×
01.07.2020
220.018.2d27

Результат интеллектуальной деятельности: Способ измерения переходного контактного сопротивления омического контакта

Вид РИД

Изобретение

Аннотация: Изобретение относится к области технологии изготовления изделий микроэлектроники, в частности к контролю контактных сопротивлений омических контактов к полупроводниковым слоям на технологических этапах производства. Сущность: способ измерения переходного контактного сопротивления, заключающийся в измерении сопротивления току, протекающему под контактом, расположенным между двумя крайними, через которые подается ток и с которых снимается напряжение, отличающийся тем, что используется набор полосковых омических контактов и измеряется их сопротивление в зависимости от длины полосков, при этом измерение слоевого сопротивления металлизации и измерение слоевого сопротивления полупроводника вне контакта производится отдельными методами. Технический результат заключается в измерении ρ с учетом слоевого сопротивления полупроводника под омическим контактом R, упрощенной технологии изготовления тестовых структур, не требующей допыления толстой металлизации на короткие электроды, а также создании контактных площадок для измерения потенциала на них. 3 ил.

Изобретение относится к измерительной технике. Область применения -технология изделий микроэлектроники, в частности контроль контактных сопротивлений омических контактов к полупроводниковым слоям на технологических этапах производства.

Общеизвестен метод длинной линии (TLM - Transmission Line Method) [Shockley], который основан на измерении зависимости общего сопротивления RT двух одинаковых омических контактов от расстояния между ними , получаемая зависимость строится в координатах и из ее пересечения с осью ординат извлекается значение контактного сопротивления Rc, а из экстраполяции к оси абсцисс может быть найдено значение характеристической длины втекания тока под омический контакт LT, тогда значение переходного контактного сопротивления ρс определяется как:

К недостаткам метода относится необходимость знания слоевого сопротивления под контактом Rsk, значение которого может отличаться от слоевого сопротивления полупроводниковой пленки Rsh, по причине вплавления металлизации в полупроводник или диффузии из контактной металлизации в полупроводник во время отжига и др. Вычисление корректного значения LT также требует знания Rsk. Таким образом, принимая Rsk=Rsh, измерения ρс может быть произведено с большой погрешностью.

Известен метод ((separate current and voltage measurement)) для определения R& [Reeves & Harrison_1982]. Тестовый элемент состоит из 3х площадок омических контактов. Для измерения остаточного сопротивления ток I0 пропускается через электроды 1 и 2, а остаточное напряжение VE снимается с электродов 2 и 3. RE и ρс определяются по следующим формулам:

где w и d - ширина и длина контактной площадки, соответственно.

Известен метод «extra resistance measurement» (ERM) [Reeves & Harrison_1982], заключающийся в измерении сопротивлений R12, R23 и R13, где индексами 1 и 3 обозначены две крайние площадки, а индексом 2 площадка, находящаяся посередине, для тестового элемента, содержащего три прямоугольные контактные площадки так, что одна находится между двумя другими. Re рассчитывается по следующим формулам:

где Rc0 - контактное сопротивление двух крайних контактов, и - расстояние между контактными площадками, Rc - контактное сопротивление среднего контакта. ρс рассчитывается по формуле (3).

Недостатком методов, основанных на определении RE, является необходимость изготовления тестов, состоящих из трех площадок, причем средняя площадка должна быть по длине сравнима с LT, что сильно усложняет изготовление тестов для контактов с низким сопротивлением (10-6 Ω⋅мм2 > ρc), так как требуется допыление толстой металлизации для уменьшения ее слоевого сопротивления с целью получения эквипотенциального среднего металлического электрода.

