×
12.04.2023
223.018.4532

Результат интеллектуальной деятельности: ЭЛЕМЕНТАРНАЯ ЯЧЕЙКА ЛИТИЙ-ИОННОГО АККУМУЛЯТОРА И АККУМУЛЯТОР НА ЕЕ ОСНОВЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к материалам литий-ионных аккумуляторов с высокой удельной энергией. Элементарная ячейка аккумулятора состоит из токосъемников, анода, катода, электролита и изолятора. В качестве электролитов используют тонкопленочные электролиты, в качестве катодов – катионпроводящие по литию материалы. В качестве анода используют многослойную графит-силиценовую композицию при соотношении 5 моноатомных слоев силицена на графитовую подложку из 4-8 моноатомных слоев графена. Силиценовые листы разделены зазором 0,24-0,75 нм. Графитовая подложка предпочтительно выполнена из 8 слоев и с обеих сторон покрыта силиценом. Из параллельно соединенных элементарных ячеек, размещенных в изолированном от внешней среды атмосферы корпусе, изготавливают литий-ионный аккумулятор. Ячейки могут быть соединены зеркально относительно плоскости, параллельной плоскости силицена. Технический результат заключается в увеличении числа циклов разряда/заряда аккумулятора до 5000 и выше без снижения удельной емкости анода ниже 3500 мА·ч/г в диапазоне рабочих температур (от -50 до 100°С), уменьшении размеров и массы литий-ионного аккумулятора, исключении объемного расширения анодов элементарных ячеек и литий-ионного аккумулятора в целом. 2 н. и 3 з.п. ф-лы, 2 ил., 1 табл.

Группа изобретений относится к альтернативной энергетике, в частности к материалам литий-ионных аккумуляторов нового поколения с высокой удельной энергией.

Разработка портативных химических источников тока, или аккумуляторов с высокой удельной энергией и низким весом, актуальна для автомобильной, аэрокосмической, нефтегазовой, оборонной и прочих отраслей. Наибольшие перспективы связаны с улучшением литий-ионных аккумуляторов, недостатками которых являются относительно невысокая емкость, большой вес, низкая скорость заряда, нарушение работоспособности при полном разряде, а также при перезаряде.

Основными функциональными частями элементарной ячейки аккумулятора являются катод, анод, электролит и изолятор, пропускающий ионы в заданном направлении. В качестве катода применяют литированные оксиды кобальта, никеля и марганца. Улучшению характеристик катодного материала может способствовать применение наноматериалов с более равномерным их распределением по объему катода. Анодным материалом служит графит и смесь графитов или графитированных материалов. Недостатком углеродных анодов является их низкая емкость (372 мА·ч/г), в связи с чем вместо графита предлагается использовать кремний с высокой теоретической удельной емкостью (4200 мА·ч/г). Однако при циклировании кристаллический кремний подвержен быстрому разрушению. Переход к тонкопленочным кремниевым анодам позволяет избежать этого недостатка, но появляется другая сложность. Тонкопленочные кремниевые аноды имеют относительно большую потерю емкости в процессе заряда-разряда по причине нарушения контакта с токосъемником. Однако, стабильность этого процесса существенно увеличивается с уменьшением толщины кремниевой пленки. Тонкопленочные аноды на основе SnО2 обладают довольно высокой емкостью (~700 мА·ч/г) и хорошей стабильностью в процессе заряда-разряда. Однако при первой катодной поляризации значительное количество электричества затрачивается на необратимую емкость.

В качестве электролитов применяют жидкий раствор LiPF6 в смеси этиленкарбоната с диметилкарбонатом, твердый электролит Li3,6Si0,64. Для тонкопленочных аккумуляторов в качестве электролита предлагается использовать LiPON.

Сепаратор разделяет катод и анод и служит для предотвращения короткого замыкания. Ниже температуры 130°C можно использовать полиэтиленовый или полипропиленовый сепаратор с нанесенными на него композитом из полимерного связующего и наночастицами оксида церия.

