×
31.07.2020
220.018.3911

Результат интеллектуальной деятельности: Способ строительства бокового ствола скважины

Вид РИД

Изобретение

Аннотация: Изобретение относится к области бурения боковых стволов нефтяных и газовых скважин, а именно к способам предотвращения разрушения и обвала стенок скважины при бурении интервалов с неустойчивыми породами. Способ строительства бокового ствола скважины, включающий предварительное определение зоны неустойчивых пород, вырезание окна в эксплуатационной колонне, бурение бокового ствола, крепление бокового ствола безмуфтовой колонной-летучкой в определенной зоне неустойчивых пород с установленным на нижнем конце разбуриваемым башмаком, бурение бокового ствола до проектного забоя. Боковым стволом зону неустойчивых пород вскрывают в три этапа. На первом этапе проводят бурение до кровли зоны неустойчивых пород с использованием технической воды для облегчения прокачки через затрубье бурильной колонны. Проходку на втором этапе зоны неустойчивых пород на буровом растворе на углеводородной основе, а расширение ствола скважины на третьем этапе зоны неустойчивых пород на буровом растворе на углеводородной основе. Расширение производят для обеспечения ламинарного потока жидкости в интервале расширения за бурильной колонной и повышенного статического давления, позволяющего глубже проникать буровому раствору в интервал неустойчивых пород. После чего спускают на технологической колонне с автоотцепом до забоя и цементируют безмуфтовую колонну-летучку с последующим отсоединением от нее технологической колонны, которую с промывкой извлекают на поверхность. Обеспечивается надежная изоляция при вскрытии зоны неустойчивых пород пласта без возможных аварийных ситуаций за счет предварительного укрепления стенок скважины с последующим цементированием безмуфтовой колонны-летучки. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области бурения боковых стволов нефтяных и газовых скважин, а именно к способам предотвращения разрушения и обвала стенок скважины при бурении интервалов с неустойчивыми породами.

Известен способ строительства наклонно направленной скважины в условиях кавернообразования и поглощения (патент RU № 2704089, МПК E21B 7/00, E21B 33/138, опубл. 23.10.2019 Бюл. № 30), включающий бурение и спуск направления, кондуктора, вскрытие зоны осыпания верейского горизонта, углубление забоя ниже зоны осыпания на 10-15 метров, промывку ствола скважины для образования каверн в зоне осыпания, технологическую выдержку для осыпания грунта из каверн, установку цементного моста, технологическую выдержку на ожидание затвердения цемента в течение 4-6 часов, разбуривание цементного моста и бурение до проектной глубины, причем до бурения на участке бурения определяют глубины залегания зон кавернообразования и поглощения, расположенных ниже верейского горизонта, после разбуривания цементного моста в зоне осыпания верейского горизонта продолжают бурение на глинистом растворе с плотностью, близкой к плотности пластовой жидкости вмещающих пород, до вскрытия зоны поглощения, производят изоляцию зоны поглощения установкой цементного моста, затем устанавливают цементный мост на участке ствола с перекрытием зоны кавернообразования высотой не более 80 м, проводят технологическую выдержку на затвердевание цементного моста в течение 4-6 часов с последующим разбуриванием.

Недостатками данного способа являются узкая область применения из-за возможности реализации зон осыпания верейского горизонта, сложность сохранения проектного направления бурения, так как после ожидания затвердения цемента (ОЗЦ) верхний уровень цементного моста стремиться к горизонтальному расположению, что уводит долото при дальнейшем бурении в сторону от бокового (располагаемого под ненулевым зенитным углом) ствола, особенно в рыхлых и осыпающихся породах.

Наиболее близким по технической сущности является способ проходки неустойчивых пород при бурении бокового ствола c горизонтальным окончанием (патент RU № 2714397, МПК E21B 7/04, E21B 33/10, опубл. 14.02.2020 Бюл. № 5), включающий вырезание окна в эксплуатационной колонне, бурение бокового ствола, крепление бокового ствола колонной труб с установленным на нижнем конце башмаком, бурение бокового ствола до проектного забоя, причем предварительно определяют зону неустойчивых пород пласта, после вырезания окна в эксплуатационной колонне производят бурение бокового ствола долотом диаметром на 1,3-2,5% меньше диаметра вырезанного окна со вскрытием зоны неустойчивых пород пласта, спускают до забоя безмуфтовую колонну-летучку на колонне бурильных труб, оснащенную посадочным устройством сверху, а снизу - разбуриваемым прорабатывающим башмаком, повышают гидравлическое давление в колонне бурильных труб, отцепляют и извлекают посадочное устройство с колонной бурильных труб, при этом диаметр безмуфтовой колонны-летучки на 7-8 % меньше диаметра пробуренного бокового ствола, бурение бокового ствола из безмуфтовой колонны-летучки до проектного забоя производят долотом на 1,5-3% меньше внутреннего диаметра безмуфтовой колонны-летучки.