Наиболее близким к заявленному изобретению является метод [Floyd_1994], лишенный вышеописанных недостатков, в котором предложено использовать сстандартную структуру TLM к которой добавлены две дополнительные крайние площадки, а к площадкам TLM добавлены дополнительные выводы вне области мезы. Через две крайние площадки пропускается ток, напряжение снимается с внутренних площадок, также как в методе TLM. Принцип состоит в том, что при определенной длине ток протекает не только через полупроводник, но и частично через металлизацию. Данный способ позволяет измерять Rsk без определения RE, а также учитывать слоевое сопротивление металлизации. Недостатком метода является то, что TLM электроды не являются эквипотенциальными, что затрудняет измерение напряжения с них.

Техническим результатом настоящего изобретения является измерение ρc с учетом слоевого сопротивления полупроводника под омическим контактом Rsk, а также упрощенная технология изготовления тестовых структур, не требующая допыления толстой металлизации на короткие электроды, а также создания контактных площадок для измерения потенциала на них.

Сущность изобретения заключается в измерении сопротивления Rx протеканию электрического тока через набор нескольких омических контактов, расположенных между двумя крайними, на которые подается разность потенциалов. Сопротивление Rx в зависимости от длины единичного среднего контакта d определяется по следующей формуле:

где RT(d) - общее сопротивление между двумя крайними контактными площадками с длинами d0>>LT, и - расстояния между соответствующими контактными площадками.

Изобретение поясняется приведенными ниже чертежами:

На фиг. 1 показана принципиальная конструкция тестового элемента, где к активной области сформированы контактные площадки между которыми сформирован набор контактных площадок омических контактов.

На фиг. 2 представлена электрическая схема, описывающая метод.

На фиг. 3 представлен пример экспериментальной зависимости сопротивления тестовой структуры Rx от длины контактвых площадок d и ее аппроксимации теоретическим выражением.

Способ измерения состоит в следующем. На крайние площадки подается электрический ток и с них же происходит измерение напряжения, сопротивление Rx находится как отношение измеренного напряжения к пропускаемому току.

Принцип основан на том, что существуют два пути протекания тока через область контактных площадок, расположенных посередине, - через полупроводник и через слоевое сопротивление металла. В случае, когда d>>LT ток будет втекать в омический контакт, протекать через металлизацию и снова втекать в полупроводник с противоположной стороны площадки и значение Rx(d) будет стремиться к:

где Rsm - слоевое сопротивление металлизации омического контакта, которое измеряется на отдельной тестовой структуре в виде полоска. Для другого крайнего случая, когда d<<LT, большая часть тока будет протекать через полупроводник:

Из зависимости Rx(d) вычисляется значение Rsk. Для этого численно решается система дифференциальных уравнений Кирхгофа (11) и (12), описывающих эквивалентную схему, представленную на фиг. 2:

При этом задаются следующие граничные условия:

Падение напряжения в контакте прямоугольной формы описывается уравнением:

Следовательно, зависимость Rx(d) представляется как:

Значения Rsk и LT находятся из аппроксимации экспериментальной зависимости Rx от d выражением (16). ρс рассчитывается по формуле (1). Для увеличения точности аппроксимации определение Rsh производится стандартным TLM методом, Rsm [Ω/квадрат] измеряется с помощью полоскового теста шириной а и длиной N⋅a, где а - число квадратов.

Реализация способа может быть осуществлена с использованием стандартного метода Кельвина. Далее представлен один из примеров реализации предлагаемого изобретения:

а) Измеряемый образец - омический контакт к эпитаксиальной гетероструктуре Al0,3Ga0,7N(26 HM)/GaN, выращенной МОС-гидридной эпитаксией на подложке сапфира. Контакт изготавливается посредством напыления системы металлизации Ti/Al/Mo/Au (15/60/55/50 нм) и последующего отжига 850°С в течение 30 с. Перед напылением контактной металлизации поверхность полупроводника обрабатывается в водном растворе HCl в соотношении 1:1 в течение 1 мин.

б) Тестовая структура формируется посредством изоляции реактивным ионно-лучевым травлением в атмосфере C3F8. Формирование рисунка металлизации омического контакта и контактных площадок Ti/Au (40/1000 нм) производится с помощью «lift-off» процесса.

