×
12.07.2020
220.018.3226

Результат интеллектуальной деятельности: Устройство на основе суперконденсатора для получения электрической энергии из внутриатомной

Вид РИД

Изобретение

Аннотация: Изобретение относится к средству прямого преобразования атомной энергии в электрическую. Используется явление локально-неравновесной эмиссии электронов, возникающее под действием α- или β-распада изотопов. Необходимый эффект преобразования ядерной энергии в электрическую достигается путем введения радионуклида в материал одного из электродов суперконденсатора. В приэлектродной области за счет кинетической энергии α, β-частиц возникают области возбуждения, из которых испускаются вторичные электроны, что приводит к появлению заряда двойного электрического слоя в приэлектродной области. В изобретении дорогостоящее изготовление устройств с радиоактивными веществами заменено на получение радионуклидов непосредственно внутри готовых суперконденсаторов с помощью их облучения нейтронами. Специально введенные в материал электрода вещества превращаются в радиоактивные изотопы, и суперконденсаторы превращается в источники электрической энергии. Техническим результатом является высокая удельная мощность при повышении радиационной безопасности в ходе изготовления, транспортировки и эксплуатации устройства.

Изобретение относится к области прямого преобразования атомной энергии в электрическую, а именно к конструкции устройства, используемого в качестве автономного источника электрической энергии, для изделий микросистемной техники, для применения в труднодоступных и экстремальных условиях, для систем мониторинга, связи, навигации, где требуются источники энергии с большим сроком автономной эксплуатации и постоянной готовности.

Известны β-вольтаические источники питания, содержащие β-активные изотопы (Ni-63, Се-144, Cs-137, Pm-147, Kr-85, Н-3 и др.), в которых испускаемые изотопами электроны или позитроны попадают на полупроводник. Например, известен компактный β-вольтаический источник тока длительного пользования с β-эмиттером на базе радиоизотопа 63Ni и способ его получения (патент RU 2641100). В области р-n перехода происходит генерация электрон-дырочных пар, которые разделяются областью пространственного заряда. В результате на р- и n-поверхностях полупроводника возникает разность электрического потенциала. Период полураспада используемых изотопов может быть от 2,64 (Pm-147) до 100 (Ni-63) лет, поэтому срок службы β-вольтаических источников может составлять годы и десятки лет. Удельная мощность β-вольтаических источников питания может достигать 1 кВт/кг. Недостатком вышеуказанных источников питания является их высокая стоимость, что приводит к малому их использованию. Высокая цена обусловлена дороговизной выделения нужных изотопов (β или α активных) и сложностью работы с радиоактивным материалом. Изготовление одной функциональной батарейки на, например, 63Ni (β-излучатель) обойдется в миллионы рублей. Даже перевод в серийное производство не приблизит цену известных автономных источников электроэнергии на разработанных принципах преобразования к цене химических источников. По этой причине источники энергии на радиоактивных изотопах использовали и используют, в основном, там, где большие затраты приемлемы (на космических объектах, в военной технике).

