×
12.04.2023
223.018.47e4

Результат интеллектуальной деятельности: СПОСОБ ВОЗВЕДЕНИЯ ОПОРНОГО ОСНОВАНИЯ ДОРОЖНОЙ ОДЕЖДЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области дорожного строительства и может быть использовано при новом строительстве или проведении ремонта автомобильных дорог, взлетно-посадочных полос аэродромов, вертолетных и иных площадок в условиях слабых грунтов на заболоченных территориях, а также на подвижных песчаных грунтах пустынь и морских побережий. Способ возведения опорного основания дорожной одежды включает поэтапный монтаж слоев одежды, при котором на первом этапе на грунт укладывают несущий слой, поверх которого накладывается слой в виде сегментированной немонолитной сборки из остеоморфных блоков с выпукло-вогнутыми поверхностями, изготовленных из легкого пенобетона, на который далее укладывается дорожное покрытие. Нижний несущий слой укладывают на дренажное основание из геотекстиля, а между несущим основанием, которое выполнено из высокопрочного ячеистого полимербетона, и сегментированным немонолитным слоем из бетонных остеоморфных блоков с выпукло-вогнутыми поверхностями, прокладывают еще один разделительный дренажный слой из геотекстиля, далее монтируют второй сегментированный немонолитный слой из остеоморфных блоков с выпукло-вогнутыми поверхностями, который выполнен из полимерного материала, блоки соединены друг с другом по принципу топологического самозацепления, внутри слоя устанавливают датчики мониторинга. Техническим результатом решения является создание дорожного покрытия повышенной прочности и долговечности в условиях слабых грунтов и многолетней мерзлоты. 1 з.п. ф-лы, 8 ил., 2 табл.

Изобретение относится к области дорожного строительства и может быть использовано при новом строительстве или проведении ремонта автомобильных дорог, взлетно-посадочных полос аэродромов, вертолетных и иных площадок, в условиях слабых грунтов на заболоченных территориях, а также на подвижных песчаных грунтах пустынь и морских побережий.

Известен способ устройства дорожного покрытия (патент на изобретение РФ № 2318947, опубл. 10.03.2008г.), включающий укладку на дорожное основание комбинированного трещинопрерывающего слоя, в состав которого введена эластичная мембрана, а поверх нее - армирующая геосетка высокой прочности, и последующую укладку поверх комбинированного трещинопрерывающего слоя несущего покрытия, выполненного из асфальтобетонной смеси. Укладку комбинированного трещинопрерывающего слоя производят на предварительно подготовленное дорожное основание, подготовка которого предусматривает его деление на ряд отдельных составленных элементов как по длине, так и по ширине, с последующим их уплотнением и посадкой на грунт земляного полотна, а в качестве эластичной мембраны в состав комбинированного трещинопрерывающего слоя введен выравнивающий слой, состоящий из асфальтобетонной смеси с комплексным органическим вяжущим, состав которого подбирают в соответствии с температурой хрупкости, равной минимальной температуре наиболее холодных суток района эксплуатации, при этом армирующая геосетка изготовлена из стекломатериала, обладающего низкой степенью деформативности, близкой к деформативности несущего покрытия. Подготовку дорожного основания при новом строительстве или при незначительной степени разрушения старого дорожного покрытия осуществляют в виде деления на блоки с размерами сторон 1,5 - 2,5 м. При сильной же степени разрушения старого дорожного покрытия подготовку дорожного основания осуществляют в виде деления его на фрагменты с размерами элементов 200 - 250 мм.

