×
26.07.2020
220.018.3869

Результат интеллектуальной деятельности: Способ исследования состава отложений, образующихся в оборудовании нефтедобывающей скважины

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтяной промышленности, а именно к анализу химического и минерального состава отложений, образующихся в процессе добычи нефти в нефтепромысловом оборудовании. Способ исследования состава отложений, образующихся в оборудовании нефтедобывающей скважины, включает отбор образца, разделение его на пробы, определение в одной из них содержания влаги с последующим ее озолением, при этом по соотношению массы пробы до и после озоления устанавливают долю присутствующих в пробе органических и неорганических соединений и с учетом полученных результатов проводят деление и анализ остальных проб, при этом озоление проводят при 600-650°С, образец изначально делят на три пробы, А, Б, В, в одной из которых, А, определяют содержание воды и, дополнительно, суммарное содержание воды и легколетучих органических соединений, а также устанавливают общее содержание неорганических соединений, в другой пробе, Б, определяют суммарное количество нефтяных углеводородов как разность масс исходной и промытой толуолом проб, при этом оставшуюся твердую фракцию пробы Б разделяют на две пробы, Б и Б, из одной, Б, проводят определение неорганических компонентов, а из другой, Б, - нерастворимых в толуоле органических соединений, в частности полимеров, при этом если количество нефтяных углеводородов в отложениях превышает 50%, анализируют третью часть образца, пробу В, на содержание парафинов. Техническим результатом является увеличение информативности получаемых результатов и полноты исследований, с обеспечением данных, необходимых для разработки и корректировки мероприятий по защите нефтепромыслового оборудования от отложений, выбора соответствующих химических регентов для их профилактики и удаления. 1 з.п. ф-лы, 1 табл.

Изобретение относится к нефтяной промышленности, в частности, к исследованию отложений, образующихся в процессе добычи нефти в нефтепромысловом оборудовании, а именно, к анализу их химического и минерального состава, и может найти применение при проведении штатных и внеплановых работ по технологическому обслуживанию скважины, а также послужить руководством при выборе необходимых реагентов: ингибиторов и растворителей.

Образование отложений приводит к выходу из строя оборудования, причиной которого является коррозия и нарушение герметичности трубопроводов, и устранение которых требует введения в систему агрессивных химических реагентов. Максимально полная информация о составе отложений позволяет сделать правильный выбор очищающих реагентов, а также составов, ингибирующих образование отложений, и тем самым ограничить и снизить техногенные риски.

Известен (RU 2263161, опубл. 2005.10.27) способ получения проб отложений с поверхности оболочек циркониевых твэлов (тепловыделяющих элементов) посредством приведения оболочки в контакт с водным раствором минеральных кислот, содержащим 60% разбавленной соляной кислоты (1:1) и 20% концентрированной азотной кислоты, который заливают в цилиндрический пенал из термостойкого, химически стойкого и чистого по содержанию примесных элементов материала, нагревают до температуры 50-90°С, в нагретый раствор помещают твэл или его участок, выдерживают в растворе 10-30 мин до полного растворения отложений. После этого определяют химический состав отложений непосредственно из раствора методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой (ИСП-АЭС) и оценивают их коррозионное воздействие. Получение проб отложений с помощью кислотного раствора имеет свои преимущества в сравнении с механическим, однако исследование состава отложений на нефтепромысловом оборудовании требует более щадящих методов пробоподготовки. Получение образцов отложений в известном способе путем их снятия растворением с помощью кислот приводит к утрате органической составляющей, которая имеет немаловажное значение в случае ее присутствия в отложениях на нефтепромысловом оборудовании. Кроме того, известный способ не предусматривает определения минерального состава, при этом определение катионного состава неорганической части ограничивается одним методом анализа.

Известен способ исследования отложений, образовавшихся на стенках эксплуатационной колонны скважины, описанный в патенте RU 2209965, опубл. 2003.03.10, который включает заполнение скважины без насосно-компрессорных труб жидкостью глушения, спуск в нее многосекционного пробоотборного устройства и определение продольного профиля и состава твердых отложений по глубине колонны. Для этого на каждой заданной глубине с помощью упомянутого устройства осуществляют секционный отбор образцов твердых отложений со стенок колонны не менее чем в трех точках, равномерно расположенных по внутренней ее окружности, при этом срабатывание каждой секции по глубине скважины производят поочередно при соответствующих величинах гидростатического давления столба жидкости, а затем на поверхности производят измерение толщины и физико-химический анализ отобранных образцов. Известный способ фактически сводится к отбору проб отложений на стенках эксплуатационной колонны; методы их физико-химического анализа в описании не раскрыты. Кроме того, известный способ описан только для эксплуатационной колонны. К тому же он осуществим только во время капитального ремонта, при этом требует сложного устройства и определенных условий для своего осуществления. В частности, для отбора прочных отложений на значительной глубине необходима герметизация устья и создание избыточного давления, обеспечивающего срабатывание пробозаборных гильз на глубине остановки упомянутого устройства.

