×
12.04.2023
223.018.43df

Результат интеллектуальной деятельности: Способ получения материала для абсорбции и десорбции водорода

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к получению материалов на основе титана, используемых для абсорбции и десорбции водорода, с целью применения его в энергетических устройствах, потребляющих водород, и химических процессах. Способ получения материала для абсорбции и десорбции водорода состоит в использование смеси порошков железа и титана и их высокотемпературной обработки, при этом смесь порошков одной фракции 57-68 ат.% титана и 42-32 ат.% железа размещают на поверхности стальной подложки и подвергают прессованию при помощи взрывного нагружения, прессованный материал в присутствии дополнительного порошка титана, взятого в объемном отношении к прессованному материалу равном 1:1, подвергают реакционному спеканию в заваренной стальной ампуле при нагреве до 1100°С с последующим охлаждением до температуры 22-25°С. Обеспечивается повышение водород-сорбционных свойств интерметаллида. 2 ил., 2 табл., 1 пр.

Изобретение относится к области металлургии, в частности к получению материалов на основе титана, используемых для абсорбции и десорбции водорода, с целью применения его в энергетических устройствах, потребляющих водород, и химических процессах.

Перспективным аккумулятором и источником водорода среди сплавов на основе титана является интерметаллид TiFe, характеризующийся доступностью и низкой стоимостью.

Известен способ получения сплавов накопителей водорода [патент RU 2532788, МПК B22F 3/11, C22C 1/08, опубл. 10.11.2014] путем механической активации порошка металлического соединения и обработке порошка в реакторе при температуре 100-500°С с последующим прессованием в объемные образцы при давлении не менее 500 МПа, и отжиге в вакууме при температуре 0,3-0,5 температуры плавления интерметаллида.

Однако для достижения начала гидрирования без активации, данный метод предполагает наличие в образце большого количества дефектов и пористого состояния.

Наиболее близким является способ получения интерметаллида [Park K. B. et al. Characterization of microstructure and surface oxide of Ti1,2Fe hydrogen storage alloy //International Journal of Hydrogen Energy. - 2021. - Т. 46. - №. 24. - С. 13082-13087], состав которого описывается формулой Ti1,2Fe. Сплав Ti1,2Fe содержит 54,55 мас.% титана, остальное - железо. Фазовый состав сплава TiFe, Ti2Fe (2,8 мас.%) и β-Ti (мас. 5,4%). Содержание в сплаве фаз богатых титаном значительно улучшило кинетику поглощения водорода в сравнении с TiFe, обеспечило протекание процесса сорбции без активации, а повысило сорбционную ёмкость водорода. Сплав получали посредством вакуумно-дуговой плавки с использованием медного тигля и водяного охлаждения, для достижения однородности слиток нагревали и охлаждали 5 раз с последующим гомогенизационным отжигом в вакууме при температуре 1200°С в течение 10 часов.

Недостатком способа является длительная и энергозатратная технология получения, а также не достаточно высокая сорбционная способность интерметаллида.

Задачей является разработка нового способа получения материала для абсорбции и десорбции водорода, позволяющего повысить в составе фаз Ti2Fe и β-Ti.

Техническим результатом является повышение водород-сорбционных свойств интерметаллида.

Технический результат достигается в способе получения материала для абсорбции и десорбции водорода с использованием смеси порошков железа и титана и высокотемпературной обработки, при этом смесь порошков одной фракции 57-68 ат.% титана и 42-32 ат.% железа размещают на поверхности стальной подложки и подвергают прессованию при помощи взрывного нагружения, прессованный материал в присутствии порошка титана, взятого в объемном отношении к прессованному материалу равном 1:1, подвергают реакционному спеканию в заваренной стальной ампуле при нагреве до 1100°С с последующим охлаждением до температуры 22-25°С.

Сущность способа заключается в взрывном прессовании исходной смеси порошков титана и железа одной фракции и последующей термической обработке полученного прессованного материала с дополнительной порцией порошка титана.

Использование взрывного нагружения, приводит к совмещению прессования и активации порошкового материала перед последующим термическим воздействием, что ускоряет процессы диффузии. Заявленный режим термической обработки и оптимальный исходный состав титана и железа позволяет получить наиболее эффективный фазовый состав материала, обеспечивающий повышенные водород-сорбционные свойства.

На фиг. 1 показана схема взрывного нагружения, при которой на стальную подложку 1 (стальное основание) размещают порошковый материал 2, состоящий из смеси порошков одной (одинаковой) фракции титана по ТУ 14-22-57-92 и железа по ГОСТ 9849-86 (толщина размещенного слоя составляет 7 мм), устанавливают поверх него поршень 3 толщиной 1 мм с зарядом 4 взрывчатого вещества (ВВ) из аммонита (6ЖВ) (высота заряда ВВ определяется из условия обеспечения в процессе взрывного нагружения одинаковой температуры разогрева прессуемых материалов), детонатором 5 и детонирующим шнуром 6. Вся схема для взрывного нагружения установлена на песчаной подушке 7.