Недостатками способа является не равномерное распределение демпфирующей нагрузки на основание дорожной одежды, а также необходимость его уплотнения, которое негативно воздействует на грунты слабого основания

Известен способ возведения дорожной одежды (патент на изобретение РФ № 2351702, опубл. 10.04.2009г.), включающий трехстадийную укладку слоев одежды и заключающийся в том, что на первой стадии на грунт насыпи укладывают верхнюю часть земляного полотна из улучшенного устойчивого грунта, состоящего из смеси песка, золошлаков, отходов угледобычи и шлакощелочного вяжущего, содержащего фибру. На второй стадии поперек дороги укладывают два слоя полимерного полотна с напуском кромок одна на другую, после чего укладывают один или два слоя основания из фибробетона повышенной прочности на шлакощелочном вяжущем, на поверхность которого наносят тонкий слой износостойкого бетона с последующим выполнением на его поверхности шероховатой накатки, после чего на завершающей стадии производят укладку двухслойного покрытия, которое покрывают тонким слоем износа из раствора, содержащего золоминеральную смесь и шлакощелочное вяжущее, для устранения шероховатости дороги.

Недостатками способа является неравномерное распределение демпфирующей нагрузки на основание дорожной одежды, а также низкая прочность и долговечность дорожного покрытия в условиях слабых грунтов и многолетней мерзлоты.

Известен способ возведения дорожной одежды (патент на изобретение Республики Казахстан №22792, опубл. 16.08.2010г.), при котором основание из грунта, песка и/или щебня, покрывают геотекстильным полотном из нетканого материала, на которое наносят несущий слой, края полотна заворачивают вверх, образуя несущий каркас и размещают на нем геомембрану из полимерной пленки, на которую укладывают плиты со сквозными каналами и связывают их между собой в секции арматурным тросом с помощью крепежных элементов, при этом в верхней части некоторых плит предварительно выполняют отверстия, сообщенные с каналами, для натяжения и стыковки арматурного троса.

Данный способ не обеспечивает существенного повышения прочности и долговечности дороги в условиях слабых грунтов и вечной мерзлоты. Кроме того, он предусматривает использование для формирования основания дороги обычных, но часто труднодоступных материалов (грунт, песок, гравий, щебень и проч.), которые, к тому же, не в полной степени обеспечивают возведение дорожного покрытия, равномерно распределяющего и демпфирующего нагрузку на основание дорожной одежды, и не проявляет устойчивости к размыванию и подтоплению, являющимися существенными факторами разрушения дорог в условиях слабых грунтов и вечной мерзлоты.

Известен способ возведения дорожной одежды (материалы V-й Международной научно-практической конференции «Инновации и перспективы развития горного машиностроения и электромеханики: IPDME-2017». В.Ю. Пиирайнен, Ю. Эстрин. Новая концепция дорожного строительства в нефтедобывающих районах Западной Сибири. СПб: Санкт-Петербургский горный университет, 23-24 апреля 2017 г. с.,), принятый за прототип. По которому осуществляется послойное формирование дорожной одежды из: водонепроницаемой прорезиненной рулонной подложки, служащей несущим основанием; опорного слоя из легких строительных материалов, например пенобетона; и асфальтобетонного или иного дорожного покрытия, уложенного на вышеописанное опорное основание. Опорный слой представляет собой немонолитную сборку из отдельных остеоморфных блоков с выпукло-вогнутыми поверхностями, пропитанный резиноподобным материалом, например битумом.

К недостаткам данного способа следует отнести формирование одного опорного слоя из отдельных остеоморфных блоков, принимающего на себя и распределяющего, как внутреннюю вертикальную нагрузку со стороны грунта, так и внешнюю вертикальную нагрузку и напряжения сдвига со стороны проезжающего автотранспорта и температурных колебаний окружающей среды, что исключает, в случае необходимости, надежную эксплуатацию встроенных в него датчиков мониторинга текущего состояния дороги в режиме реального времени, и соответственно, реализацию концепции «умной дороги».

Техническим результатом предлагаемого решения является создание дорожного покрытия повышенной прочности и долговечности в условиях слабых грунтов и многолетней мерзлоты.