Известны также автономные радиоизотопные термоэлектрические генераторы, содержащие соединения радиоактивных изотопов (Ро-210, Pu-238, Sr-90 и др.) и в которых энергия радиоактивного распада переходит в тепло, а затем тепловая энергия преобразуется в электрическую (Э. Кэбин статья «Радиоизотопные источники электрической энергии и тепла» интернет сайт http://nuclphvs.sinp.msu.ru/nuc_techn/isotopes/index.html, дата обращения 7.12.2018). Для преобразования тепловой энергии в таких генераторах используют термоэмиссионные, динамические или термоэлектрические устройства. В термоэмиссионных устройствах разделение электрического заряда происходит в результате эмиссии электронов из нагретого катода. В динамических устройствах последовательность преобразования энергии дополняется механической стадией, на которой нагреваемое рабочее тело совершает механическую работу, которая преобразуется в электрическую энергию. В термоэлектрических устройствах используется эффект Зеебека возникновения ЭДС в термопарах при наличии градиента температуры. Такие генераторы энергии являются наиболее близкими по техническим решениям к заявленному изобретению и описаны во многих патентах (SU 1175312, SU 1325572, RU 2458420 и др.). Радиоизотопные термоэлектрические генераторы имеют КПД~3-5%, мощность до 100 Вт и используются в космических аппаратах, в маяках, бакенах и медицине. Недостатком таких радиоизотопных термоэлектрических генераторов является маленькая удельная мощность до 3 Вт/кг и высокая стоимость изделия. Задачей заявленного изобретения является создание устройства на основе суперконденсатора для получения электрической энергии из внутриатомной в котором электрическая энергия генерируется в суперконденсаторе, один из электродов которого содержит активируемые/активируемое нейтронами вещества / вещество, способные/способное к превращению в радионуклид/радионуклиды при облучении суперконденсатора нейтронами и имеющие/имеющее концентрацию в материале электрода, выбранную с учетом параметров суперконденсатора на основе результатов физического моделирования.

Необходимый эффект преобразования ядерной энергии в электрическую достигается путем введения радионуклида в материал одного из электродов суперконденсатора. Принцип прямого преобразования состоит в том, что в приэлектродной области за счет кинетической энергии первичных заряженных частиц (α-, β-частиц) возникают области возбуждения, из которых испускаются вторичные электроны, что приводит к появлению заряда двойного электрического слоя в приэлектродной области. Высокая удельная мощность достигается за счет большой межфазной площади, на которой происходит радиационно-индуцированное разделение заряда в суперконденсаторе, и зависит от концентрации радионуклида в материале электрода. В данном изобретении дорогостоящее изготовление систем с радиоактивными веществами заменено на получение радиоактивных изотопов непосредственно внутри готовых суперконденсаторов с помощью их облучения нейтронами. В результате взаимодействия с нейтронами специально введенные в материал электрода вещества превращаются в радионуклиды, и суперконденсатор превращается в источник электрической энергии. Устройство безопасно в изготовлении и эксплуатации, поскольку представляет собой закрытый радиоактивный источник а, Р и f излучения в результате деления радионуклида/радионуклидов.

Сущность изобретения раскрывается в нижеследующих пояснениях и примерах практического применения:

Пример 1.

Изготовлен суперконденсатор емкостью 100 Ф и внутренним сопротивлением 0,1 Ом, в которых площадь электродов составляла ~40 см, эффективная площадь ~2000 м. Электроды состояли из активированного угля со связующими:

фторопластом, бутадиенстирольным латексом, карбоксиметил-целлюлозой КМЦ. Органический электролит - раствор TEATFB в пропиленкарбонате с различной концентрацией 0,1-1 М. Один из электродов содержал наноструктурированный оксид SrO в количестве 1 мг/см2. В процессе облучения нейтронами в результате реакции 88Sr(n,g)89Sr в материале одного электрода появляются β-активные изотопы. По результату измерений рост разности потенциалов между электродами в зависимости от поглощенной нейтронной дозы составляет около 1 мкВ/Гр.

Устройство на основе суперконденсатора для получения электрической энергии из внутриатомной отличается тем, что электрическая энергия генерируется в суперконденсаторе, один из электродов которого содержит активируемые/активируемое нейтронами вещества/вещество, способные/способное к превращению в радионуклид/радионуклиды при облучении суперконденсатора нейтронами и имеющие/имеющее концентрацию в материале электрода, выбранную с учетом параметров суперконденсатора на основе результатов физического моделирования.
Источник поступления информации: Роспатент

Showing 11-16 of 16 items.
10.07.2019
№219.017.ac6f

Рабочий электролит для конденсатора, способ его приготовления и алюминиевый электролитический конденсатор с таким электролитом