Наиболее близким к предлагаемому, в первую очередь, по решаемым задачам, является способ исследования отложений, отобранных на нефтепромысловом оборудовании (CN106203884, опубл. 2014.06.25), который включает определение влажности отобранного образца, его сушку при 110°С и разделение высушенного образца на две пробы, А и Б, одну из которых, а именно, пробу А, озоляют и по соотношению массы до и после обжига классифицируют материал как органический либо неорганический, после чего, в случае органической природы образца анализируют пробу Б на содержание парафинов, смол и асфальтенов, а в случае неорганической делят эту пробу на две части: одну для качественного, другую для количественного определения ионов кальция, магния, железа, кремния и сульфат-иона, при этом кальций и магний определяют титрованием раствором ЭДТА, железо и кремний - фотометрическим методом.

Известный способ не предусматривает определения минерального состава отложений, число количественно определяемых неорганических составляющих является ограниченным, вдобавок озоление при 750-950°С приводит к дополнительной потере неорганики: хлоридов калия и натрия и карбонатов. Помимо этого при определении влажности в известном способе не учитывается, что при сушке (110°С) удаляется не только вода, но и легколетучие органические соединения, что вносит неточность в полученные результаты. Недостаточная полнота выполненных анализов в целом является причиной недостаточной информативности полученных результатов и в значительной мере снижает их вклад в решение проблемы отложений в нефтепромысловом оборудовании.

Задачей изобретения является создание способа исследования отложений, образующихся в процессе добычи нефти в нефтепромысловом оборудовании, обеспечивающего ту полноту информации о химическом и минеральном составе упомянутых отложений, которая необходима для решения проблем предотвращения их образования, а также их удаления.

Технический результат предлагаемого способа заключается в повышении информативности получаемых результатов исследований за счет расширения круга выполняемых анализов и увеличения полноты исследований, с обеспечением данных, необходимых для разработки и корректировки мероприятий по защите нефтепромыслового оборудования от отложений, выбора соответствующих химических регентов для их профилактики и удаления.

Указанный результат достигают способом исследования состава отложений, образующихся в нефтепромысловом оборудовании, включающим отбор образца, разделение его на пробы, определение в одной из них содержания влаги с последующим озолением, при этом по соотношению массы пробы до и после озоления устанавливают долю присутствующих в пробе органических и неорганических соединений и с учетом полученных результатов проводят деление и анализ остальных проб, в котором, в отличие от известного, озоление проводят при 600-650°С, образец изначально делят на три пробы, А, Б, В, в одной из которых, А, определяют содержание воды и, дополнительно, суммарное содержание воды и легколетучих органических соединений, а также устанавливают общее содержание неорганических соединений, в другой пробе, Б, определяют суммарное количество нефтяных углеводородов как разность масс исходной и промытой толуолом пробы, при этом оставшуюся твердую фракцию пробы Б разделяют на две пробы, Б1 и Б2, из одной, Б1, проводят определение неорганических компонентов, а из другой, Б2, - нерастворимых в толуоле органических соединений, в частности, полимеров, при этом если количество нефтяных углеводородов в отложениях превышает 50%, анализируют третью часть образца, пробу В, на содержание парафинов.

В преимущественном варианте осуществления изобретения для неорганической части отложений количественно определяют все элементы от углерода до урана, содержание которых превышает 0,001 масс. %.

Способ осуществляют следующим образом:

Образцы отложений, отобранные из нефтепромыслового оборудования, т.е. из оборудования добывающей нефтяной скважины, имеют сложный состав, включающий твердые составляющие, органическую и неорганическую, а также воду и другие жидкие и легколетучие компоненты, что определяет необходимость деления отобранных образцов на отдельные пробы для устранения нежелательных взаимодействий анализируемых компонентов в ходе проведения исследований и возможного влияния этого взаимодействия на полученные результаты. Проведение исследования образцов отложений на отдельных пробах обеспечивает возможность оптимального подбора и необходимой корректировки методов их анализа, при этом позволяет расширить круг анализируемых компонентов, входящих в состав отложений, и уточнить структуру последних.