Недостатками данного способа являются узкая область применения из-за жестких ограничений по переходу одного диаметра бурения в другой, так как такой маленький разброс при бурении скважин малого диаметра (114 мм и меньше) выдержать практически невозможно, сложность реализации и высокая вероятность аварийности из-за сохранения подвижности колонны-летучки, так как формирование верхнего раструба в ней не контролируется в скважине а зонах неустойчивых пород низкая вероятность надёжного взаимодействия со стенками скважины.

Технической задачей предлагаемого изобретения является создание способа строительства бокового ствола скважины, позволяющего надежно изолировать при вскрытии зоны неустойчивых пород пласта без возможных аварийных ситуаций за счет предварительного укрепления стенок скважины с последующим цементированием безмуфтовой колонны-летучки.

Техническая задача решается способом строительства бокового ствола скважины, включающем предварительное определение зоны неустойчивых пород, вырезание окна в эксплуатационной колонне, бурение бокового ствола, крепление бокового ствола безмуфтовой колонной-летучкой в определенной зоне неустойчивых пород с установленным на нижнем конце разбуриваемым башмаком, бурение бокового ствола до проектного забоя.

Новым является то, что боковым стволом зону неустойчивых пород вскрывают в три этапа, на первом из которых проводят бурение до кровли зоны неустойчивых пород с использованием технической воды для облегчения прокачки через затрубье бурильной колонны, проходку на втором этапе зоны неустойчивых пород на буровом растворе на углеводородной основе, расширение ствола скважины на третьем этапе зоны неустойчивых пород на буровом растворе на углеводородной основе, причем расширение производят для обеспечения ламинарного потока жидкости в интервале расширения за бурильной колонной и повышенного статического давления, позволяющего глубже проникать буровому раствору в интервал неустойчивых пород, спускают на технологической колонне с автоотцепом до забоя и цементируют безмуфтовую колонну-летучку с последующим отсоединением от нее технологической колонны, которую с промывкой извлекают на поверхность, после ожидания затвердения цемента производят бурение бокового ствола до проектного забоя.

Новым является также то, что после извлечения технологической колонны, но до отверждения цемента, колонну-летучку развальцовывают для увеличения внутреннего диаметра и более глубокого проникновения цемента в зону неустойчивых пород.

Новым является также то, что буровой раствор на углеводородной основе приготавливают на основе нефти и/или дизельного топлива, смешанного с водой и добавлением утяжелителей для обеспечения необходимого удельного веса, который позволяет надежно закольматировать и уплотнить стенки скважины в зоне неустойчивых пород.

На фиг. 1 изображена схема реализации способа после прохождения боковым стволом зоны с неустойчивыми породами.

На фиг. 2 изображена схема реализации способа после расширения бокового ствола в зоне с неустойчивыми породами.

На фиг. 3 изображена схема реализации способа после установки колонны-летучки и дальнейшей проходки бокового ствола.

Конструктивные элементы и технологические соединения, не влияющие на работоспособность способа, на фиг. 1 – 3 не показаны, или показаны условно.

