряжения насыщения.

Указанный технический результат достигается тем, что в электрооптической композитной ячейке, состоящей из двух параллельно расположенных пластин с прозрачными электродами на внутренних сторонах, задающими направление электрического поля перпендикулярно пластинам, и расположенной между электродами полимерной пленкой с капсулированными в ней каплями нематического ЖК, причем компоненты для композиции «полимер - нематический жидкий кристалл» подобраны так, что n=np, новым является то, что используемые компоненты обеспечивают коническое поверхностное сцепление с углом наклона директора в интервале от 30° до 50° к нормали для нематического жидкого кристалла на межфазной границе полимер-ЖК, в результате чего в каплях формируется аксиал-биполярная ориентационная структура.

Отличия заявляемого электрооптического элемента от прототипа заключаются в том, что для композиции «полимер - жидкий кристалл» компоненты подобраны таким образом, что обеспечивается коническое поверхностное сцепление с углом наклона директора в интервале от 30° до 50° к нормали для нематического жидкого кристалла на межфазной границе полимер-ЖК, в результате чего в каплях формируется аксиал-биполярная ориентационная структура.

Эти признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».

При изучении других известных технических решений в данной области техники, признаки, отличающие заявляемое изобретение от прототипа, не выявлены и потому они обеспечивают заявляемому техническому решению соответствие критерию «изобретательский уровень».

Изобретение поясняется чертежом, на котором схематически изображено поперечное сечение заявляемого электрооптического элемента (фиг. 1).

Заявляемая электрооптическая ячейка содержит две параллельно расположенные пластины 1 с прозрачными электродами 2 на внутренних сторонах, между которыми расположена полимерная пленка 3 с капсулированными в ней каплями нематического жидкого кристалла 4, в которых формируется аксиал-биполярная ориентационная структура. В качестве пластин 1 могут быть использованы стеклянные подложки или гибкие полимерные пленки, изготовленные, например, из полиэтилентерефталата. Толщина полимерной пленки, содержащей капли жидкого кристалла, задается спейсерами 5. В качестве полимера использован полиизобутил метакрилат (ПиБМА) (www.sigmaaldrich.com). В качестве жидкого кристалла использована нематическая смесь ЛН-396 [Krakhalev M.N., Prishchepa О.О., Sutormin V.S., Zyryanov V.Ya. Director configurations in nematic droplets with tilted surface anchoring // Liq. Cry St. - 2017. - Vol. 47, No. 2. P. 355-363], для которой на границе с ПиБМА реализуется коническое сцепление с углом наклона директора в интервале от 30° до 50° к нормали на межфазной границе полимер-ЖК. При этом перпендикулярная компонента показателя преломления нематической смеси ЛН-396 n примерно равна показателю преломления np полимерной матрицы (n=np).

Заявляемый электрооптический элемент функционирует следующим образом. В отсутствие внешнего электрического поля (фиг. 1а) композитная пленка рассеивает ортогонально падающий на нее свет вследствие произвольной ориентации биполярных осей 6 в каплях жидкого кристалла 4 с аксиал-биполярной ориентационной структурой. При подаче на электроды 2 электрического сигнала биполярные оси 6 капель нематического жидкого кристалла 4 ориентируются вдоль электрического поля Е, направленного перпендикулярно подложкам (фиг. 1б). Вследствие этого, для нормально падающего света показатель преломления ЖК становится близким к n, который, в свою очередь, примерно равен показателю преломления полимерной матрицы np, и свет проходит через композитную пленку практически не рассеиваясь. Примеры:

В качестве 1-го примера был изготовлен электрооптический элемент с применением следующих операций:

1. Смесь полимера ПиБМА и нематической смеси ЛН-396 в весовых соотношениях 40:60, соответственно, растворялась в этилацетате, количество которого по отношению к суммарной массе полимера и ЖК было равно 10:1. Полученный раствор наносился на поверхность стеклянной подложки, покрытой прозрачным ITO электродом, и затем высушивался до полного удаления этилацетата.

2. На части подложки непокрытой композитной пленкой располагались тефлоновые спейсеры толщиной 20 мкм.