Известные способы изготовления литий-ионных аккумуляторов преимущественно направлены на оптимизацию способов получения и улучшение эксплуатационных характеристик отдельных элементов аккумулятора [1-3]. Например, использование в качестве анодов композиционных смесей из микроструктурных волокон, 2D/3D структурных и нанотрубчатых материалов из Si и C позволяет максимально исключить объемное расширение аккумулятора и нарушение контакта анода с токосъемником и электролитом, однако при более сложном изготовлении. Благодаря этому усовершенствованию улучшаются такие характеристики как удельная емкость и скорость заряда. Также объемное расширение аккумулятора снижается при использовании в качестве анодов композиций Si-C-SiO2, но появление кислорода в аноде приводит к образованию на межфазной границе анод-электролит плохо проводящего силиката лития.

Наиболее близкой к заявленной является элементарная ячейка литий-ионного аккумулятора [4], имеющая в своем составе силиценовый нанокомпозитный анод, жидкий электролит, катод и изолятор. Кремниево-углеродный нанокомпозитный анод элементарной ячейки представлен листами аморфного, поликристаллического или кристаллического кремния толщиной от 3 до 20 мкм, при этом между листами кремния размещают наночастицы кремния размером 50-300 нм или углеродные нанотрубки. Такой анод обладает удельной емкостью 3500 мА·ч/г, что в 10 раз выше емкости применяемых в настоящее время анодов. Его использование демпфирует механическое расширение при интеркалляции лития, что практически исключает расслаивание, растрескивание анода, а также рост дендритов лития на границе анод-электролит. В результате этого, срок службы аккумулятора с данным анодом повышается до 5000 циклов разряд-заряд с уменьшением потери емкости до 15% от максимально достижимой.

Недостатками известной элементарной ячейки являются относительная сложность синтеза материала анода путем парофазного осаждения при высокой температуре в условиях глубокого вакуума, ограниченный диапазон рабочих температур аккумулятора (от -20 до 50 °C), относительно быстрое снижение емкости и низкий срок службы при высокой стоимости аккумулятора.

Задачами изобретения является повышение удельной энергоемкости и срока службы литий-ионного аккумулятора при сокращении затрат на производство.

Технический результат заключается в увеличении числа циклов разряда/заряда аккумулятора до 5000 и выше без снижения удельной емкости анода ниже 3500 мА·ч/г в диапазоне рабочих температур (от -50 до 100°С), уменьшении размеров и массы литий-ионного аккумулятора, исключении объемного расширения анодов элементарных ячеек и литий-ионного аккумулятора в целом.

Для этого предлагается элементарная ячейка литий-ионного аккумулятора в составе токосъемников, анода, катода, электролита и изолятора. В качестве электролитов используют тонкопленочные электролиты, в качестве катодов - катионпроводящие по литию материалы. Основной конструкционной особенностью ячейки является использование в качестве анода многослойной графит-силиценовой композиции в соотношении, когда на 5 моноатомных слоев силицена приходится 4-8 моноатомных графеновых слоев подложки. Предпочтительно, графитовая подложка выполнена из 8 слоев и с обеих сторон покрыта силиценом.

При таком исполнении конструкции анода между соседними слоями силицена, а также между крайними слоями силицена и графеновой подложкой могут быть выполнены зазоры регулируемого размера для их заполнения литием при заряде аккумулятора. Оптимальный размер зазора составляет 0,24-0,75 нм. Благодаря этому при сохранении размеров элементарной ячейки одновременно уменьшается плотность массы анода и повышается емкость анода по литию.

В свою очередь из параллельно соединенных заявленных элементарных ячеек, размещенных в изолированном от внешней среды атмосферы корпусе, может быть изготовлен литий-ионный аккумулятор:

- при сохранении емкости аккумулятора на уровне емкости известных конструкций, но с уменьшением его массы и размеров, и, как следствие, с уменьшением удельной емкости;

- при сохранении размера аккумулятора на уровне размеров известных конструкций, но с увеличением его удельной емкости и уменьшением массы;

- при одновременном увеличении удельной емкости, уменьшении массы и размеров в сравнении с известными конструкциями.

Предпочтительно, элементарные ячейки аккумулятора соединяют зеркально относительно плоскости, параллельной плоскости силицена.

Как было отмечено выше, одним из недостатков известных литий-тонных аккумуляторов является объемное расширение анодов, которое, как правило, является результатом пересыщения анода литием или, другими словами, перезаряда аккумулятора. Наличие зазоров между силиценовыми слоями в аноде заявленной элементарной ячейки позволяет одновременно увеличить число циклов разряда/заряда аккумулятора, исключить объемное расширение анода элементарной ячейки, элементарной ячейки и собранного из таких элементарных ячеек литий-ионного аккумулятора даже в случае кратного перезаряда аккумулятора.