Технический результат достигается тем, что нижний несущий слой укладывают на дренажное основание из геотекстиля, а между несущим основанием, которое выполнено из высокопрочного ячеистого полимербетона и сегментированным немонолитным слоем из бетонных остеоморфных блоков с выпукло-вогнутыми поверхностями прокладывают еще один разделительный дренажный слой из геотекстиля, далее монтируеют второй сегментированный немонолитный слой из остеоморфных блоков с выпукло-вогнутыми поверхностями, который выполнен из полимерного материала, блоки соединены друг с другом по принципу топологического самозацепления, внутри слоя устанавливают датчики мониторинга. В качестве датчиков мониторинга используют датчики изгиба поверхности, датчики температуры, датчики давления, датчики влажности, датчики гамма-фона.

Способ поясняется следующими фигурами:

фиг. 1 - схема расположения слоев дорожной одежды;

фиг. 2 - внешний вид слоя из топологически самозацепленных сегментированных остеоморфных блоков;

фиг. 3 - график зависимости глубины колеи от количества циклов приложенной нагрузки в дорожном полотне;

фиг. 4 - экспериментальная сэндвич-сборка, сегментированная;

фиг. 5 - экспериментальная сэндвич-сборка, монолитно-сегментированная;

фиг. 6 - схема разворота инклинометров при подъеме/просадке слоя дорожной одежды;

фиг. 7 - блок-схема применение геосинтетиков при выполнении дорожных работ, где:

1 - грунт;

2 - разделительный дренажный слой;

3 - несущее основание;

4 - слой остеоморфных бетонных блоков;

5 - слой остеоморфных пластиковых блоков;

6 - дорожное покрытие;

7 - опалубка;

8 - измерительные датчики;

фиг. 8 - приведены результаты расчетов при концентрированной нагрузке в центре экспериментальной сборки трех вариантов геометрии.

Способ возведения дорожной одежды включает поэтапную укладку слоев одежды. На первом этапе на грунт 1 (фиг. 1) укладывают разделительный дренажный слой 2 из геотекстиля. На этот слой укладывают несущее основание 3 дорожной одежды которое выполнено из композиционного ячеистого бетона. Следом укладывают еще один разделительный дренажный слой 2. Далее укладывают опорный слой из остеоморфных бетонных блоков 4. Поверх слоя остеоморфных бетонных блоков 4 укладывают еще один опорный слой из остеоморфных пластиковых блоков 5. Сверху укладывают дорожное покрытие 6 (фиг. 1).

Разделительный дренажный слой 2 представляет собой тканное полотно из синтетического геотекстиля, препятствующего проникновению влаги в тело дорожной одежды со стороны грунта, и одновременно дренирующего верхние слои дорожной одежды от влаги, поступающей из внешней среды.

Несущее основание 3 дорожной одежды представляет собой монолитный слой изготавливаемый из обладающего высокой прочностью и низким объемным весом композиционного ячеистого бетона, который заливается на разделительный дренажный слоем 2, с применением легкой пластмассовой опалубки 7, и не требует уплотнения, воздействие которого на слабый грунт имеет негативное воздействие. Толщина этого слоя зависит от планируемых нагрузок и рассчитывается на этапе проектирования. В среднем толщина составляет от 0,3 до 0,5 м. Расчеты дорожных конструкций с типовыми нагрузками показывают, что эквивалентный слой из композиционного ячеистого бетона имеет прочность в 3 - 4 раза больше, чем слой той же толщины из сыпучих материалов (песок, гравий, щебень).

Слой остеоморфных бетонных блоков 4 играет роль основного опорного слоя, который монтируется из топологически самозацепленных остеоморфных бетонных блоков (фиг. 2), уложенных по принципу самозаклинки в конвенционных технологиях создания дорожной одежды. Слой остеоморфных бетонных блоков 4 принимает на себя нагрузку и снимает напряжения, передаваемые ему от несущего основания 3, которые воздействуют со стороны грунта в результате его вспучивания. Слой остеоморфных бетонных блоков 4 является одновременно несущим основанием для слоя остеоморфных пластиковых блоков 5, который принимает и демпфирует нагрузку от двигающегося транспорта и от наружных температурных изменений. Слой остеоморфных пластиковых блоков 5 монтируется аналогично слою остеоморфных бетонных блоков 4 по принципу топологическического самозацепления.