Изобретение относится к производству алюминиевых электролитических конденсаторов. Техническим результатом изобретения является создание конденсатора, работоспособного при номинальных напряжениях 400-450 В в интервале рабочих температур от минус 60 до 105°С. Согласно изобретению в состав...
Тип: Изобретение
Номер охранного документа: 0002393569
Дата охранного документа: 27.06.2010
10.07.2019
№219.017.ad84

Рабочий электролит для конденсатора, способ его приготовления и алюминиевый электролитический конденсатор с таким электролитом

Изобретение относится к производству алюминиевых электролитических конденсаторов. Техническим результатом изобретения является создание электролита и конденсатора на его основе с номинальным напряжением 100÷300 В и рабочим диапазоном температур от -60 до +105°С. Согласно изобретению рабочий...
Тип: Изобретение
Номер охранного документа: 0002358348
Дата охранного документа: 10.06.2009
08.02.2020
№220.018.00af

Рабочий электролит для конденсатора, способ его приготовления и алюминиевый электролитический конденсатор с таким электролитом

Изобретение относится к области электротехники, а именно к рабочему электролиту для алюминиевого электролитического конденсатора, способу его приготовления и конденсатору с таким электролитом, и может быть использовано на номинальное напряжение 100 В с диапазоном рабочих температур от минус 60...
Тип: Изобретение
Номер охранного документа: 0002713639
Дата охранного документа: 05.02.2020
07.03.2020
№220.018.0a71

Рабочий электролит для конденсатора, способ его приготовления и алюминиевый электролитический конденсатор с таким электролитом

Изобретение относится к области электротехники, а именно к алюминиевому оксидно-электролитическому конденсатору на номинальное напряжение 160-450 В с диапазоном рабочих температур от минус 60 до плюс 125°С, а также к рабочему электролиту для него и способу приготовления электролита. Рабочий...
Тип: Изобретение
Номер охранного документа: 0002715998
Дата охранного документа: 05.03.2020
09.03.2020
№220.018.0a96

Способ приготовления электролита для ванадиевых редокс батарей

Изобретение относится к области электротехники и может быть использовано при производстве ванадиевых электролитов для ванадиевых проточных окислительно-восстановительных редокс батарей (ВРБ). Техническим результатом изобретения является улучшение проводимости ванадиевого электролита на 20% по...
Тип: Изобретение
Номер охранного документа: 0002716148
Дата охранного документа: 06.03.2020
14.03.2020
№220.018.0bd2

Рабочий электролит для конденсатора, способ его приготовления и алюминиевый электролитический конденсатор с таким электролитом

Изобретение относится к области электротехники, в частности к производству алюминиевых оксидно-электролитических конденсаторов (далее АОЭК) на номинальное напряжение 6,3-40 В с диапазоном рабочих температур от минус 60 до плюс 125°С; а также к рабочему электролиту для алюминиевого...
Тип: Изобретение
Номер охранного документа: 0002716491
Дата охранного документа: 12.03.2020
Showing 21-30 of 37 items.
07.09.2018
№218.016.84ee

Гермовывод

Изобретение относится к области электротехники, а именно к конструкции гермовыводов, преимущественно может использоваться для герметичного вывода электрических цепей датчиков уровня заправки, устанавливаемых в топливные баки ракет-носителей, а также может быть использовано в различных датчиках...
Тип: Изобретение
Номер охранного документа: 0002666149
Дата охранного документа: 06.09.2018
01.11.2018
№218.016.98a1

Радиоэлектронный блок

Изобретение относится к конструкциям бортовой и наземной радиоэлектронной аппаратуры и оборудования. Технический результат - повышение эффективности работы радиоэлектронного блока за счет обеспечения надежности посредством улучшения теплообмена и отвода электростатического заряда. Результат...
Тип: Изобретение
Номер охранного документа: 0002671004
Дата охранного документа: 29.10.2018
19.12.2018
№218.016.a901