Способ строительства бокового ствола 1 (фиг. 1) скважины 2 включает предварительное определение зоны 3 неустойчивых пород, установку клина-отклонителя 4 (см. патенты RU №№ 2414580, 2429335, 2568454 или т.п.), вырезание окна 5 в эксплуатационной колонне 6 скважины 2, предварительное бурение на первом этапе бокового ствола 1 до кровли 7 зоны 3 неустойчивых пород с использованием технической воды для облегчения прокачки через затрубье бурильной колонны с долотом (не показаны). На втором этапе бурением проходят зону 3 неустойчивых пород на буровом растворе на углеводородной основе (соответствующей ТУ 2413-003-52412574-01, см. также патенты RU №№ 2016041, 2208035 или т.п.). На территории Республики Татарстан (РТ) хорошо показал себя буровой раствор на углеводородной основе, который приготавливают на основе нефти и/или дизельного топлива, смешанного с водой и добавлением утяжелителей для обеспечения необходимого удельного веса (который для подбирается эмпирическим путем для каждого месторождения). В качестве утяжелителей может использоваться кварцевый песок, мраморная крошка или их сочетание. Данный буровой раствор на углеводородной основе на месторождениях РТ позволяет надежно закольматировать и уплотнить стенки скважины в зоне 3 неустойчивых пород и хорошо выносить на поверхность обрушающееся породы этой зоны 3. Исходя из возможного расхода (Q м3/с) бурового раствора, создаваемого устьевым агрегатом (не показан), внутреннего диаметра бокового ствола 1 и диаметра колонны-летучки 8 (показана условно на фиг. 3) определяют число Рейнольдса (Re) и скорость (v м/с) течения жидкости в затрубье колонны-летучки 8.

Число Рейнольдса (Re) определяют по формулам:

[1]

где Re – число Рейнольдса;

ρ – плотность бурового раствора, кг/м3;

v – скорость потока бурового раствора в затрубье, м/с;

Dг – гидравлический диаметр, м;

η – динамическая вязкость бурового раствора, Па⋅с или кг/(м⋅с);

ν – кинематическая вязкость бурового раствора (ν=η/ρ), м2/с;

Q – расход бурового раствора, м3/с;

π = 3.14159;

D – внутренний диаметр бокового ствола 1, м;

d – наружный диаметр колонны-летучки 8, м.

Причем для кольцевого сечения Dг определяют по формуле:

[2]

где Dг – гидравлический диаметр, м;

D – диаметр бокового ствола 1, м;

d – наружный диаметр колонны-летучки 8, м.

Расход (Q) определяется по формуле:

[3]

где Q – расход бурового раствора, м3/с;

v – скорость потока бурового раствора, м/с;

π = 3.14159;

D – внутренний диаметр бокового ствола 1, м;

d – наружный диаметр колонны-летучки 8, м.

Исходя из формул [1] [2] [3] получаем следующую формулу:

[4]

где Re – число Рейнольдса;

v – скорость потока бурового раствора в затрубье, м/с;

ν – кинематическая вязкость бурового раствора, м2/с;

Q – расход бурового раствора, м3/с;

π = 3.14159;

D – внутренний диаметр бокового ствола 1, м;

d – наружный диаметр колонны-летучки 8, м.

Зная, что для получения ламинарного потока для концентрической щели, необходимо, чтобы числе Рейнольдса Re ≤ 1100, кинематическая вязкость (ν) бурового раствора определяется точно в лабораторных условиях, то из формулы [4] необходимый внутренний диаметр бокового ствола после расширения (D = Dр) для обеспечения ламинарного потока жидкости:

[5]

где Dр – внутренний диаметр бокового ствола после расширения, м;

Re – число Рейнольдса, Re = 1100;

ν – кинематическая вязкость бурового раствора, м2/с;

Q – расход бурового раствора, м3/с;

π = 3.14159;

d – наружный диаметр колонны-летучки 8, м.

Внутренний диаметр бокового ствола после расширения (Dр) из полученных условий принимают, учитывая применяемые расширители ствола скважины (см. патенты RU №№ 2538021, 2299303, 2550614 или т.п.).

Расширение 9 (фиг. 2) бокового ствола 1 скважины 2 проводят на третьем этапе зоны 3 неустойчивых пород на буровом растворе на углеводородной основе.

Производят спуск в боковой ствол 1 (фиг. 3) на технологической колонне (не показана) колонны-летучки 8 с промывкой буровым раствором, обеспечивая ламинарный поток жидкости в затрубье колонны-летучки 8 и интервале расширения 9. Отсутствие турбулентного потока в затрубье колонны-летучки 8 и небольшое значение числа Рейнольдса (Re) исключают интенсивное разрушение стенок скважины в интервале расширения 9 в пределах зоны 3 неустойчивых пород и сводят к минимуму аварийные ситуации, связанные с прихватом (застреванием) колонны-летучки 8 в боковом стволе из-за обвала породы в зоне 3.

