×
12.04.2023
223.018.43df

Результат интеллектуальной деятельности: Способ получения материала для абсорбции и десорбции водорода

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к получению материалов на основе титана, используемых для абсорбции и десорбции водорода, с целью применения его в энергетических устройствах, потребляющих водород, и химических процессах. Способ получения материала для абсорбции и десорбции водорода состоит в использование смеси порошков железа и титана и их высокотемпературной обработки, при этом смесь порошков одной фракции 57-68 ат.% титана и 42-32 ат.% железа размещают на поверхности стальной подложки и подвергают прессованию при помощи взрывного нагружения, прессованный материал в присутствии дополнительного порошка титана, взятого в объемном отношении к прессованному материалу равном 1:1, подвергают реакционному спеканию в заваренной стальной ампуле при нагреве до 1100°С с последующим охлаждением до температуры 22-25°С. Обеспечивается повышение водород-сорбционных свойств интерметаллида. 2 ил., 2 табл., 1 пр.

Изобретение относится к области металлургии, в частности к получению материалов на основе титана, используемых для абсорбции и десорбции водорода, с целью применения его в энергетических устройствах, потребляющих водород, и химических процессах.

Перспективным аккумулятором и источником водорода среди сплавов на основе титана является интерметаллид TiFe, характеризующийся доступностью и низкой стоимостью.

Известен способ получения сплавов накопителей водорода [патент RU 2532788, МПК B22F 3/11, C22C 1/08, опубл. 10.11.2014] путем механической активации порошка металлического соединения и обработке порошка в реакторе при температуре 100-500°С с последующим прессованием в объемные образцы при давлении не менее 500 МПа, и отжиге в вакууме при температуре 0,3-0,5 температуры плавления интерметаллида.

Однако для достижения начала гидрирования без активации, данный метод предполагает наличие в образце большого количества дефектов и пористого состояния.

Наиболее близким является способ получения интерметаллида [Park K. B. et al. Characterization of microstructure and surface oxide of Ti1,2Fe hydrogen storage alloy //International Journal of Hydrogen Energy. - 2021. - Т. 46. - №. 24. - С. 13082-13087], состав которого описывается формулой Ti1,2Fe. Сплав Ti1,2Fe содержит 54,55 мас.% титана, остальное - железо. Фазовый состав сплава TiFe, Ti2Fe (2,8 мас.%) и β-Ti (мас. 5,4%). Содержание в сплаве фаз богатых титаном значительно улучшило кинетику поглощения водорода в сравнении с TiFe, обеспечило протекание процесса сорбции без активации, а повысило сорбционную ёмкость водорода. Сплав получали посредством вакуумно-дуговой плавки с использованием медного тигля и водяного охлаждения, для достижения однородности слиток нагревали и охлаждали 5 раз с последующим гомогенизационным отжигом в вакууме при температуре 1200°С в течение 10 часов.

Недостатком способа является длительная и энергозатратная технология получения, а также не достаточно высокая сорбционная способность интерметаллида.

Задачей является разработка нового способа получения материала для абсорбции и десорбции водорода, позволяющего повысить в составе фаз Ti2Fe и β-Ti.

Техническим результатом является повышение водород-сорбционных свойств интерметаллида.

Технический результат достигается в способе получения материала для абсорбции и десорбции водорода с использованием смеси порошков железа и титана и высокотемпературной обработки, при этом смесь порошков одной фракции 57-68 ат.% титана и 42-32 ат.% железа размещают на поверхности стальной подложки и подвергают прессованию при помощи взрывного нагружения, прессованный материал в присутствии порошка титана, взятого в объемном отношении к прессованному материалу равном 1:1, подвергают реакционному спеканию в заваренной стальной ампуле при нагреве до 1100°С с последующим охлаждением до температуры 22-25°С.

Сущность способа заключается в взрывном прессовании исходной смеси порошков титана и железа одной фракции и последующей термической обработке полученного прессованного материала с дополнительной порцией порошка титана.

Использование взрывного нагружения, приводит к совмещению прессования и активации порошкового материала перед последующим термическим воздействием, что ускоряет процессы диффузии. Заявленный режим термической обработки и оптимальный исходный состав титана и железа позволяет получить наиболее эффективный фазовый состав материала, обеспечивающий повышенные водород-сорбционные свойства.