После отбора образец отложений делят на три части с условными обозначениями: пробы А, Б и В.

Пробу А делят на две: пробу A1 и пробу А2. В одной из них, A1, известным методом, отгонкой с толуолом, определяют содержание воды.

Из другой части пробы А, пробы А2, определяют суммарное количество воды и легколетучих соединений, для этого ее высушивают при 105°С. Затем по разнице результатов в А2 и A1 определяют содержание легколетучих соединений. Такой подход, позволяет уточнить оценку обводненности отложений.

Пробу А2 затем озоляют при 600-650°С до постоянной массы для определения суммарного содержания органического вещества в отложениях. Озоление при температурах в заявляемом интервале позволяет минимизировать потери неорганических соединений: хлоридов натрия и калия, а также карбонатов. Общее содержание неорганических соединений определяют гравиметрическим методом как массовую долю золы.

Пробу Б промывают толуолом для отделения и количественного определения нефтяных углеводородов как потерю массы после промывания образца толуолом.

Из пробы Б отбирают часть, пробу Б1, для определения органических соединений, а из оставшейся части определяют минеральный и элементный состав отложения.

Если содержание нефтяных углеводородов в отложениях составляет более 50%, то анализируют пробу В, в которой хроматографическими методами определяют содержание парафинов. Анализ выполняют на газовом хроматографе с пламенно-ионизационным детектором и инжектором с программированием температуры.

Отделение нефтяных углеводородов позволяет определить в образцах отложений входящие в их состав парафины, полимеры и другие органические соединения.

Совокупность проведенных исследований и полученные результаты обеспечивают важную информацию о процессах осадкообразования, позволяют создавать химические модели для изучения механизмов образования и возможных способов удаления отложений.

Примеры конкретного осуществления способа

Пример 1

Образец массой 150 г делили на 3 части (пробы А, Б и В).

Из пробы А отбирали навеску массой 15 г (проба A1), помещали в круглодонную колбу, добавляли 100 мл толуола и отгоняли воду в ловушку Дина-Старка с обратным холодильником. Содержание воды составило 5,8 масс. %.

Из той же пробы А отбирали еще одну навеску 15 г (проба А2), высушивали при 105°С до постоянной массы. Определяли содержание легколетучих органических соединений по разнице между потерей массы и количеством воды, найденном из пробы A1. Потеря массы составила 6,53 масс. %, таким образом содержание легколетучих органических соединений составило 0,73 масс. %.

Общее содержание неорганических соединений определяли как массовую долю остатка после прокаливания в муфельной печи при температуре 600-650°С. Содержание золы составило 87,14 масс. %, органической части 6,33 масс. % (сумма нефтяных углеводородов и нерастворимых в толуоле органических соединений).

Пробу Б (30 г) взвешивали и промывали толуолом, затем сушили в сушильном шкафу до постоянной массы при 120°С и подсчитывали содержание нефтяных углеводородов как потерю массы после упомянутого промывания. Содержание нефтяных углеводородов составило 4,73 масс. %. Высушенную пробу Б разделили на две, Б1 и Б2.

Минеральный состав отложений определяли в 10 граммах пробы Б1 методом рентгенофазового анализа (РФА) с записью рентгенограмм на рентгеновском дифрактометре D8 ADVANCE (Bruker, Germany) по методу Брег-Бретано с вращением образца. Идентификацию экспериментальных данных выполняли с учетом всех дифракционных отражений с использованием программы поиска EVA с банком данных PDF-2. Результаты показали, что основными компонентами осадка являются сульфат бария (барит), карбонаты кальция (кальцит) и магния (магнезиальный кальцит), диоксид кремния (кварц).

Элементный состав устанавливали с помощью метода энергодисперсионного рентгенофлуоресцентного анализа (ЭДРФА) с записью спектров. Идентификацию элементов производили по характеристическим K и L линиям спектра, а интенсивность этих сигналов считали пропорциональной содержанию элемента.

Для количественного анализа неорганических соединений 5 г пробы Б1 запрессовывали в таблетку-излучатель и записывали рентгенофлуоресцентный спектр на энергодисперсионном рентгенофлуоресцентном спектрометре Shimadzu EDX-800-HS (Япония). Расчет концентрации элементов проводится с помощью программного обеспечения спектрометра.