Слой остеоморфных бетонных блоков 4 и слой остеоморфных пластиковых блоков 5 представляют собой немонолитную сегментированную конструкцию из архиматов, то есть материалов с заданной внутренней архитектурой, на масштабном уровне большем, чем микроструктурный. Важным свойством материалов данного класса и конструкций, изготовленных из них, являются их немонолитность и сегментированная структура, которая состоит из отдельных блоков определенной формы, ориентированных по отношению друг к другу особым образом. К ним относятся остеоморфные блоки, самозацепление которых обеспечивается за счет выпукло-вогнутой формы их контактных поверхностей, соединение блоков друг с другом происходит по принципу топологического самозацепления. Геометрия блоков при этом такова, что после их сборки ни один из множества элементарных блоков извлечь из конструкции невозможно, а благодаря «мозаичности» материала существенно увеличивается его сопротивляемость разрушению. По сути, возникает самозаклинивание отдельных элементов конструкции аналогично сборке арок и куполов из кирпичей с конусными поверхностями, с той лишь разницей, что в случае сборки из остеоморфных блоков заклинивание происходит одновременно во всех направлениях. Это свойство играет ключевую роль в конструкции дорожной одежды, так как позволяет создавать слои, достаточно жесткие в нескольких плоскостях, выдерживающие многократные динамические нагрузки от движения автотранспорта и циклического вспучивания грунтов.

В слой остеоморфных пластиковых блоков 5 в определенном порядке встроены самостоятельные или объединенные в группы измерительные датчики 8, например, датчики угла изгиба поверхности (инклинометры) и/или датчики температуры, и/или датчики давления, и/или датчик влажности, и/или датчик гамма-фона и другие. При этом датчики 8 могут быть объединены в группы, содержащие несколько измерительных датчиков разного назначения. Датчики 8 могут быть выполнены в едином корпусе, запитываться от аккумулятора, заряда которого хватает на обеспечение работы в течение, например, 10 лет. Углы наклона слоя остеоморфных пластиковых блоков 5 измеряются с точностью до 0.1 углового градуса, температура - с точностью до одного градуса С, давление - с точностью 10% от номинального, установленного для данных условий эксплуатации, влажность - с точностью 5% от номинальной, установленной для данных условий эксплуатации, уровень гамма-фона - с точностью 20% от номинального, установленного для данных условий эксплуатации. Данные измерений передаются в систему мониторинга трассы по беспроводному каналу связи, построенному на основе протокола LoRaWAN. Система датчиков 8 встраивается в слой остеоморфных пластиковых блоков 5 на этапе его укладки и не подлежит ремонту, сохраняя работоспособность на протяжении не менее 10 лет, по истечение которых слой остеоморфных пластиковых блоков 5 может быть заменен в рамках планового ремонта дорожной одежды. Инсталляция каждого корпуса датчиков 8 производится в специальные пазы, которые предварительно создаются в группе смежных элементов слоя остеоморфных пластиковых блоков 5. Измерения, снимаемые с распределенной системы датчиков 8, позволяют на постоянной основе удаленно контролировать состояние дорожной одежды на всем протяжении дорожного полотна или многофункционального покрытия. В тех местах полотна, где измеренные показатели выходят за априорно установленные границы, производится оперативный осмотр с возможностью реконструкции проблемной части дорожной одежды. Важно и то, что слой остеоморфных пластиковых блоков 5 сохраняет свои свойства даже в том случае, если часть элементарных блоков ее конструкции по какой-либо причине будет разрушена.

Слой остеоморфных пластиковых блоков 5 изготавливается из высокопрочного полимерного материала и является сменным. Этот слой служит для первичного распределения нагрузки от движения транспорта и является слоем, который может меняться в процессе ремонта дорог или многофункциональных площадок.