Устройство монтажа встроенного светильника

Изобретение относится к строительству. Технической задачей предлагаемого технического решения является упрощение конструкции, снижение цены и возможность вторичного использования отходов, а именно полиэтиленовой бутылки. Для выполнения поставленной задачи устройство монтажа встроенного...
Тип: Изобретение
Номер охранного документа: 0002675222
Дата охранного документа: 17.12.2018
16.01.2019
№219.016.b04a

Способ обработки поверхности сплава никелида титана

Изобретение относится к способу обработки поверхности сплава никелида титана. Поверхность сплава никелида титана сканируют лучом лазера с плотностью мощности луча 1,5-0,5⋅10 Вт/мм, средней мощностью лазерного облучения 0,48-56,2 Вт, с частотой импульсов 10-200 кГц и скоростью сканирования луча...
Тип: Изобретение
Номер охранного документа: 0002677033
Дата охранного документа: 15.01.2019
20.02.2019
№219.016.c0ac

Способ получения стеклотанталового изолятора для объемно-пористого конденсатора

Изобретение относится к производству изделий электронной техники, конкретно - к производству конденсаторов. В предлагаемом способе, заключающемся в отжиге танталовой арматуры, сборке стеклотаблетки и танталовой арматуры с образованием стеклотанталового изолятора, спекании и формировании...
Тип: Изобретение
Номер охранного документа: 0002300155
Дата охранного документа: 27.05.2007
29.05.2019
№219.017.643c

Способ изготовления ниобиевого объемно-пористого анода повышенного рабочего напряжения

Изобретение относится к производству ниобиевых оксидно-полупроводниковых конденсаторов, в частности повышенного рабочего напряжения. Согласно изобретению способ изготовления ниобиевого объемно-пористого анода заключается в прессовании анодных таблеток из подготовленного гидрированного...
Тип: Изобретение
Номер охранного документа: 0002287869
Дата охранного документа: 20.11.2006
29.05.2019
№219.017.6490

Способ получения переходного катодного слоя в оксидно-полупроводниковом конденсаторе

Изобретение относится к производству оксидно-полупроводниковых конденсаторов с объемно-пористым анодом из вентильных металлов. Согласно изобретению способ заключается в нанесении углеродного электропроводного покрытия на конденсаторный элемент между слоем твердого полупроводникового электролита...
Тип: Изобретение
Номер охранного документа: 0002290709
Дата охранного документа: 27.12.2006
04.07.2019
№219.017.a524

Способ антикоррозионной обработки поверхности алюминия

Изобретение относится к способам антикоррозионной обработки поверхности изделий из алюминия. Поверхность изделия подвергают импульсному энергетическому воздействию излучением импульсного оптоволоконного иттербиевого лазера с длиной волны 1,065 мкм при удельной мощности излучения 4,539⋅10 …...
Тип: Изобретение
Номер охранного документа: 0002693278
Дата охранного документа: 02.07.2019
13.12.2019
№219.017.eca5

Электрод конденсатора с двойным электрическим слоем и способ его изготовления

Изобретение относится к области электротехники, а именно к электроду с двойным электрическим слоем и способу его изготовления, и может быть использовано в суперконденсаторах с двойным электрическим слоем. В качестве активного материала в предложенном суперконденсаторе использован...
Тип: Изобретение
Номер охранного документа: 0002708634
Дата охранного документа: 10.12.2019
16.01.2020
№220.017.f51d

Способ выращивания моркови

Изобретение относится к области сельского хозяйства, в частности к овощеводству. Подготавливают грядки к посеву, осуществляют уход за посевами и уборку корнеплодов. В начале лета место будущей посадки в виде грядки покрывают мульчей слоем 30÷50 см, для чего используют солому, и/или скошенную...
Тип: Изобретение
Номер охранного документа: 0002710997
Дата охранного документа: 14.01.2020
+ добавить свой РИД