3. Композитная пленка и тефлоновые спейсеры накрывались стеклянной пластиной с прозрачным ITO электродом, и полученная ячейка помещалась под пресс, нагревалась до 70°С и выдерживалась при этой температуре в течение 30 минут.

4. После нагревания вышеописанная ячейка извлекалась из пресса и охлаждалась до комнатной температуры в течение 1 минуты. В результате формировался электрооптический элемент, изображенный на фиг. 1.

В отсутствии электрического поля электрооптический элемент интенсивно рассеивает падающий на него свет и светопропускание составляет Tmin=0.11%. При подаче переменного напряжения частотой 1 кГц электрооптический элемент переходит в прозрачное состояние с максимальным светопропусканием Tmax=89.3%. При этом величина порогового напряжения Vth составляет 5.6 В, напряжение насыщения Vsat=9.8 В, а коэффициент контрастности CR=812.

В качестве 2-го примера был изготовлен электрооптический элемент с применением следующих операций:

1. Смесь полимера ПиБМА и нематической смеси ЛН-396 в весовых соотношениях 45:55, соответственно, растворялась в этилацетате, количество которого по отношению к суммарной массе полимера и ЖК было равно 10:1. Полученный раствор наносился на поверхность стеклянной подложки, покрытой прозрачным ITO электродом, и затем высушивался до полного удаления этилацетата.

2. На части подложки непокрытой композитной пленкой располагались тефлоновые спейсеры толщиной 30 мкм.

3. Композитная пленка и тефлоновые спейсеры накрывались стеклянной пластиной с прозрачным ITO электродом, и полученная ячейка помещалась под пресс, нагревалась до 70°С и выдерживалась при этой температуре в течение 30 минут.

4. После нагревания вышеописанная ячейка извлекалась из пресса и охлаждалась до комнатной температуры в течение 1 минуты. В результате формировался электрооптический элемент, изображенный на фиг. 1.

В отсутствии электрического поля электрооптический элемент интенсивно рассеивает падающий на него свет и светопропускание составляет Tmin=0.32%. При подаче переменного напряжения частотой 1 кГц электрооптический элемент переходит в прозрачное состояние с максимальным светопропусканием Tmax=81.0%. При этом величина порогового напряжения Vth составляет 8.6 В, напряжение насыщения Vsat=12.4 В, а коэффициент контрастности CR=253.

В качестве 3-го примера был изготовлен электрооптический элемент с применением следующих операций:

1. Смесь полимера ПиБМА и нематической смеси ЛН-396 в весовых соотношениях 40: 60 соответственно растворялась в этилацетате, количество которого по отношению к суммарной массе полимера и ЖК было равно 10:1. Полученный раствор наносился на поверхность стеклянной подложки, покрытой прозрачным ITO электродом, и затем высушивался до полного удаления этилацетата.

2. На части подложки непокрытой композитной пленкой располагались тефлоновые спейсеры толщиной 30 мкм.

3. Композитная пленка и тефлоновые спейсеры накрывались стеклянной пластиной с прозрачным ITO электродом, и полученная ячейка помещалась под пресс, нагревалась до 70°С и выдерживалась при этой температуре в течение 30 минут.

4. После нагревания вышеописанная ячейка извлекалась из пресса и охлаждалась до комнатной температуры в течение 1 минуты. В результате формировался электрооптическая ячейка, изображенная на фиг. 1.

В отсутствии электрического поля электрооптический элемент интенсивно рассеивает падающий на нее свет и светопропускание составляет Tmin=0.02%. При подаче переменного напряжения частотой 1 кГц электрооптический элемент переходит в прозрачное состояние с максимальным светопропусканием Tmax=84.7%. При этом величина порогового напряжения Vth составляет 8.0 В, напряжение насыщения Vsat=12.0 В, а коэффициент контрастности CR=4235.