Суммарная толщина слоя остеоморфных бетонных блоков 4 и слоя остеоморфных пластиковых блоков 5 варьируется в зависимости от планируемой нагрузки на дорогу и может составлять от 0,10 до 0,15 м. Толщина должна быть достаточной для выдерживания и распределения максимального веса транспортных средств, которым будет разрешено пользоваться дорогой. Элементарные блоки слоя остеоморфных бетонных блоков 4 и слоя остеоморфных пластиковых блоков 5 изготавливаются методом 3Д-печати.

Дорожное покрытие 6, например, из асфальтобетона предназначено для непосредственного контакта с колесами транспортных средств или иных источников статической или динамической нагрузки, является сменным слоем, подлежащим плановой замене или локальному восстановлению. Верхний слой асфальтобетона должен быть не менее 0,05 м и может достигать 0,13 - 0,15 м в зависимости от планируемых нагрузок на дорогу.

Способ поясняется следующими примерами. Примером эффективного применения дренажного слоя, используемого в предлагаемом решении, может служить схема применение геосинтетиков при выполнении дорожных работ (фиг. 7), а также график зависимости глубины колеи от количества циклов приложенной нагрузки в дорожном полотне, армированном

геосинтетическим материалом (фиг.3). Геосинтетики прекрасно справляются с задачей увеличения срока службы дорожного покрытия.

Проверка концептуальной идеи осуществлялась на макете основания дорожной одежды, собранного из бетонных и полистирольных блоков в единую слоенную конструкцию, пропитанную резиноподобным полимерным материалом.

Разработка сегментов экспериментальной конструкции осуществлялась методом компьютерного моделирования. В программе AutoCAD с трехмерной системой автоматизированного проектирования велись поиск и построение моделей топологических самозацепляющихся блоков, которые «собирались» далее в трехслойное полотно, закрепленное по краям фиксирующей рамкой. Всего было рассмотрено и построено четыре вида математических моделей элементарных блоков: два - типа LEGO и по одному - тела Платона и остеоморфные блоки.

Далее трехслойные сборки из этих блоков проверялись на свойства механики деформируемого твердого тела в программной системе конечно-элементарного анализа ANSYS. Одновременно для сравнения рассчитывалась идентичная монолитная конструкция. Каждая сборка сопоставлялась по трем вариантам расчета:

- равномерно распределенная нагрузка (20 тонн) по всей плоскости исследуемой сборки;

- концентрированная нагрузка (20 тонн) в центре исследуемой сборки;

- кручению относительно центра торцевой грани по часовой стрелки (крутящий момент - 200 кН).

В качестве материалов сборки для расчетов были выбраны газобетон и пенополистирол, которые, в той или иной степени, уже используются в дорожном строительстве и наиболее подходят для сравнительных экспериментов.

Первые результаты расчетов показали однозначное преимущество сэндвич-конструкций перед монолитом, а остеоморфная сборка при этом (фиг. 2) оказалась наиболее прочной, в связи с чем она была выбрана для последующей оптимизации размеров блоков и дальнейшего макетирования.

Поиск и построение выпукло-вогнутой формы остеоморфного блока выполнялся с помощью элементарных команд программы AutoCAD в соответствии с условиями последовательного самозацепления при сборке.

Для выбора оптимальной геометрии сборочного элемента(блока) были рассмотрены различные варианта соотношения размеров по осям координат, один из которых в горизонтальной плоскости соответствовал «золотому сечению» (2,0х1.2258х1,0). Именно этот вариант показал при расчетах наилучший результат. На фиг. 8 приведены результаты расчетов при концентрированной нагрузке в центре экспериментальной сборки трех вариантов геометрии.

