×
23.07.2020
220.018.3586

Результат интеллектуальной деятельности: Микрогазотурбинный энергетический агрегат

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам для генерирования электрической энергии, а именно к газотурбинным электростанциям малой мощности. В заявляемом микрогазотурбинном энергетическом агрегате, включающем в себя: воздушный компрессор, выполненный с возможностью подачи сжатого воздуха в камеру сгорания; камеру сгорания, выполненную с возможностью смешивания топлива и воздуха и сжигания полученной смеси; радиальную турбину с керамическим рабочим колесом, вращаемым горячим газом, поступающим из камеры сгорания; высокооборотный электрогенератор, вал которого механически связан с валом турбины с возможностью передачи между ними крутящего момента; при этом передача крутящего момента между турбиной и генератором производится по одновальной безредукторной схеме, рабочее колесо выполнено из нитрида кремния, имеющего плотность не более 3500 кг/м, механическую прочность не менее 800 МПа, и при этом оно выполнено по открытой схеме с углом наклона лопаток на периферийной (входной) части рабочего колеса в пределах от 14,5° до 15,5° и с углом наклона лопаток на центральной (выходной) части рабочего колеса в пределах от 89° до 91°, при этом рабочее колесо имеет число лопаток 12, толщина которых на его периферийной части находится в пределах от 1,45 мм до 1,55 мм и плавно изменяется, увеличиваясь от периферийной части к центральной части рабочего колеса до значения в пределах от 1,75 мм до 1,85 мм. Изобретение позволяет повысить эксплуатационно-технические характеристики микрогазотурбинного энергетического агрегата, а именно эффективность, надежность и ресурс работы. 3 ил.

Изобретение относится к устройствам для генерирования электрической энергии, а именно к газотурбинным электростанциям малой мощности.

В качестве прототипа на основе просмотра и анализа технической литературы и патентов по МПК F01D 15/10, F02C 6/00, F02C 3/05, F16C 3/02, F01D 5/04, B23K 1/19, F01D 1/08, F01D 5/14, F01D 5/04, F16C 3/00, F04D 29/02, F01D 11/08, F01D 1/08, F01D 25/30 принято изобретение "Микрогазотурбинный энергетический агрегат" - патент RU №114341 от 20.03.2012 по МПК F01D 15/10, F02C 6/00, F02C 3/05.

По данному изобретению микрогазотурбинный энергетический агрегат включает в себя: воздушный компрессор, выполненный с возможностью подачи сжатого воздуха в камеру сгорания; камеру сгорания, выполненную с возможностью смешивания топлива и воздуха и сжигания полученной смеси; радиальную турбину с керамическим рабочим колесом, вращаемым горячим газом, поступающим из камеры сгорания; высокооборотный электрогенератор, вал которого механически связан с валом турбины с возможностью передачи между ними крутящего момента; при этом передача крутящего момента между турбиной и генератором производится по одновальной безредукторной схеме.

Признаки известного микрогазотурбинного энергетического агрегата, совпадающие с признаками заявляемого изобретения, заключаются в наличии: воздушного компрессора, выполненного с возможностью подачи сжатого воздуха в камеру сгорания; камеры сгорания, выполненной с возможностью смешивания топлива и воздуха и сжигания полученной смеси; радиальной турбины с керамическим рабочим колесом, вращаемым горячим газом, поступающим из камеры сгорания; высокооборотного электрогенератора, вал которого механически связан с валом турбины с возможностью передачи между ними крутящего момента; при этом передача крутящего момента между турбиной и генератором производится по одновальной безредукторной схеме.

Причина, препятствующая получению в известном техническом решении технического результата, который обеспечивается заявляемым изобретением, состоит в том, что технические средства известного микрогазотурбинного энергетического агрегата не позволяют обеспечить его высокие эксплуатационно-технические характеристики.

Задача, на решение которой направлено заявляемое изобретение, состоит в повышении эксплуатационно-технических характеристик микрогазотурбинного энергетического агрегата.