Из вышенаписанного следует, что использование заявленных элементарных ячеек при изготовлении литий-ионного аккумулятора позволяет уменьшить массу и размеры аккумулятора, сократить расход материалов на производство аккумулятора при увеличении его удельной емкости.

Несмотря на особенности конструкции анода при изготовлении элементарной ячейки литий-ионного аккумулятора и аккумулятора в целом могут быть использованы известные составы твердых электролитов и прочие известные конструкционные материалы, что обеспечивает сохранение рабочего диапазона температур аккумулятора от -50 до 100°С.

Сущность заявляемого технического решения поясняется следующими материалами, где изображено:

- в Таблице - результаты модельных и экспериментальных испытаний литий-ионных аккумуляторов с использованием разных анодов на основе кремния;

- на фиг. 1 - принципиальная схема элементарной ячейки литий-ионного аккумулятора с силиценовым анодом;

- на фиг. 2 - схема расположения слоев в многослойном силиценовом аноде.

Для понимания сущности группы изобретений на Фиг. 1 приведен вариант принципиальной схемы элементарной ячейки для литий-ионного аккумулятора с условным изображением внешней электрической цепи. Анод 1 содержит токосъемник 2 (тонкая металлическая пленка, например, медь), тонкую пленку кремния 3 и два листа силицена 4, один из которых расположен на графитовой подложке 5. Ввиду близких значений плотности графита и кремния, основным фактором, влияющим на удельную емкость электрода, будет существенно более высокая адсорбционная емкость силицена по литию. Поэтому графитовая подложка должна быть по возможности более тонкой. Верхний силиценовый лист не имеет графитовой подложки, что позволяет использовать обе стороны этого листа при работе литий-ионного аккумулятора.

Литий-ионный аккумулятор может быть изготовлен путем соединения таких элементарных ячеек. Более выгодно соединять зеркальные элементы (относительно плоскости, параллельной плоскости силицена). В этом случае, в принципе, для двух листов силицена (без поддержки) каждая из поверхностей может быть использована для адсорбции лития.

Силиценовые листы могут быть разделены зазором с оптимальным размером 0.24-0.75 нм, позволяющим наиболее эффективно перемещаться ионам лития в силиценовом канале. Слева листы силицена опираются на пленку осажденного на металлическую фольгу кремния. Катод 6 находится в прямом контакте только с твердым электролитом 7. При заряде аккумулятора ионы лития из твердого электролита перемещаются в зазоры между слоями силицена, равномерно заполняя их, а при разряде - обратно в твердый электролит и частично - к катоду.

Эффективность работы описываемого анода элементарной ячейки может быть достигнута в случае использования современных химически устойчивых материалов катода, изолятора и электролита, обеспечивающих высокую электрическую и тепловую проводимость. Катод может быть изготовлен из любых катионпроводящих материалов, преимущественно из материалов, обеспечивающих высокую емкость по литию, например, из LiCoO2, цирконаты лития, LiAlO2, Li3PO4, LiNbO3, LiTaO3. В качестве тонкопленочных твердых электролитов могут быть использованы известные электролиты, преимущественно, обеспечивающие максимальную стабильность, электропроводность и экологичность [1-3]:

- антиперовскиты Li3OCl, Li3OBr и Li3OCl0.5Br0.5 и другие;

- электролиты с гранатоподобной структурой: Li5La3Ta2O12, Li5La3Nb2O12 и другие;

- сульфидные электролиты Li10GeP2S12, Li2Sn2S5 и другие.

Сущность заявляемой группы изобретений поясняется следующими примерами.

В общем случае заявляемые элементарную ячейку и литий-ионный аккумулятор изготавливают следующим образом в сухом боксе с инертной атмосферой.