Далее проводились лабораторные испытания комбинированной трехслойной конструкции на бетонных образцах размером 200х80х40 с сегментированной внутренней прослойкой из полистирола, пропитанной силиконом. Результаты испытаний показали существенные преимущества сэндвич-сборок с наружными слоями из самозацепленных остеоморфных блоков (фиг. 4) по сравнению с монолитно-сегментированными (фиг. 5)

По результатам испытаний производился расчет прочности на растяжение при изгибе (таблица 1) по формуле:

,

где:

Rизг - прочность на растяжение при изгибе, кгс/см2 ;

F- максимальная нагрузка, кгс ;

l - расстояние между опорами при испытании, см ;

b - ширина образца, см ;

Результаты расчётов приведены в таблице

Таблица 1 - Результаты расчетов экспериментальных образцов на растяжение при изгибе
Конструкция l,
см
b,
см
h,
см
F,
Кгс
Rизг,
кгс/см2
монолитно-
сегментированная
10 8 4 250 19,5
сегментированная 10 8 4 550 42,9

Двукратное увеличение прочности экспериментальной сегментированной конструкции в полной мере согласуется с предварительными компьютерными расчетами и подтверждает правильность концептуальной идеи.

Примером одного из ключевых элементов предлагаемого решения может служить система контроля деформаций дорожного покрытия с помощью измерительных датчиков. Для этого в слой остеоморфных пластиковых блоков устанавливаются датчики измерения углов наклона (инклинометры). В процессе эксплуатации дорожного покрытия могут возникать его деформации (просадки, вспучивания, возникновение колейности и другое). При этом инклинометры, размещенные в слое остеоморфных пластиковых блоков, воспринимают деформации и изменяют свое угловое положение. Информация об изменении угла наклона передается с помощью беспроводных каналов связи в систему мониторинга трассы, где производится перерасчет приращений углов наклона, заданное в угловых градусов, в значения линейного смещения, заданного в миллиметрах.

На фиг. 5 показана иллюстрация разворота инклинометров при деформации слоя дорожной одежды.

В таблице 2 показана связь между шагом размещения инклинометров, величиной подъема/просадки слоя дорожной одежды (мм) и углом разворота инклинометров (угловые минуты).

Таблица 2 - Изменение угла наклона инклинометра от иеличины подъема/просадки грунта
Шаг
установки
датчиков (м)
Подъем / просадка грунта (мм)
1,0 4,0 10,0 20,0 50,0 100,0
Угол наклона инклинометров (угл.мин)
0,5 13,7 55,0 137,5 275,3 692,2 1414,6
1,0 6,8 27,5 68,7 137,5 344,3 692,2
2,0 3,4 13,7 34,4 68,8 171,9 344,4

Таким образом, подъем/просадка дорожной одежды на 1 мм при размещении инклинометров с шагом 1 м приводит к изменению их угла наклона на 6…7 угловых минут. При проведении измерений 1 раз в сутки емкости источников питания хватит на обеспечение работоспособности в течение не менее 10-и лет.

Таким образом, предложенные способ возведения дорожной одежды позволяет повысить прочность и долговечность дорог или иных площадок в условиях слабых грунтов и многолетней мерзлоты, а также значительно сократить материальные затраты на их возведение. Это обстоятельство особенно важно в условиях дорожного строительства, когда обычные материалы для формирования опорного основания грунт, песок, гравий, щебень и проч. являются труднодоступными.

Источник поступления информации: Роспатент

Showing 11-20 of 22 items.
14.05.2023
№223.018.56f6

Способ определения совместимости и стабильности компонентов топливной смеси

Изобретение описывает способ определения совместимости и стабильности компонентов топливной смеси, включающий отбор проб компонентов топливной смеси, их перемешивание до гомогенного состояния, нагрев полученной смеси и последующую оценку совместимости компонентов, при этом перед перемешиванием...
Тип: Изобретение
Номер охранного документа: 0002733748
Дата охранного документа: 06.10.2020
23.05.2023
№223.018.6c2d

Сырьевая смесь для производства легкого золобетона

Изобретение относится к производству строительных материалов, в частности к производству стеновых блоков. Сырьевая смесь для производства легкого золобетона включает, мас.%: портландцемент М500 Д0 22,50-23,75, песок речной 76,25-77,50, золу сжигания осадка сточных вод 5,0-10,0 (от массы...
Тип: Изобретение
Номер охранного документа: 0002738072
Дата охранного документа: 07.12.2020
23.05.2023
№223.018.6c5e