На фиг. 1 показана схема взрывного нагружения, при которой на стальную подложку 1 (стальное основание) размещают порошковый материал 2, состоящий из смеси порошков одной (одинаковой) фракции титана по ТУ 14-22-57-92 и железа по ГОСТ 9849-86 (толщина размещенного слоя составляет 7 мм), устанавливают поверх него поршень 3 толщиной 1 мм с зарядом 4 взрывчатого вещества (ВВ) из аммонита (6ЖВ) (высота заряда ВВ определяется из условия обеспечения в процессе взрывного нагружения одинаковой температуры разогрева прессуемых материалов), детонатором 5 и детонирующим шнуром 6. Вся схема для взрывного нагружения установлена на песчаной подушке 7.

После взрыва детонатора, происходит инициирование заряда взрывчатого вещества, под действием взрыва которого формируется нормально падающая детонационная волна обеспечивает уплотнение смеси до практически беспористого состояния. Образующийся в результате прессованный материал подвергают реакционному спеканию в заваренной стальной ампуле при нагреве до 1100°С с последующим охлаждением до температуры 22-25°С. Спекание осуществляют в присутствии порошка титана, взятого в объемном отношении к прессованному материалу равном 1:1. Дополнительный объем порошка титана позволяет минимизировать взаимодействие спекаемых образцов с атмосферой ампулы.

На фиг. 2 показана микроструктура и фазовый состав полученного сплава.

Водород-сорбционные свойства полученных образцов определяли электрохимическим методом. Образцы полученных заявленным способом материалов помещались в электрохимическую ячейку для проведения электролиза.

Гидрирование проводили при температуре 20°C и атмосферном давлении. Измерения осуществляли в трехэлектродной ячейке с 9 M водным раствором КОН в качестве электролита, Ni(OH)2/NiOOH-противоэлектродом и Hg/HgO-электродом сравнения на потенциостате Electrochemical Instruments P-40X. Потенциал насыщения устанавливался максимально возможным в пределах ограничений, связанных с экспериментально определенным началом выделения на электроде газообразного водорода (-1,25 В для материала с 57 ат.% Ti и -1,175 В для материала с 68 ат.% Ti), время испытания составляло 100 минут.

В таблице 1 представлены соотношения порошков титана и железа в составе порошкового материала (изначальное соотношение порошков).

Таблица 1
Образец Состав первоначальной порошковой смеси, мас.% Состав первоначальной порошковой смеси, ат.% Состав материала,
мас.%
Высота заряда ВВ, мм
Ti Fe Ti Fe Ti Fe
1 54,2 45,8 57 42 54 46 95
2 60,3 39,7 64 36 60 40 90
3 63,5 36,5 67 33 63,4 36,6 85
4 64,55 35,45 68 32 64,5 35,5 80

Образец 1 представляет собой материал, полученный по заявленному способу с химическим составом по прототипу.

Фазовые составы и сорбционные свойства полученных образцов представлены в таблице 2.

Таблица 2
Образец Фазовый состав полученного материала, масс. % Сорбционные свойства, мкг/см²
TiFe Ti2Fe β-Ti Ti(N,C,O)
1 74,9 17,4 0,0 7,6 1,1008
2 41,6 44,7 5,1 8,7 3,9904
3 20,7 62,1 2,8 14,4 3,2491
4 9,8 73,3 13,5 3,3 5,3367

Из приведенных данных видно, что в состав материала входит титан с примесями азота и углерода Ti(N,C,O), полученные из атмосферы при термообработке и химического состава используемых порошков.

Таким образом, способ получения материала для абсорбции и десорбции водорода, при котором смесь порошков одной фракции 57-68 ат.% титана и 42-32 ат.% железа размещают на поверхности стальной подложки и подвергают прессованию при помощи взрывного нагружения, прессованный материал в присутствии порошка титана, взятого в объемном отношении к прессованному материалу равном 1:1, подвергают реакционному спеканию в заваренной стальной ампуле при нагреве до 1100°С с последующим охлаждением до температуры 22-25°С, обеспечивает получение интерметаллидов с повышенными водород-сорбционными свойствами.