Пробу Б2 использовали для идентификации природы твердых органических соединений нерастворимых в толуоле. Для этого брали 100 мг пробы Б2 и проводили пиролитическую хромато-масс-спектрометрию (Пи-ГХ/МС). Пиролиз выполняли на газовом хромато-масс-спектрометре Shimadzu GCMS QP-2010 с пиролизером Double-Shot Pyrolyzer PY-2020iD. Температура пиролиза 600°С, температура интерфейса пиролизера PY/GC - 320°С. Разделение продуктов пиролиза проводили на колонке Ultra ALLOY-5MS при программировании температуры колонки от 40 до 320°С со скоростью 20°С/мин с использованием гелия в качестве газа-носителя. Идентификацию продуктов проводили с помощью программного обеспечения F-Search "All-in-One".

В образце идентифицированы полимеры, представляющие собой сульфатированные производные полиакриловой кислоты (сходство спектров 95%). Для подтверждения идентификации проводили дополнительные ИК-спектрометрические исследования. Навеску 100 мг из пробы Б2 помещали последовательно в приставки к ИК-спектрофотометру с Фурье-преобразованием Shimadzu IRAffinity-1S (Япония) Miracle-10 и DRS-8000 и записывали спектры в диапазоне 4000-600 см-1. Идентификацию проводили с помощью программного обеспечения LabSolution IR и коммерческих библиотек ИК спектров.. Сходство библиотечного спектра сульфатированной полиакриловой кислоты и исследованного полимера составило 82%.

Пример 2

Деление образца на отдельные пробы, анализ проб А и Б проводили как в примере 1. На рентгенограммах образцов, промытых толуолом, неорганические соединения идентифицировать было затруднительно из-за их рентгеноаморфности, поэтому для записи рентгенограмм брали остаток после прокаливания из пробы А2. Для количественного анализа неорганических соединений таблетку-излучатель прессовали аналогично примеру 1 и записывали рентгенофлуоресцентный спектр на энергодисперсионном рентгенофлуоресцентном спектрометре Shimadzu EDX-800-HS (Япония). Анализ органических соединений в пробе Б2 проводили аналогично примеру 1.

Пример 3

Анализ частей А и Б проводили как описано в примере 1. Содержание нефтяных углеводородов (фракция, растворимая в толуоле) превышало 80% от массы осадка, поэтому из проб В определяли парафины и асфальтены.. Содержание парафинов определяли методом газовой хроматографии по методике, описанной в патенте №2691968, опубл. 2019.06.19, на газовом хроматографе Shimadzu GC-2010Plus (Япония) с пламенно-ионизационным детектором (ПИД) и инжектором с программированием температуры OCI/PTV-2010. Температурная программа инжектора: начальная температура 100°С, затем нагрев со скоростью 100°С/с до 400°С (в течение 3 с). Разделение проводили на капиллярной колонке Ultra-ALLOY-DX50 при программировании температуры от 50 до 400°С со скоростью 10°С/мин, газ-носитель - гелий. Температура детектора ПИД - 410°С.Для определения времени удерживания н-алканов использовали стандарт ASTMD5442 С12-С60 Quantitative, в качестве внутреннего стандарта - дейтерированный эйкозан C20D42. За содержание парафинов в нефти принимали концентрацию н-алканов С1640. Асфальтены определяли как нерастворившуюся фракцию, полученную после отгона летучих при 260°С компонентов и растворения остатка в гептане.

Результаты анализов по примерам 1-3 представлены в приведенной таблице.

Источник поступления информации: Роспатент

Showing 101-110 of 125 items.
13.02.2020
№220.018.0210

Способ восстановления повреждённых покрытий на титановых изделиях

Изобретение может быть использовано для восстановления эксплуатационных свойств изношенных изделий из титана и титановых сплавов и может быть использовано в различных отраслях промышленности, в том числе: в судостроении, авиационной, космической, автомобильной промышленностях. Способ...
Тип: Изобретение
Номер охранного документа: 0002714009
Дата охранного документа: 11.02.2020
29.02.2020
№220.018.072a

Способ переработки ильменитового концентрата

Изобретение может быть использовано при переработке природного титансодержащего сырья с получением диоксида титана анатазной модификации. Способ переработки ильменитового концентрата включает его вскрытие с помощью сульфатизирующего реагента с последующим отделением соединений титана от...
Тип: Изобретение
Номер охранного документа: 0002715193
Дата охранного документа: 25.02.2020
29.02.2020
№220.018.0748