В качестве токосъемника 2 анода 1 используют металлическую фольгу с высокой электропроводностью, в частности, медную фольгу толщиной не менее 20 нм и шириной не менее 2 мкм. На медную фольгу наносят пленку связующего вещества (Ti-W, Ta, TiN и др) толщиной не более 100 нм, после чего электролитически осаждают наноструктурированный кремний. В качестве катода используют напыленный на токосъемник катода 6 слой из LiCoO2, Li2ZrO3, LiAlO2, Li3PO4, LiNbO3, или LiTaO3 толщиной не менее 100 нм, на который помещают изолятор 8 с порами (9 - молекулярное сито) в месте контакта с катодом 6, например, органический полимер поли-1,3,5-триметил-1,3,5-тривинилциклотрисилоксан толщиной не менее 5 нм. Поры, получаемые с помощью ионной бомбардировки, в изоляторе между твердым электролитом и катодом позволяют ионам лития поступать из электролита в катод в режиме разряда.

Между катодом 6 и токосъемником 2 анода 1 размещают многослойную графит-силиценовую композицию, которая выполняет роль наноструктурированного анода литий-ионного аккумулятора. При этом соотношение слоев в композиции следующее: 5 моноатомных слоев силицена приходятся на графитовую подложку из 4-8 (в зависимости от конструкции) моноатомных слоев графена. Каждый силиценовый лист имеет размер 4×2 мкм, такие же горизонтальные размеры имеет графитовая подложка, зазор между силиценовыми листами составляет 0.25-0.75 нм. К изолятору прикладывается пленка твердого электролита толщиной 2 мкм.

Листы силицена приводят в контакт с наноструктурированным кремнием, нанесенным на металлическую фольгу-токосъемника, например, при помощи электрического разряда.

Литий-ионный аккумулятор изготавливают путем параллельного соединения нескольких таких элементарных ячеек и последующим их размещением в изолированном от внешней атмосферы корпусе аккумулятора.

Экспериментальные испытания работы аккумулятора проводят путем многократного повтора циклов разряда/заряда с использованием гальваностата/потенциостата 10, например, AutoLab 302N. В ходе испытаний определяется емкость аккумулятора и время его заряда до полной емкости на каждом цикле разряда/заряда.

Путем молекулярно-динамического моделирования заполнения литием зазоров между слоями силицена размерами 4.8×4.1 нм при напряженности электрического поля 103 В/м были определены теоретическая удельная емкость литий-ионного аккумулятора, оптимальная толщина зазора между слоями силицена и коэффициент диффузии лития. Показано, что заполнение зазора начинается уже при минимальном типичном зазоре в двухслойном силицене (0.24 нм), а зазор 0.75 нм уже интенсивно заполняться литием. Увеличение зазора приводит к интенсификации нерациональных направлений движения лития, ориентированных преимущественно поперек электрического поля. Чтобы гарантированно получить емкость электрода не менее 3500 мА·ч/г, активный элемент анода должен содержать не менее 5 слоев силицена, один из которых находится на четырехслойном графите. Наиболее оптимальная конструкция заявленной элементарной ячейки литий-ионного аккумулятора показана на ФИГ. 2, где графитовая подложка из 8 слоев с обеих сторон покрыта силиценом. Коэффициент диффузии лития при зарядке для такой ячейки [(1.2-1.7)×10-5 см2 / с] в 1.5-5.5 раз выше, чем для известных элементарных ячеек, что прямо указывает на более высокую скорость заряда аккумулятора.

В Таблице приведены результаты модельных и экспериментальных испытаний литий-ионных аккумуляторов с использованием разных анодов на основе кремния. Из расчетов и приведенных в Таблице результатов видно, что литий-ионный аккумулятор, изготовленный из заявленных элементарных ячеек, обладает большей удельной емкостью и скоростью заряда, большим количеством циклов заряда/разряда без какого-либо объемного расширения.

Источники информации

[1] Electrochemical Energy Reviews, 2019, Vol. 2, pp. 574-605 (Твердотельные электролиты для литий-ионных аккумуляторов: основы, проблемы и перспективы // Обзоры электрохимической энергетики. 2019. Т. 2. С. 574-605).

[2] ACS Energy Letters, 2019, Vol. 4, pp. 2444-2451 (Твердотельные химические технологии, устойчивые к использованию в высокоэнергетических катодах для литий-ионных батарей // ASC Письма об энергетике. 2019. Т. 4. С. 2444-2451).

[3] Патент на полезную модель RU 161876 U1, приор. 09.12.2015, опубл. 10.05.2016, МПК H01M 10/0525 (2010.01), H01M 4/134 (2010.01), H01M 4/139 (2010.01).