Способ получения материала для абсорбции и десорбции водорода с использованием смеси порошков железа и титана и высокотемпературной обработки, отличающийся тем, что смесь порошков одной фракции 57-68 ат.% титана и 42-32 ат.% железа размещают на поверхности стальной подложки и подвергают прессованию при помощи взрывного нагружения, прессованный материал в присутствии дополнительного порошка титана, взятого в объемном отношении к прессованному материалу равном 1:1, подвергают реакционному спеканию в заваренной стальной ампуле при нагреве до 1100°С с последующим охлаждением до температуры 22-25°С.
Способ получения материала для абсорбции и десорбции водорода
Источник поступления информации: Роспатент

Showing 281-290 of 362 items.
04.07.2020
№220.018.2e4c

Способ получения углеграфитового композиционного материала

Изобретение относится к углеграфитовым композиционным материалам, имеющим высокую электропроводность, антифрикционные свойства, стойкость в агрессивных средах. Способ включает вакуумную дегазацию пористой заготовки в растворе электролита, покрытие пористой заготовки гальваническим никелевым...
Тип: Изобретение
Номер охранного документа: 0002725518
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2e63

Способ получения жаростойких покрытий на стали

Изобретение относится к технологии получения покрытий на металлах с помощью энергии взрывчатых веществ и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Cоставляют трехслойный пакет, состоящий из неподвижной стальной...
Тип: Изобретение
Номер охранного документа: 0002725503
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2e67

Способ получения углеграфитового композиционного материала

Изобретение относится к получению углеграфитового композиционного материала, имеющего высокую электропроводность, антифрикционные свойства и стойкость в агрессивных средах. Способ включает вакуумную дегазацию пористой заготовки в растворе электролита, покрытие пористой заготовки гальваническим...
Тип: Изобретение
Номер охранного документа: 0002725524
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2e84

Способ получения углеграфитового композиционного материала

Изобретение относится к области металлургии, а именно к способу получения углеграфитового композиционного материала, имеющего высокую электропроводность, антифрикционные свойства, стойкость в агрессивных средах. Способ получения углеграфитового композиционного материала включает вакуумную...
Тип: Изобретение
Номер охранного документа: 0002725522
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2e8e

Способ получения жаростойких покрытий на стали

Изобретение относится к способу получения жаростойких покрытий на стали и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Составляют пакет из стальной пластины и размещенных по обе её стороны нихромовых пластин...
Тип: Изобретение
Номер охранного документа: 0002725510
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2ea0

Способ получения жаростойкого покрытия на стали

Изобретение относится к технологии получения покрытий на металлах с помощью энергии взрывчатых веществ и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Cоставляют двухслойный пакет из неподвижной стальной пластины и...
Тип: Изобретение
Номер охранного документа: 0002725501
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2ead

Способ изготовления композиционных материалов

Изобретение относится к получению композиционных материалов пропиткой пористого углеграфитового каркаса. Проводят вакуумную дегазацию пористой заготовки в расплаве матричного сплава алюминия в отдельной емкости, установленной на вибростоле с обеспечением вибровакуумирования заготовки в течение...
Тип: Изобретение
Номер охранного документа: 0002725529
Дата охранного документа: 02.07.2020
04.07.2020
№220.018.2ebf

Способ получения жаростойкого покрытия на стали

Изобретение относится к технологии получения покрытий на металлах с помощью энергии взрывчатых веществ и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Cоставляют двухслойный пакет из неподвижной стальной пластины и...
Тип: Изобретение
Номер охранного документа: 0002725507
Дата охранного документа: 02.07.2020
16.07.2020
№220.018.32b6

Способ управления упругодемпфирующей характеристикой подвески сиденья транспортного средства

Изобретение относится к области транспортного машиностроения и может применяться для управления упругодемпфирующей характеристикой подвески сиденья транспортного средства (ТС). Подвеска сиденья ТС содержит пневмобаллон, выполненный в виде пневматического цилиндра двухстороннего действия,...
Тип: Изобретение
Номер охранного документа: 0002726479
Дата охранного документа: 14.07.2020
16.07.2020
№220.018.32c8

Амортизатор

Изобретение относится к устройствам для гашения колебаний и предназначено для применения в подвесках транспортных средств. Амортизатор содержит цилиндр, в котором установлен поршень со штоком и клапанами ходов сжатия и отбоя, а также выполнена компенсационная камера. Дополнительный цилиндр...
Тип: Изобретение
Номер охранного документа: 0002726324
Дата охранного документа: 14.07.2020
Showing 21-21 of 21 items.
15.05.2023
№223.018.57f7

Способ двухэлектродной дуговой наплавки

Изобретение относится к автоматизированной дуговой наплавке в среде защитных газов двумя проволоками сплошного сечения и может использоваться при производстве нефтехимического оборудования в технологических операциях по плакированию изделий коррозионно-стойкими слоями металла. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002767334
Дата охранного документа: 17.03.2022
+ добавить свой РИД