Исследования полученных экспериментальных образцов показали, что заявляемый электрооптический элемент по совокупности физико-технических характеристик не уступает прототипу. В тоже время были получены более высокие значения коэффициента контрастности CR, и более низкие значения порогового напряжения и напряжения насыщения. Так, для устройства, описанного в Примере 3, где толщина композитной пленки составляла 30 мкм, было достигнуто увеличение CR примерно в 23.5 раза, а значения Vth, и Vsat были уменьшены в 1.1 и 2.4 раза, соответственно, в сравнении с прототипом. Даже для устройства, описанного в Примере 1, где толщина композитной пленки, как и в прототипе, составляла 20 мкм, было достигнуто увеличение CR примерно в 4.5 раза, а значения Vth и Vsat были уменьшены в 1.6 и 2.9 раза, соответственно, в сравнении с прототипом.

Предлагаемый электрооптический элемент может использоваться в приборах и устройствах, где необходимо иметь компактный, дешевый, простой в изготовлении и надежный в эксплуатации высококонтрастный элемент с низковольтным управлением интенсивностью прошедшего света.

Электрооптический жидкокристаллический элемент с низким управляющим напряжением и высоким контрастом, состоящий из двух параллельно расположенных пластин с прозрачными электродами на внутренних сторонах, задающими направление электрического поля перпендикулярно пластинам, и расположенной между электродами полимерной пленкой с капсулированными в ней каплями нематического жидкого кристалла, причем компоненты для композиции «полимер - нематический жидкий кристалл» подобраны так, что n=n, отличающийся тем, что для используемой композиции компоненты выбраны таким образом, что обеспечивается коническое поверхностное сцепление с углом наклона директора в интервале от 30 до 50° к нормали для нематического жидкого кристалла на межфазной границе полимер-ЖК, в результате чего в каплях формируется аксиал-биполярная ориентационная структура.
Источник поступления информации: Роспатент

Showing 41-50 of 60 items.
12.10.2019
№219.017.d562

Кормовая добавка "хвойная"

Изобретение относится к животноводству, в частности к кормовой добавке для коров. Добавка характеризуется тем, что содержит хвойную муку и измельченную скорлупу кедрового ореха, причем исходные компоненты берут в определенном соотношении. Использование изобретения позволит повысить молочную...
Тип: Изобретение
Номер охранного документа: 0002702720
Дата охранного документа: 09.10.2019
22.12.2019
№219.017.f11f

Способ обработки поверхности туш и субпродуктов северного оленя для хранения

Изобретение относится к мясной промышленности, в частности к технологии продления сроков качественного хранения мяса и субпродуктов северного оленя. Обработку поверхности предварительно охлажденного до температуры (-1)-(-3)°С продукта проводят посредством мелкодисперсного аэрозольного...
Тип: Изобретение
Номер охранного документа: 0002709768
Дата охранного документа: 19.12.2019
24.01.2020
№220.017.f951

Способ получения композиционного высокоанизотропного материала copt-alo с вращательной анизотропией

Изобретение относится к области технологических процессов, связанных с получением высокоанизотропных композиционных материалов с помощью твердотельных реакций по методу алюмотермии и формированию в них магнитной вращательной анизотропии. Получаемый материал может быть использован в качестве...
Тип: Изобретение
Номер охранного документа: 0002711700
Дата охранного документа: 21.01.2020
08.02.2020
№220.018.00cb

Способ получения суперпарамагнитных наночастиц на основе силицида железа fesi с модифицированной поверхностью

Изобретение относится к области нанотехнологии и может быть использовано для производства наноструктурированных материалов биомедицинского назначения. Способ получения суперпарамагнитных наночастиц на основе силицида железа FеSi с модифицированной поверхностью включает синтез силицида железа...
Тип: Изобретение
Номер охранного документа: 0002713598
Дата охранного документа: 05.02.2020
13.03.2020
№220.018.0b3c

Днк аптамеры, связывающие сердечный тропонин i человека

Изобретение относится к области биотехнологии и медицины, а именно к области ДНК аптамеров, способных специфично и с высоким сродством связываться с сердечным тропонином I человека. Основными областями применения ДНК-аптамеров к сердечному тропонину I являются клинические исследования,...
Тип: Изобретение
Номер охранного документа: 0002716409
Дата охранного документа: 11.03.2020
12.07.2020
№220.018.31f1