Технический результат, обеспечивающий решение указанной задачи, состоит в создании технических средств, позволяющих повысить эксплуатационно-технические характеристики микрогазотурбинного энергетического агрегата, а именно, эффективность, надежность и ресурс работы.

Достигается технический результат тем, что в заявляемом микрогазотурбинном энергетическом агрегате, включающем в себя: воздушный компрессор, выполненный с возможностью подачи сжатого воздуха в камеру сгорания; камеру сгорания, выполненную с возможностью смешивания топлива и воздуха и сжигания полученной смеси; радиальную турбину с керамическим рабочим колесом, вращаемым горячим газом, поступающим из камеры сгорания; высокооборотный электрогенератор, вал которого механически связан с валом турбины с возможностью передачи между ними крутящего момента; при этом передача крутящего момента между турбиной и генератором производится по одновальной безредукторной схеме, рабочее колесо выполнено из нитрида кремния, имеющего плотность не более 3500 кг/м3, механическую прочность не менее 800 МПа, и при этом оно выполнено по открытой схеме с углом наклона лопаток на периферийной (входной) части рабочего колеса в пределах от 14,5° до 15,5° и с углом наклона лопаток на центральной (выходной) части рабочего колеса в пределах от 89° до 91°, при этом рабочее колесо имеет число лопаток 12, толщина которых на его периферийной части находится в пределах от 1,45 мм до 1,55 мм и плавно изменяется, увеличиваясь от периферийной части к центральной части рабочего колеса до значения в пределах от 1,75 мм до 1,85 мм.

Описанные выше созданные технические средства в составе заявляемого микрогазотурбинного энергетического агрегата позволяют осуществить следующее.

Во-первых, созданные технические средства позволяет существенно повысить эффективность работы микрогазотурбинного энергетического агрегата (МГТЭА) за счет того, что его рабочее колесо выполнено с углом наклона лопаток на периферийной (входной) части рабочего колеса в пределах от 14,5° до 15,5° и с углом наклона лопаток на центральной (выходной) части рабочего колеса в пределах от 89 и до 91 градуса, при этом рабочее колесо имеет число лопаток 12, толщина которых на его периферийной части находится в пределах от 1,45 мм до 1,55 мм и плавно изменяется, увеличиваясь от периферийной части к центральной части рабочего колеса до значения в пределах от 1,75 мм до 1,85 мм. Названные технические решения образуют такой тракт течения газа (рабочего тела) в части его геометрии (углы входа и выхода, численные значения площадей сечений межлопаточных каналов и их профиль), который обеспечивает процесс преобразования энергии высокотемпературного газового потока в кинетическую энергию рабочего колеса МГТЭА с минимальными потерями, что и приводит к более высокой эффективности работы МГТЭА, выражающейся в более высоком коэффициенте полезного действия (к.п.д.).

Во-вторых, созданные технические средства позволяет существенно повысить надежность работы микрогазотурбинного энергетического агрегата (МГТЭА) за счет того, что его рабочее колесо выполнено из нитрида кремния, имеющего плотность не более 3500 кг/м3, механическую прочность не менее 800 МПа, и при этом рабочее колесо выполнено по открытой схеме. Ограничение плотности материала рабочего колеса значением не более 3500 кг/м3 обеспечивает снижение разрушающих усилий от действия центробежных сил, которые, как известно, прямо пропорционально зависят от массы вращающихся тел. Значение плотности материала 3500 кг/м3 при имеющейся геометрии рабочего колеса в части наиболее нагруженных сечений его элементов обеспечивает целостность этих элементов и всего рабочего колеса при заданных высоких значениях частоты вращения рабочего колеса (в нашем случае - 64000 об/мин), что подтверждено расчетом. Повышение надежности рабочего колеса и всего МГТЭА обеспечивается также и тем, что оно выполнено по открытой схеме: отсутствие так называемого покрывного диска рабочего колеса или минимизация его поверхности и, соответственно, массы дает снижение значений центробежных сил, воздействующих на конструкцию (на тело) рабочего колеса, что особенно важно при цикличности этих воздействий механического и высокотемпературного характера.