Автоматизированная система мониторинга экологических параметров двигателя внутреннего сгорания транспортных средств

Изобретение относится к двигателестроению, в частности к устройствам для стендовых испытаний двигателей внутреннего сгорания с принудительным зажиганием с жидким и газообразным топливом. Изобретение может быть использовано для визуальной демонстрации работы электронных блоков управления...
Тип: Изобретение
Номер охранного документа: 0002739652
Дата охранного документа: 28.12.2020
23.05.2023
№223.018.6ce0

Система для разрушения горных пород

Изобретение относится к горной, горностроительной и строительной отраслям промышленности, а именно к буровой технике, применяемой при бурение скважин ударно-вращательным способом, и может быть использовано для разрушения твердых пород при бурении взрывных и геологоразведочных скважин буровыми...
Тип: Изобретение
Номер охранного документа: 0002770472
Дата охранного документа: 18.04.2022
23.05.2023
№223.018.6d60

Способ упрочнения трещиноватых пород при строительстве сопряжений горизонтальных горных выработок

Изобретение относится к горнодобывающей промышленности и может быть использовано при строительстве капитальных и очистных выработок, имеющих взаимное пересечение. Способ упрочнения трещиноватых пород при строительстве сопряжений горизонтальных горных выработок включает бурение скважин под...
Тип: Изобретение
Номер охранного документа: 0002760451
Дата охранного документа: 25.11.2021
23.05.2023
№223.018.6d86

Профилактический состав для пылеподавления и снижения пылепереноса

Изобретение относится к охране труда и области защиты окружающей среды в горнодобывающей области и может быть использовано для пылеподавления и снижения пылепереноса при ведении горных работ. Технический результат - эффективность состава с одновременным упрощением состава и улучшением...
Тип: Изобретение
Номер охранного документа: 0002761229
Дата охранного документа: 06.12.2021
23.05.2023
№223.018.6dbc

Способ получения аморфного диоксида кремния из отходов переработки кремнефтористоводородной кислоты и производства фторида алюминия

Изобретение относится к способу получения аморфного диоксида кремния из отходов переработки кремнефтористоводородной кислоты и производства фторида алюминия, включающему обработку кремнегеля раствором минеральных кислот, отделение, промывку и сушку, причем кремнегель сушат при температуре от...
Тип: Изобретение
Номер охранного документа: 0002765952
Дата охранного документа: 07.02.2022
23.05.2023
№223.018.6de9

Состав для нейтрализации кислых почв

Изобретение относится к сельскому хозяйству. Состав для нейтрализации кислых почв включает мелиорант в виде известьсодержащего отхода производства, причем в качестве мелиоранта используют известняковый щебень фракции от 8 до 25 мм, равномерно перемешанный с торфом и кислой почвой. Все...
Тип: Изобретение
Номер охранного документа: 0002759760
Дата охранного документа: 17.11.2021
23.05.2023
№223.018.6f15

Способ осаждения сапонитовой пульпы с применением сульфатов щелочных металлов и двухкальциевого силиката

Изобретение относится к способам, используемым в области горнорудной промышленности при процессах обогащения алмазоносных кимберлитовых пород для получения оборотной воды, свободной от суспензии глинистых материалов, преимущественно сапонита, путем сгущения суспензии. Предложен способ осаждения...
Тип: Изобретение
Номер охранного документа: 0002743229
Дата охранного документа: 16.02.2021
30.05.2023
№223.018.72d2

Блокирующий гидрофобно-эмульсионный раствор с мраморной крошкой

Изобретение относится к нефтегазовой промышленности, в частности, к буровым растворам на углеводородной основе, применяемым при заканчивании скважин, и к технологическим жидкостям, используемым при проведении подземных ремонтов скважин. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002736671
Дата охранного документа: 19.11.2020
Showing 11-20 of 42 items.
27.05.2016
№216.015.444a