Держатель образца для сквид-магнитометра типа mpms

Изобретение относится к устройствам для измерения переменных магнитных величин. Держатель образца для СКВИД-магнитометра типа MPMS содержит цилиндрическую трубку из органического материала, внутри которой вертикально помещен немагнитный цилиндр, при этом дополнительно содержит второй цилиндр,...
Тип: Изобретение
Номер охранного документа: 0002726268
Дата охранного документа: 10.07.2020
21.07.2020
№220.018.3511

Установка для консервирования сырья животного и растительного происхождения

Изобретение относится к области сельского хозяйства, в частности к оборудованию для переработки, консервирования сырья животного и растительного происхождения. Установка для консервирования сырья животного и растительного происхождения включает установленный на полозьях мобильный модуль. Модуль...
Тип: Изобретение
Номер охранного документа: 0002727010
Дата охранного документа: 17.07.2020
31.07.2020
№220.018.3932

Способ извлечения палладия из солянокислых растворов

Изобретение относится к гидрометаллургии палладия и может быть использовано при выделении палладия из солянокислых растворов сложного состава при переработке медь и никель содержащих концентратов, а также вторичного сырья, в частности, при переработке отработанных катализаторов автомобильной...
Тип: Изобретение
Номер охранного документа: 0002728120
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.3a27

Кормовая добавка для коров "хвойная плюс"

Изобретение относится к животноводству, в частности к кормовой добавке для коров. Добавка характеризуется тем, что содержит хвойную муку, измельченную скорлупу кедрового ореха, арабиногалактан, Амилосубтилин Г3х. Исходные компоненты берут в определенном соотношении. Использование изобретения...
Тип: Изобретение
Номер охранного документа: 0002728463
Дата охранного документа: 29.07.2020
01.08.2020
№220.018.3afe

Рекомбинантная плазмидная днк pet19b-sav, обеспечивающая синтез полноразмерного белка стрептавидина streptomyces avidinii, штамм бактерий escherichia coli - продуцент растворимого полноразмерного белка стрептавидина streptomyces avidinii

Изобретение относится к микробиологической промышленности, биотехнологии, генной и белковой инженерии и касается рекомбинантной плазмидной ДНК pET19b-SAV, обеспечивающей синтез полноразмерного белка стрептавидина, имеющей молекулярную массу 4 МДа и размер 6126 п.о. и содержащей, в соответствии...
Тип: Изобретение
Номер охранного документа: 0002728652
Дата охранного документа: 30.07.2020
Showing 1-3 of 3 items.
10.12.2015
№216.013.973d

Светополяризующий элемент на основе анизотропии рассеяния

Изобретение относится к оптической технике и предназначено для получения линейно поляризованного света. Светополяризующий элемент на основе анизотропии рассеяния содержит ориентированную одноосным растяжением полимерную пленку, обладающую тангенциальным сцеплением, с капсулированными в ней...
Тип: Изобретение
Номер охранного документа: 0002570337
Дата охранного документа: 10.12.2015
13.01.2017
№217.015.83e2

Электрооптический жидкокристаллический элемент

Изобретение относится к оптоэлектронной технике, в частности к устройствам и элементам на основе жидких кристаллов (ЖК), предназначенным для управления интенсивностью проходящего света. Элемент представляет собой два скрещенных поляризатора, между которыми расположена жидкокристаллическая...
Тип: Изобретение
Номер охранного документа: 0002601616
Дата охранного документа: 10.11.2016
29.11.2019
№219.017.e79c

Электрически управляемый поляризатор света на основе анизотропии светорассеяния

Электрически управляемый поляризатор света на основе анизотропии светорассеяния, обладающий высокими светопропусканием и поляризующей способностью, относится к оптоэлектронной технике, в частности к устройствам и элементам, основанным на жидких кристаллах и предназначенным для управления...
Тип: Изобретение
Номер охранного документа: 0002707424
Дата охранного документа: 26.11.2019
+ добавить свой РИД