Способ переработки ильменитового концентрата

Изобретение относится к переработке природного титансодержащего сырья с получением диоксида титана рутильной модификации, который находит применение в лакокрасочной и целлюлозно-бумажной отраслях промышленности, в производстве пластмасс и резинотехнических изделий, а также в качестве...
Тип: Изобретение
Номер охранного документа: 0002715192
Дата охранного документа: 25.02.2020
13.03.2020
№220.018.0af0

Измельчитель

Изобретение относится к устройствам для измельчения твердых, в том числе особо прочных, материалов и может быть использовано для дробления трудно измельчаемых материалов в различных добывающих и перерабатывающих отраслях промышленности, в частности химической, металлургической, промышленности...
Тип: Изобретение
Номер охранного документа: 0002716408
Дата охранного документа: 11.03.2020
25.03.2020
№220.018.0fa8

Способ переработки титансодержащего минерального сырья

Изобретение относится к гидрофторидной технологии переработки титансодержащего минерального сырья, преимущественно ильменитового концентрата, и может найти применение в производстве диоксида титана пигментной чистоты, а также железооксидных пигментов. Способ включает обработку исходного...
Тип: Изобретение
Номер охранного документа: 0002717418
Дата охранного документа: 23.03.2020
25.04.2020
№220.018.1927

Способ получения наноструктурного гидроксида никеля

Изобретение может быть использовано в производстве материалов для топливных ячеек, суперконденсаторов. Способ получения наноструктурного гидроксида никеля включает его осаждение в присутствии хитозана из реакционной смеси, содержащей раствор хлорида никеля (II) 6-водного и раствор мочевины....
Тип: Изобретение
Номер охранного документа: 0002719890
Дата охранного документа: 23.04.2020
12.04.2023
№223.018.4861

Способ получения защитных покрытий на магнийсодержащих сплавах алюминия

Изобретение относится к области гальванотехники и может быть использовано при формировании композиционных полимерсодержащих покрытий для защиты от коррозии изделий и конструкций, эксплуатируемых в неблагоприятных погодных условиях, в частности в открытом море на нефтяных платформах, в...
Тип: Изобретение
Номер охранного документа: 0002734426
Дата охранного документа: 16.10.2020
12.04.2023
№223.018.4882

Способ для измерения адгезии льда к поверхностям из различных материалов и исследовательский модуль для его осуществления

Изобретение относится к исследовательской технике. Сущность: на поверхность конуса наносят покрытие, погружают конус в воду или солевой раствор, находящиеся в конической ёмкости, после чего замораживают в термостате, устанавливают в зажимы универсальной разрывной машины и определяют усилие...
Тип: Изобретение
Номер охранного документа: 0002772065
Дата охранного документа: 16.05.2022
12.04.2023
№223.018.48ab

Способ получения ортоборатов лантана, допированных европием и висмутом

Изобретение относится к способу получения боратных люминофоров с помощью термообработки, причем в качестве прекурсора используют смесь олеата лантана, олеата европия, экстракта висмута с борной кислотой с введением октанола и триоктиламина, которую нагревают сначала в течение 1 часа при 200°C и...
Тип: Изобретение
Номер охранного документа: 0002762551
Дата охранного документа: 21.12.2021
12.04.2023
№223.018.48b2

Способ получения боратов лантана, легированных европием и тербием

Изобретение относится к получению люминесцентных материалов, используемых в светотехнике, а также в нелинейной оптике в широком спектральном диапазоне. Для получения боратных люминофоров проводят термообработку органических солей редкоземельных элементов. В качестве прекурсора используют смесь...
Тип: Изобретение
Номер охранного документа: 0002761209
Дата охранного документа: 06.12.2021
Showing 11-11 of 11 items.
17.06.2023
№223.018.7dcf

Способ мониторинга полимеров в попутно добываемой воде нефтедобывающих скважин

Изобретение относится к нефтяной промышленности, в частности к исследованию попутно добываемой воды в процессе подготовки нефти, а именно к выделению, идентификации и количественному определению высокомолекулярных соединений, и может найти применение при проведении штатных и внеплановых работ...
Тип: Изобретение
Номер охранного документа: 0002784290
Дата охранного документа: 23.11.2022
+ добавить свой РИД