Токоподвод обожженного анода алюминиевого электролизера

Изобретение относится к токоподводу обожженного анода алюминиевого электролизера. Токоподвод содержит токоподводящую штангу, траверсу, удерживающую токоподводящие ниппели, обеспечивающую распределение электрического тока между ними, при этом токоподводящие ниппели выполнены в виде...
Тип: Изобретение
Номер охранного документа: 0002585601
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.46e3

Способ укрытия анодного массива

Изобретение относится к способу укрытия анодного массива при производстве алюминия электролитическим способом в алюминиевом электролизере. Способ включает загрузку криолит-глиноземной шихты, состоящей из смеси дробленого электролита и глинозема, на поверхность анодного массива в два слоя, при...
Тип: Изобретение
Номер охранного документа: 0002586184
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.830f

Способ получения топливных брикетов

Изобретение раскрывает способ получения топливных брикетов, включающий смешение углеродсодержащих материалов и их формование, при этом смешивают отходы деревообработки, продукты пылеулавливания процессов деревообработки и сланцепереработки. Технический результат заключается в получении...
Тип: Изобретение
Номер охранного документа: 0002601743
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.871e

Способ получения порошка диборида титана

Изобретение относится к получению порошка диборида титана. Способ включает приготовление мокрой реакционной смеси исходных титансодержащих, борсодержащих компонентов и восстановителя в виде углеродсодержащих компонентов, сушку смеси и карботермическое восстановление в реакционной смеси при...
Тип: Изобретение
Номер охранного документа: 0002603407
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.a8ad

Способ получения наноразмерных частиц гексаферрита бария

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002611442
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.abde

Способ получения наноразмерных частиц гексаферрита стронция

Изобретение относится к области наноразмерной технологии и может быть использовано для создания носителей информации с высокой плотностью записи, магнитных сенсоров с высокой чувствительностью и т.п., а также для применения в области медицины. Способ получения наноразмерных частиц гексаферрита...
Тип: Изобретение
Номер охранного документа: 0002612289
Дата охранного документа: 06.03.2017
26.08.2017
№217.015.e339

Способ защиты углеграфитовой подины алюминиевого электролизера

Изобретение относится к способу защиты углеграфитовой футеровки алюминиевого электролизера при производстве алюминия электролизом криолит-глиноземных расплавов, и может быть использовано при вводе алюминиевого электролизера в эксплуатацию. Способ включает формирование слоя электрического...
Тип: Изобретение
Номер охранного документа: 0002626128
Дата охранного документа: 21.07.2017
29.12.2017
№217.015.fe05

Способ получения брикетов для производства кремния восстановительной плавкой

Изобретение относится к способу получения брикетов для производства кремния, включающему смешивание кремнеземсодержащего и углеродсодержащего сырья с получением смеси и брикетирование смеси. Полученную смесь смешивают с мелассой, при этом в качестве кремнеземсодержащего сырья используют...
Тип: Изобретение
Номер охранного документа: 0002638464
Дата охранного документа: 13.12.2017
20.01.2018
№218.016.18cf

Способ получения титановой лигатуры для алюминиевых сплавов

Изобретение относится к области металлургии, в частности к получению таблетированной титановой лигатуры, и может быть использовано в ракетостроительной, авиационной, автомобильной и других отраслях промышленности, в которых используются высоколегированные литейные и деформируемые алюминиевые...
Тип: Изобретение
Номер охранного документа: 0002636212
Дата охранного документа: 21.11.2017
17.02.2018
№218.016.2cac

Брикет для получения кремния восстановительной плавкой

Изобретение относится к получению кремния. Брикет содержит микросилику, углеродосодержащее сырье, отходы деревообрабатывающей промышленности и связующее вещество. В качестве углеродосодержащего сырья брикет содержит сланцевую пыль, в качестве отходов деревообрабатывающей промышленности -...
Тип: Изобретение
Номер охранного документа: 0002643534
Дата охранного документа: 02.02.2018
+ добавить свой РИД