В-третьих, созданные технические средства позволяют существенно повысить ресурс работы микрогазотурбинного энергетического агрегата (МГТЭА) за счет того, что его рабочее колесо выполнено из нитрида кремния, который, обладает при названном выше наборе свойств высокими прочностными характеристиками и характеристиками высокой химической стойкости в окислительной высокотемпературной газовой среде.

Новые признаки заявляемого 'технического решения заключаются в том, что рабочее колесо выполнено из нитрида кремния, имеющего плотность не более 3500 кг/м3, механическую прочность не менее 800 МПа, и при этом оно выполнено по открытой схеме с углом наклона лопаток на периферийной (входной) части рабочего колеса в пределах от 14,5° до 15,5° и с углом наклона лопаток на центральной (выходной) части рабочего колеса в пределах от 89° до 91° градуса, при этом оно имеет число лопаток 12, толщина которых на его периферийной части находится в пределах от 1,45 мм до 1,55 мм и плавно изменяется, увеличиваясь от периферийной части к центральной части рабочего колеса до значения в пределах от 1,75 мм до 1,85 мм.

Изобретение иллюстрируется рисунками (фиг. 1-фиг. 3), на котором представлены фрагмент радиальной турбины с керамическим рабочим колесом и само рабочее колесо заявляемого МГТЭА.

Фиг. 1 - конструкция фрагмента радиальной турбины с рабочим колесом.

Фиг. 2 - конструкция рабочего колеса.

Фиг. 3 - внешний вид рабочего колеса в объемном изображении.

Радиальная турбина (фиг. 1) па представленном фрагменте включает в себя корпус 1, в котором выполнен кольцевой входной канал 2 подвода горячего газа (рабочего тела) к сопловому аппарату 3 с лопатками 4, рабочее колесо 5, с профилированными лопатками 6 и выходной канал 7 отвода отработавшего горячего газа (рабочего тела). При этом выходной канал 7 расположен внутри входного капала 2 коаксиально (соосно) по отношению к нему, а рабочее колесо 5, включающее в себя вал 8, ступицу 9, двенадцать лопаток 6 и выполненное по открытой схеме (без покрывного диска) как единое целое из нитрида кремния.

Лопатки 6 (фиг. 2) рабочего колеса 5 выполнены с углом наклона на периферийной (входной) части в пределах от 14,5° до 15,5° и с углом наклона лопаток на центральной (выходной) части рабочего колеса в пределах от 89 и до 91 градуса, при этом толщина лопаток 6 на периферийной части рабочего колеса находится в пределах от 1,45 до 1,55 мм и плавно изменяется, увеличиваясь от периферийной части к его центральной части до значения в пределах от 1,75 до 1,85 мм. Габаритные размеры описываемого рабочего колеса: диаметр по кромкам лопаток его периферийной (входной) части - 170 мм, а диаметр по кромкам лопаток его центральной (выходной) части - 91 мм; длина ~135 мм, из которых ~63 мм приходится на длину лопаточного блока. При выполнении расчетов частота вращения рабочего колеса в составе ротора задавалась на уровне 64000 об./мин. (~1066 об/с).

Описанное и проиллюстрированное выше заявляемое изобретение работает следующим образом.

Горячий газ (рабочее тело), имеющий температуру до 1300°, из камеры сгорания МГТЭА поступает в кольцевой входной канал 2 (фиг. 1) и далее движется к сопловому аппарату 3 с лопатками 4, проходит по ним и поступает на рабочее колесо 5 через его периферийную часть, проходит по межлопаточному пространству к центральной части рабочего колеса 5, в котором происходит преобразование энергии высокотемпературного газового потока в кинетическую энергию вращения рабочего колеса 5. Крутящий момент с рабочего колеса 5 передается на вал 8 высокооборотного электрогенератора по одновальной безредукторной схеме.