При этом происходит интенсивная кольматация и уплотнение стенок бокового ствола 1 скважины 2 за счет более низкой скорости потока бурового в затрубье колонны-летучки 8 повышается гидростатическое давление, так как согласно формуле Бернулли:

[6]

где P – гидростатическое давление, МПа;

ρ – плотность бурового раствора, кг/м3;

g – ускорение свободного падения, 9,81 м2/с;

h – глубина измерения от устья скважины в зоне 3 неустойчивых пород, м;

vр – скорость потока бурового раствора в затрубье колонны-летучки 8 после расширения бокового ствола 1, м/с.

Так как давление для преодоления столба жидкости с глубины h (ρ•g•h) остается постоянной, то изменения скорости (v) изменению гидростатического давления (Р).

Скорость (v) потока бурового раствора в затрубье колонны-летучки 8 поле расширения определяют также из формулы [4]:

[7]

где v – скорость потока бурового раствора в затрубье, м/с;

Dр – внутренний диаметр бокового ствола после расширения, м;

d – наружный диаметр колонны-летучки, м;

Re – число Рейнольдса, Re = 1100;

ν – кинематическая вязкость бурового раствора, м2/с.

Скорость (v) потока бурового раствора в затрубье колонны-летучки 8 до расширения определяют также из формулы [3]:

[8]

где v – скорость потока бурового раствора в зарубе колонны-летучки 8 до расширения, м/с;

Q – расход бурового раствора, м3/с;

π = 3.14159;

D – внутренний диаметр бокового ствола 1 до расширения, м;

d – наружный диаметр колонны-летучки 8, м.

Коэффициент изменения скорости в зарубе колонны-летучки 8 после расширения и до расширения составляет:

[9]

где v – скорость потока бурового раствора в зарубе колонны-летучки 8 до расширения, м/с;

vр – скорость потока бурового раствора в затрубье колонны-летучки 8 после расширения бокового ствола 1, м/с.

Для месторождений РТ коэффициент изменения скорости (k) составляет 0,4 – 0,5, то есть гидростатическое давление (Р) увеличится в 6,25 – 4 раза соответственно, что обеспечивает интенсивную кольматацию и уплотнение стенок бокового ствола 1 скважины 2 в зоне 3 неустойчивых пород, минимизируя вероятность их обрушения.

После опоры на временный забой 10 (фиг. 2) башмака (не показан) колонны-летучки 8 (фиг. 3), через технологическую колонну закачивают цементный раствор, который проходя через башмак колонны-летучки 8 поднимается по ее затрубью, заполняя его. После прокачки расчетного количества цементного раствора или при получении «стоп» (резкого роста давления, при использовании разделительной цементной пробки, взаимодействующей в конце закачки со «стоп-кольцом» – не показаны) закачку прекращают, при помощи автоотцепа (см. патенты RU №№ 50587, 2113589, 2151260, 2455451 или т.п.) отсоединяют технологическую колонну и с промывкой технической водой извлекают из скважины для вымывания остатков цемента внутри и сверху колонны-летучки 8. Использование в качестве колонны-летучки 8 безмуфтовых труб (например, колтюбинговых труб) уменьшает перепад внутренних диаметров пробуренного бокового ствола 1 и колонны-летучки 8.

Если присутствует необходимость (по проекту строительства скважины 2) увеличить внутренний диаметр углубления 11 (фиг. 3) бокового ствола 1, то затвердения цемента колонну-летучку 8 развальцовывают (см. патенты RU №№ 2259462, 2387801, 2636608 или т.п.) по всей длине до получения необходимого внутреннего диаметра, позволяющего производить необходимым диаметром углубления 11. При этом происходит уплотнение в затрубье колонны-летучки 8 и более глубокое проникновение цемента в зону 3 неустойчивых пород.

После ожидания затвердения цемента (ОЗЦ) в затрубье колонны-летучки 8 (после развальцовки или нет), разбурив предварительно башмак и пробку со стоп-кольцом (при их наличии), производят углубление 11 бурением бокового ствола 1 до проектного забоя (не показан) с изменением или нет зенитного угла (авторы на это не претендуют).

Предлагаемый способ строительства бокового ствола скважины позволяет надежно изолировать при вскрытии зоны неустойчивых пород пласта без возможных аварийных ситуаций за счет предварительного укрепления стенок скважины с последующим цементированием безмуфтовой колонны-летучки.