[4] Заявка US 2015/0364754 A1, по заявке 14/545,573 от 21.05.2015, приор. от 22.05.2014, опубл. 17.12.2015, МПК H01M 4/36 (2006.01), H01M 4/33 (2006.01), H01M 4/38 (2006.01), C30B 29/06 (2006.01), H01M 4/1395, H01M 4/04, C30B 25/02, H01M 4/34, H01M 4/587.

Источник поступления информации: Роспатент

Showing 31-40 of 207 items.
25.08.2017
№217.015.b13a

Быстровозводимое каркасное здание

Изобретение относится к области строительства, в частности к быстровозводимым каркасным зданиям. Технический результат изобретения заключается в повышении прочности конструкции. Быстровозводимое каркасное здание содержит фундамент, стены, межэтажные перекрытия. Стены здания состоят из двух...
Тип: Изобретение
Номер охранного документа: 0002613060
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b162

Способ получения концентрата скандия из скандийсодержащего раствора

Изобретение относится к химии и металлургии, конкретно к технологии извлечения скандия из продуктивных растворов, образующихся при переработке урановых руд, при их добыче методом подземного выщелачивания. В способе извлечения скандия из скандийсодержащего продуктивного раствора используют ионит...
Тип: Изобретение
Номер охранного документа: 0002613238
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b171

Литая латунь

Изобретение относится к области металлургии, в частности к составу многокомпонентных деформируемых медных сплавов, содержащих Zn, Mn, Al, Si, Ni, Cr и предназначенных для получения литых заготовок, подвергающихся пластической обработке для изготовления деталей, работающих в условиях повышенного...
Тип: Изобретение
Номер охранного документа: 0002613234
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b181

Навигационная система зондирования атмосферы

Изобретение относится к радиотехнике и может быть использовано в системах радиозондирования атмосферы на основе использования сигналов глобальных навигационных спутниковых систем (ГНСС). Достигаемый технический результат - повышение точности и надежности определения пространственных координат...
Тип: Изобретение
Номер охранного документа: 0002613153
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b207

Порошковая проволока для нанесения покрытий, стойких к абразивному износу и высокотемпературной коррозии

Изобретение относится к области металлургии, а именно к порошковым проволокам для нанесения покрытий, и может быть использовано для защиты поверхности деталей, работающих в условиях воздействия частиц абразива и высоких температур. Порошковая проволока состоит из стальной оболочки и сердечника,...
Тип: Изобретение
Номер охранного документа: 0002613118
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b44e

Способ неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев методом рентгеноструктурного анализа

Использование: для неразрушающего контроля термодеформационной обработки полуфабрикатов из двухфазных титановых сплавов на перегрев. Сущность изобретения заключается в том, что выбирают место контроля и строят градуировочную кривую для каждого вида полуфабрикатов, получают дифракционный спектр...
Тип: Изобретение
Номер охранного документа: 0002614023
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b452

Способ количественного определения триазавирина методом вольтамперометрии (варианты)

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах. Изобретение может быть...
Тип: Изобретение
Номер охранного документа: 0002614022
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.b568

Когерентный супергетеродинный спектрометр электронного парамагнитного резонанса

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Устройство содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смеситель опорного 4 и сигнального 5 каналов, циркулятор...
Тип: Изобретение
Номер охранного документа: 0002614181
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b57e

Способ определения статического давления в некалиброванной камере высокого давления

Изобретение относится к измерительной технике и может быть использовано для определения величин давления (в том числе высоких и сверхвысоких) и интервалов давлений в камерах синтеза материалов, а также при проведении исследований конденсированных фаз в условиях высоких давлений. Для...
Тип: Изобретение
Номер охранного документа: 0002614197
Дата охранного документа: 23.03.2017
25.08.2017
№217.015.b595

Способ определения антиоксидантной активности с использованием метода электронно-парамагнитной резонансной спектроскопии

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет количественного определения антиоксидантной активности (АОА). Сущность заявляемого способа заключается в том, что определение АОА проводят по разности количества парамагнитных частиц...
Тип: Изобретение
Номер охранного документа: 0002614365
Дата охранного документа: 24.03.2017
Showing 31-40 of 58 items.
29.03.2019
№219.016.ef48