После взрыва детонатора, происходит инициирование заряда взрывчатого вещества, под действием взрыва которого формируется нормально падающая детонационная волна обеспечивает уплотнение смеси до практически беспористого состояния. Образующийся в результате прессованный материал подвергают реакционному спеканию в заваренной стальной ампуле при нагреве до 1100°С с последующим охлаждением до температуры 22-25°С. Спекание осуществляют в присутствии порошка титана, взятого в объемном отношении к прессованному материалу равном 1:1. Дополнительный объем порошка титана позволяет минимизировать взаимодействие спекаемых образцов с атмосферой ампулы.

На фиг. 2 показана микроструктура и фазовый состав полученного сплава.

Водород-сорбционные свойства полученных образцов определяли электрохимическим методом. Образцы полученных заявленным способом материалов помещались в электрохимическую ячейку для проведения электролиза.

Гидрирование проводили при температуре 20°C и атмосферном давлении. Измерения осуществляли в трехэлектродной ячейке с 9 M водным раствором КОН в качестве электролита, Ni(OH)2/NiOOH-противоэлектродом и Hg/HgO-электродом сравнения на потенциостате Electrochemical Instruments P-40X. Потенциал насыщения устанавливался максимально возможным в пределах ограничений, связанных с экспериментально определенным началом выделения на электроде газообразного водорода (-1,25 В для материала с 57 ат.% Ti и -1,175 В для материала с 68 ат.% Ti), время испытания составляло 100 минут.

В таблице 1 представлены соотношения порошков титана и железа в составе порошкового материала (изначальное соотношение порошков).

Таблица 1
Образец Состав первоначальной порошковой смеси, мас.% Состав первоначальной порошковой смеси, ат.% Состав материала,
мас.%
Высота заряда ВВ, мм
Ti Fe Ti Fe Ti Fe
1 54,2 45,8 57 42 54 46 95
2 60,3 39,7 64 36 60 40 90
3 63,5 36,5 67 33 63,4 36,6 85
4 64,55 35,45 68 32 64,5 35,5 80

Образец 1 представляет собой материал, полученный по заявленному способу с химическим составом по прототипу.

Фазовые составы и сорбционные свойства полученных образцов представлены в таблице 2.

Таблица 2
Образец Фазовый состав полученного материала, масс. % Сорбционные свойства, мкг/см²
TiFe Ti2Fe β-Ti Ti(N,C,O)
1 74,9 17,4 0,0 7,6 1,1008
2 41,6 44,7 5,1 8,7 3,9904
3 20,7 62,1 2,8 14,4 3,2491
4 9,8 73,3 13,5 3,3 5,3367

Из приведенных данных видно, что в состав материала входит титан с примесями азота и углерода Ti(N,C,O), полученные из атмосферы при термообработке и химического состава используемых порошков.

Таким образом, способ получения материала для абсорбции и десорбции водорода, при котором смесь порошков одной фракции 57-68 ат.% титана и 42-32 ат.% железа размещают на поверхности стальной подложки и подвергают прессованию при помощи взрывного нагружения, прессованный материал в присутствии порошка титана, взятого в объемном отношении к прессованному материалу равном 1:1, подвергают реакционному спеканию в заваренной стальной ампуле при нагреве до 1100°С с последующим охлаждением до температуры 22-25°С, обеспечивает получение интерметаллидов с повышенными водород-сорбционными свойствами.

Способ получения материала для абсорбции и десорбции водорода с использованием смеси порошков железа и титана и высокотемпературной обработки, отличающийся тем, что смесь порошков одной фракции 57-68 ат.% титана и 42-32 ат.% железа размещают на поверхности стальной подложки и подвергают прессованию при помощи взрывного нагружения, прессованный материал в присутствии дополнительного порошка титана, взятого в объемном отношении к прессованному материалу равном 1:1, подвергают реакционному спеканию в заваренной стальной ампуле при нагреве до 1100°С с последующим охлаждением до температуры 22-25°С.
Способ получения материала для абсорбции и десорбции водорода
Источник поступления информации: Роспатент

Showing 141-150 of 362 items.
08.11.2018
№218.016.9abf

Способ определения водонасыщения асфальтобетона

Изобретение относится к испытанию дорожно-строительных материалов. Способ включает изготовление образцов, взвешивание их на воздухе при температуре 20±2°С, выдержку в воде при температуре 20±2°С в течение 30 мин, последующее взвешивание образцов в воде при температуре 20±2°С, удаление излишков...
Тип: Изобретение
Номер охранного документа: 0002671631
Дата охранного документа: 06.11.2018
09.11.2018
№218.016.9bf3