Способ строительства бокового ствола скважины
Способ строительства бокового ствола скважины
Источник поступления информации: Роспатент

Showing 21-30 of 170 items.
27.12.2019
№219.017.f34c

Способ утилизации нефтешлама

Изобретение относится нефтегазодобывающей промышленности, а именно к переработке и утилизации нефтесодержащего сырья, формируемого на промыслах. Способ утилизации нефтешлама включает подачу в шламонакопитель 1 через парораспределитель и активные сопла 4 паровых эжекторов пара, в поток которого...
Тип: Изобретение
Номер охранного документа: 0002710174
Дата охранного документа: 24.12.2019
27.12.2019
№219.017.f3d1

Образец для неразрушающего контроля скважинных труб

Изобретение относится нефтегазодобывающей промышленности, в частности к неразрушающим способам контроля скважинных труб. Образец содержит тело из контролируемого материала, содержащего искусственный дефект. Тело изготовлено в виде трубы с искусственными дефектами, выполненными в виде...
Тип: Изобретение
Номер охранного документа: 0002710477
Дата охранного документа: 26.12.2019
16.01.2020
№220.017.f583

Способ поиска нефтесодержащих пластов в коллекторах карбонатного девона

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам поиска нефтяных и газовых месторождений при помощи сейсмической разведки и бурения разведывательных скважин. Способ поиска нефтесодержащих пластов в коллекторах карбонатного девона включает изучение при помощи...
Тип: Изобретение
Номер охранного документа: 0002710883
Дата охранного документа: 14.01.2020
16.01.2020
№220.017.f602

Состав для изоляции водопритока в скважину

Изобретение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих и нагнетательных скважинах, и предназначено для проведения водоизоляционных работ в скважинах. Состав содержит 45-55 мас.% 15-25%-ного водного раствора полиалюминия хлорида и...
Тип: Изобретение
Номер охранного документа: 0002710862
Дата охранного документа: 14.01.2020
01.02.2020
№220.017.fce6

Скважинный штанговый насос для добычи продукции с газовым фактором

Изобретение относится к нефтедобывающей промышленности и может быть использовано для добычи нефти при большом содержании газа в откачиваемой жидкости. Насос для добычи продукции с газовым фактором включает цилиндр с размещенным в нем полым плунжером, в нижней части которого установлен...
Тип: Изобретение
Номер охранного документа: 0002712567
Дата охранного документа: 29.01.2020
05.02.2020
№220.017.fe3a

Способ кислотной обработки призабойной зоны кустовой скважины

Изобретение относится к нефтедобывающей промышленности, в частности к методам повышения нефтеотдачи пласта формированием трещин с использованием кислоты. Способ кислотной обработки призабойной зоны кустовой скважины включает отбор в кусту скважин пары добывающих скважин, расположенных рядом, с...
Тип: Изобретение
Номер охранного документа: 0002713027
Дата охранного документа: 03.02.2020
05.02.2020
№220.017.fe53

Устройство для отвода газа из затрубного пространства нефтяной добывающей скважины

Изобретение относится к нефтяной промышленности и может найти применение при стравливании затрубного попутно-добываемого газа из нефтяной скважины. Технический результат - обеспечение возможности отвода газа из затрубного пространства нефтяной скважины при высоких температурах. Устройство...
Тип: Изобретение
Номер охранного документа: 0002713062
Дата охранного документа: 03.02.2020
05.02.2020
№220.017.fe61

Способ механической очистки стенок скважинной колонны

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам механической очистки стенок скважиной колонны скребками. Способ включает спуск и подъем с помощью привода на трубах или на гибкой тяге механического скребка с заточенными ножами в скважину с очисткой необходимого...
Тип: Изобретение
Номер охранного документа: 0002713029
Дата охранного документа: 03.02.2020
05.02.2020
№220.017.fe92

Превентор плашечный для скважин с двухрядной колонной труб

Изобретение относится к оборудованию для герметизации устья нефтяных и газовых скважин при их эксплуатации и ремонте с целью обеспечения безопасности, предупреждения и ликвидации нефтегазоводопроявлений (НГВП), в том числе на скважинах с наклонным устьем двухрядной колонны труб, охраны недр и...
Тип: Изобретение
Номер охранного документа: 0002713032
Дата охранного документа: 03.02.2020
05.02.2020
№220.017.fe9b

Состав для изоляции водопритока в скважину

Изобретение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих и нагнетательных скважинах, и предназначено для проведения водоизоляционных работ в скважинах. Состав содержит 8,0-15,0 мас. % силиката натрия, 85-92 мас. % пресной воды. При...
Тип: Изобретение
Номер охранного документа: 0002713063
Дата охранного документа: 03.02.2020
Showing 21-30 of 39 items.
25.04.2020
№220.018.18ad