Проведенные расчеты показывают, что при изготовлении рабочего колеса из нитрида кремния, имеющего плотность не более 3500 кг/м3, механическую прочность не менее 800 МПа, при открытой схеме рабочего колеса с 12-ю лопатками с углом наклона их на периферийной (входной) части рабочего колеса в пределах от 14,5° до 15,5° и с углом наклона лопаток на центральной (выходной) части рабочего колеса в пределах от 89 до 91 градуса, и при плавном изменении толщины лопаток от размера 1,45…1,55 мм на периферийной части до размера 1,75…1,85 мм на центральной части -целостность рабочего колеса сохраняется при частоте его вращения на уровне 64000 об/мин и оно обеспечивает достижение заявленных характеристик в работе микрогазотурбинного энергетического агрегата, а именно, повышение эффективности, надежности и ресурса работы.

Наличие материала - нитрида кремния и технология его получения с названными выше характеристиками, подтверждается в публикациях в научно-технических изданиях и результатами научно-исследовательских работ, в частности, диссертацией Лысенкова А.С. "Конструкционная керамика на основе нитрида кремния с добавкой алюминатов кальция" по специальности "05.17.11 - технология силикатных и тугоплавких неметаллических материалов", Москва, 2014 год (сайт www.imet.ac.ru), а также наличием патента "Способ получения спеченных изделий на основе нитрида кремния" №2458023 от 10.08.2012, МПК С04В 35/591 с приоритетом от 11.03.2011.

Таким образом, техническое решение, составляющее предмет заявляемого изобретения "Микрогазотурбинный энергетический агрегат" обеспечивает получение технического результата, а именно, повышение эффективности, надежности и ресурса его работы, а значит, и решение поставленной задачи, которая состоит в повышении эксплуатационно-технических характеристик микрогазотурбинного энергетического агрегата.

Микрогазотурбинный энергетический агрегат, включающий в себя воздушный компрессор, выполненный с возможностью подачи сжатого воздуха в камеру сгорания; камеру сгорания, выполненную с возможностью смешивания топлива и воздуха и сжигания полученной смеси; радиальную турбину с керамическим рабочим колесом, вращаемым горячим газом, поступающим из камеры сгорания; высокооборотный электрогенератор, вал которого механически связан с валом турбины с возможностью передачи между ними крутящего момента; при этом передача крутящего момента между турбиной и генератором производится по одновальной безредукторной схеме, отличающийся тем, что рабочее колесо выполнено из нитрида кремния, имеющего плотность не более 3500 кг/м, механическую прочность не менее 800 МПа, и при этом оно выполнено по открытой схеме с углом наклона лопаток на периферийной (входной) части рабочего колеса в пределах от 14,5° до 15,5° и с углом наклона лопаток на центральной (выходной) части рабочего колеса в пределах от 89° до 91°, при этом рабочее колесо имеет число лопаток 12, толщина которых на его периферийной части находится в пределах от 1,45 мм до 1,55 мм и плавно изменяется, увеличиваясь от периферийной части к центральной части рабочего колеса до значения в пределах от 1,75 мм до 1,85 мм.
Микрогазотурбинный энергетический агрегат
Микрогазотурбинный энергетический агрегат
Микрогазотурбинный энергетический агрегат
Микрогазотурбинный энергетический агрегат
Источник поступления информации: Роспатент

Showing 11-11 of 11 items.
29.05.2020
№220.018.21e6

Устройство отвода выхлопных газов двигателя внутреннего сгорания

Устройство отвода выхлопных газов двигателя внутреннего сгорания содержит коллектор, включающий выходную часть, выполненную в виде колена, направленного вверх относительно оси коллектора и имеющего концевую часть. Устройство содержит также часть системы охлаждения с впускными и выпускными...
Тип: Изобретение
Номер охранного документа: 0002722009
Дата охранного документа: 25.05.2020
+ добавить свой РИД