Теплозащитный материал

Изобретение относится к теплозащитному материалу на основе этиленпропилендиенового каучука, который может использоваться в авиа- и ракетостроении. Теплозащитный материал содержит этиленпропилендиеновый каучук СКЭПТ-40, вулканизующие агенты серу и тиурам Д, ускоритель вулканизации...
Тип: Изобретение
Номер охранного документа: 0002671865
Дата охранного документа: 07.11.2018
30.11.2018
№218.016.a1bb

Способ нанесения покрытия из антифрикционного твердого сплава методом взрывного прессования

Изобретение может быть использовано для изготовления взрывным прессованием композиционных многослойных деталей. На поверхности металлической подложки размещают титановый порошок. Затем формируют промежуточный слой из смеси порошков карбида хрома с титаном в соотношении 78 мас. % CrC и 22 мас. %...
Тип: Изобретение
Номер охранного документа: 0002673594
Дата охранного документа: 28.11.2018
30.11.2018
№218.016.a1d8

Способ комбинированной сварки взрывом

Изобретение может быть использовано при изготовлении сваркой взрывом биметаллических заготовок и переходных элементов, преимущественно из трудносвариваемых толстолистовых разнородных металлов. Метаемую пластину устанавливают над неподвижной пластиной с зазором и инициируют расположенный на ней...
Тип: Изобретение
Номер охранного документа: 0002673595
Дата охранного документа: 28.11.2018
05.12.2018
№218.016.a34a

Способ изготовления легкоочищаемых литейных керамических форм, получаемых по выплавляемым моделям

Изобретение относится к области литейного производства и может быть использовано для изготовления литейных керамических форм по выплавляемым моделям при производстве точных отливок из черных и цветных сплавов. Способ изготовления легкоочищаемых литейных керамических форм, получаемых по...
Тип: Изобретение
Номер охранного документа: 0002673872
Дата охранного документа: 30.11.2018
05.12.2018
№218.016.a364

Суспензия для изготовления легкоочищаемых литейных керамических форм

Изобретение относится к области литейного производства и может быть использовано для изготовления литейных керамических форм по выплавляемым моделям при производстве точных отливок из черных и цветных сплавов. Суспензия включает этилсиликат, ацетон, воду, соляную кислоту, пылевидный огнеупорный...
Тип: Изобретение
Номер охранного документа: 0002673873
Дата охранного документа: 30.11.2018
20.12.2018
№218.016.a920

Состав для огнезащитных покрытий резин

Изобретение относится к области получения огнезащитных покрытий на основе полимерного связующего и может найти применение в резинотехнической промышленности. Cостав для огнезащитных покрытий включает, мас.ч.: хлорсульфированный полиэтилен 15, толуол 85 и углеродные волокна 1-3. В качестве...
Тип: Изобретение
Номер охранного документа: 0002675558
Дата охранного документа: 19.12.2018
21.12.2018
№218.016.aa2a

Состав для огнезащитных покрытий резин

Изобретение относится к области получения огнезащитных покрытий на основе полимерного связующего и может найти применение в резинотехнической промышленности. Состав для огнезащитных покрытий включает, мас.ч.: хлорсульфированный полиэтилен 15, толуол 85 и микроуглеродные волокна 1-5, полученные...
Тип: Изобретение
Номер охранного документа: 0002675575
Дата охранного документа: 19.12.2018
16.01.2019
№219.016.afd8

Клеевая композиция

Изобретение относится к клеевой промышленности и может быть использовано в резиновой промышленности при склеивании вулканизованных резин на основе различных каучуков друг с другом. Композиция включает компоненты при следующем соотношении, мас.ч.: хлоропреновый каучук наирит ДП (90,00),...
Тип: Изобретение
Номер охранного документа: 0002677175
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.b03a

Эластомерная композиция на основе бутадиен-нитрильного каучука

Изобретение относится к области эластомерных композиций на основе бутадиен-нитрильных каучуков, которые можно использовать в резинотехнических изделиях, обладающих стойкостью к действию нефти и продуктов ее переработки, в отраслях промышленности, где необходима маслобензостойкость и...
Тип: Изобретение
Номер охранного документа: 0002677211
Дата охранного документа: 15.01.2019
Showing 21-21 of 21 items.
15.05.2023
№223.018.57f7

Способ двухэлектродной дуговой наплавки

Изобретение относится к автоматизированной дуговой наплавке в среде защитных газов двумя проволоками сплошного сечения и может использоваться при производстве нефтехимического оборудования в технологических операциях по плакированию изделий коррозионно-стойкими слоями металла. Осуществляют...
Тип: Изобретение
Номер охранного документа: 0002767334
Дата охранного документа: 17.03.2022
+ добавить свой РИД