Электролит для получения алюминия

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом криолит-глиноземного расплава. Технический результат заключается в интенсификации процесса получения алюминия, повышении его технико-экономических показателей, увеличении срока службы электролизера,...
Тип: Изобретение
Номер охранного документа: 0002288977
Дата охранного документа: 10.12.2006
10.04.2019
№219.017.07d5

Способ получения порошка тугоплавкого металла

Изобретение относится к порошковой металлургии, в частности получению высокочистых наноразмерных порошков тугоплавких металлов различного гранулометрического состава и микроструктуры, применяемых в производстве танталовых и ниобиевых конденсаторов и иных изделий и полупроводников. В способе...
Тип: Изобретение
Номер охранного документа: 0002401888
Дата охранного документа: 20.10.2010
19.04.2019
№219.017.321d

Способ электролиза расплавленных солей с кислородсодержащими добавками с использованием инертного анода

Изобретение относится к способам получения металлов, в частности алюминия, или сплавов электролизом расплавленных солей с кислородсодержащими добавками с использованием металлического и оксидно-металлического керметного инертного анода. В способе в процессе электролиза измеряют потенциал анода...
Тип: Изобретение
Номер охранного документа: 0002457286
Дата охранного документа: 27.07.2012
27.04.2019
№219.017.3d05

Способ электролитического получения алюминия

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку на этапе пуска электролизера в качестве электролита смеси криолита со фторидом алюминия с содержанием фторида алюминия от 25 до 35 мас.%. Обеспечивается сокращение времени пуска...
Тип: Изобретение
Номер охранного документа: 0002686408
Дата охранного документа: 25.04.2019
09.06.2019
№219.017.7d54

Способ получения нано- и микроволокон кремния электролизом диоксида кремния из расплавов солей

Изобретение относится к производству электролитического кремния в виде нановолокон или микроволокон с использованием сырья - диоксида кремния. Сущность изобретения: способ получения нано- или микрооволокон кремния характеризуется тем, что процесс электролиза SiO ведут в расплаве LiF (0÷3) - KCl...
Тип: Изобретение
Номер охранного документа: 0002427526
Дата охранного документа: 27.08.2011
09.06.2019
№219.017.7e1f

Инертный анод для электролитического получения металлов

Изобретение относится к области цветной металлургии и электролитическому получению металлов и может быть использовано при получении алюминия электролизом криолит-глиноземного расплава с применением инертных анодов. Инертный анод содержит металлическую фазу и керамическую фазу, включающую оксид...
Тип: Изобретение
Номер охранного документа: 0002401324
Дата охранного документа: 10.10.2010
09.06.2019
№219.017.7e28

Способ получения алюминиевых сплавов электролизом

Изобретение относится к цветной металлургии, в частности для получения сплавов на основе алюминия электрохимическим способом. Способ включает введение в расплавленный алюминий катода легирующих элементов из малорастворимого анода путем растворения его в калиевом криолит-глиноземном расплаве,...
Тип: Изобретение
Номер охранного документа: 0002401327
Дата охранного документа: 10.10.2010
27.06.2019
№219.017.9894

Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава

Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению микрокристаллического осадка сплава вольфрам-молибден, и может быть использовано для изготовления устройств, применяемых в условиях повышенных температур, а именно: оснащения водородных...
Тип: Изобретение
Номер охранного документа: 0002692543
Дата охранного документа: 25.06.2019
14.07.2019
№219.017.b451

Способ получения алюминия электролизом расплава

Изобретение относится к цветной металлургии и способу электролитического получения алюминия. Способ включает электролиз расплава KF-NaF-AlF с добавками АlО при температуре электролита 700-900°С и поддержание криолитового отношения (KF+NaF)/AlF от 1,1 до 1,9. Электролиз ведут при анодной...
Тип: Изобретение
Номер охранного документа: 0002415973
Дата охранного документа: 10.04.2011
19.07.2019
№219.017.b611

Способ контроля содержания глинозема при электролизе криолит-глиноземного расплава

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава, в частности к способу контроля содержания глинозема при электролизе криолит-глиноземного расплава. Способ включает определение эмпирической линейной зависимости концентрации глинозема в криолит-глиноземном...
Тип: Изобретение
Номер охранного документа: 0002694860
Дата охранного документа: 17.07.2019
+ добавить свой РИД