Способ разрушения пробки в скважине

Изобретение относится к нефтегазодобывающей промышленности, а именно к разрушению пробок в процессе ремонта нефтяных и нагнетательных скважин. Способ включает спуск в лифтовую колонну скважины колонны промывочных труб до кровли песчаной пробки, нагнетание в скважину промывочной жидкости,...
Тип: Изобретение
Номер охранного документа: 0002720038
Дата охранного документа: 23.04.2020
25.04.2020
№220.018.19a9

Способ разработки залежи сверхвязкой нефти на поздней стадии

Изобретение относится к нефтедобывающей промышленности, в частности к способам увеличения добычи сверхвязкой нефти на месторождении. Техническим результатом является создание безаварийного способа разработки залежи сверхвязкой нефти на поздней стадии позволяющего с наименьшими затратами времени...
Тип: Изобретение
Номер охранного документа: 0002719882
Дата охранного документа: 23.04.2020
14.05.2020
№220.018.1c96

Способ установки пакера внутри обсадной колонны скважины

Изобретение относится к способу установки пакера внутри обсадной колонны. Техническим результатом является возможность установки пакера с минимальным количеством операций в сложно структурированных скважинах. Способ установки пакера внутри обсадной колонны скважины включает спуск в обсадную...
Тип: Изобретение
Номер охранного документа: 0002720722
Дата охранного документа: 13.05.2020
21.06.2020
№220.018.2927

Способ заканчивания скважины

Изобретение относится к области нефтяной и газовой промышленности, а именно к бурению, промывке, очистке и строительству. При осуществлении способа после бурения до проектной глубины, но перед спуском компоновки для цементирования производят подъем бурильной колонны выше потенциальных зон...
Тип: Изобретение
Номер охранного документа: 0002723815
Дата охранного документа: 17.06.2020
21.06.2020
№220.018.2953

Способ строительства скважины

Изобретение относится к строительству скважин и может найти применение при бурении скважины через зоны поглощения промывочной жидкости. Способ строительства скважины включает вращение и осевую подачу компоновки с долотом и подачу промывочной жидкости через внутреннюю полость компоновки на...
Тип: Изобретение
Номер охранного документа: 0002723814
Дата охранного документа: 17.06.2020
27.06.2020
№220.018.2b89

Калибратор скважинный

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для калибровки ствола скважины перед входом в вырезанное окно бокового ствола бурильной компоновки по предварительно установленному в основном стволе клину-отклонителю. Калибратор скважинный, включающий...
Тип: Изобретение
Номер охранного документа: 0002724722
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2b8d

Способ извлечения скважинного оборудования

Изобретение относится нефтегазодобывающей промышленности, а именно к способам очистки скважины от отложений, в том числе химическими реагентами, для извлечения скважинного оборудования. Способ включает перед извлечением оборудования прокачку в скважину насосным агрегатом промывочной жидкости,...
Тип: Изобретение
Номер охранного документа: 0002724709
Дата охранного документа: 25.06.2020
27.06.2020
№220.018.2c47

Способ восстановления работоспособности клапанов плунжерного глубинного насоса

Изобретение относится к нефтегазодобывающей промышленности для очистки клапанов в скважинных штанговых насосных установках. Для реализации способа восстановления работоспособности клапанов плунжерного глубинного насоса останавливают работу устьевого привода глубинного насоса. Приподнимают при...
Тип: Изобретение
Номер охранного документа: 0002724697
Дата охранного документа: 25.06.2020
04.07.2020
№220.018.2ec9

Способ установки хвостовика в скважине

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам установки и цементирования хвостовиков в буровой скважине, в том числе в боковых и горизонтальных стволах. Способ включает спуск в скважину на колонне технологических труб с отцепным механизмом хвостовика,...
Тип: Изобретение
Номер охранного документа: 0002725398
Дата охранного документа: 02.07.2020
10.07.2020
№220.018.3129

Фильтрующее устройство для очистки скважины

Изобретение относится к нефтегазодобывающей промышленности и может найти применение при очистке жидкости в стволе скважины от плавающего мусора и взвешенных частиц. Устройство включает спускаемый в скважину на тяговом органе или колонне труб центральный патрубок с фильтрующим участком,...
Тип: Изобретение
Номер охранного документа: 0002725994
Дата охранного документа: 08.07.2020
+ добавить свой РИД