в) Тестовая структура включает тесты, содержащие две крайние контактные площадки длиной 100 мкм с допыленной толстой металлизацией, между которыми находятся контактные площадки (полоски) длиной от 1.5 до 200 мкм (от 3 до 6 площадок в зависимости от длины). Для измерения слоевого сопротивления полупроводника Rsh используются TLM-структура, состоящая из восьми квадратных контактных площадок размером 100×100 мкм, расположенных друг от друга на расстояниях 5, 10, 15, 20, 25, 30 и 35 мкм. Определение слоевого сопротивления металлизации проводится с помощью полоскового теста шириной а и длиной N⋅a, где а - число квадратов.

г) Измерения сопротивления Rx проводятся методом Кельвина с использованием измерителя Agilent В1500 и зондовой станции;

д) Обработка результатов измерений проводится в среде Maple, в которой решется система дифференциальных уравнений (11) и (12), затем используя выражения (15) и (16) проводится аппроксимация зависимости Rx(d) и из аппроксимации вычисляется значение Rsk. Пример аппроксимированной зависимости Rx от d представлен на фиг. 3. Из апроксимации с учетом Rsh = 327 Ω/квадрат и Rsm = 2.4 Ω/квадрат находятся значения Rsk = 300 Ω/квадрат, LT = 2.25 мкм, Rc = 0.65 Ом⋅мм и ρс = 1.52⋅10-5 Ом⋅см2.

Метод позволяет:

Измерять контактное сопротивления с учетом изменения слоевого сопротивления полупроводника под контактом.

Отказаться от измерений потенциала на коротких площадках, находящихся между крайними контактными площадками, что позволяет не производить допыление толстой металлизации на них.

Измерять контакты с LT менее 1 мкм и контактным сопротивлением ниже 10-6 Ом⋅см2, для этого необходимо уменьшать длину полосков до значений менее 1 мкм (например с использованием электронной литографии).


Способ измерения переходного контактного сопротивления омического контакта
Способ измерения переходного контактного сопротивления омического контакта
Способ измерения переходного контактного сопротивления омического контакта
Способ измерения переходного контактного сопротивления омического контакта
Способ измерения переходного контактного сопротивления омического контакта
Источник поступления информации: Роспатент

Showing 11-20 of 322 items.
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36a9

Способ извлечения скандия из красного шлама производства глинозема

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы. Выщелачивание скандия из...
Тип: Изобретение
Номер охранного документа: 0002581327
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3813

Способ интенсификации сорбции благородных металлов с помощью нанодисперсного сорбента

Изобретение относится к получению нанодисперсного сорбента металлов и к использованию полученного сорбента для интенсификации процесса сорбции и может быть применено в гидрометаллургии благородных металлов. Способ извлечения благородных металлов из растворов включает сорбцию на органическом...
Тип: Изобретение
Номер охранного документа: 0002582838
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38b0

Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на...
Тип: Изобретение
Номер охранного документа: 0002582488
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3ad5

Емкостная моп диодная ячейка фотоприемника-детектора излучений

Изобретение относится к полупроводниковым координатным детекторам ионизирующих частиц. В емкостной МОП диодной ячейке фотоприемника-детектора излучений применена новая электрическая схема, в которой используются усилительный обогащенный p-МОП транзистор, конденсатор, p-i-n-диод, поликремниевые...
Тип: Изобретение
Номер охранного документа: 0002583955
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cdc

Биполярная ячейка координатного фотоприемника - детектора излучений

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Изобретение обеспечивает повышение эффективности регистрации оптических и глубоко проникающих излучений и повышение быстродействия детектора излучений. Биполярная ячейка координатного фотоприемника -...
Тип: Изобретение
Номер охранного документа: 0002583857
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3fca

Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая, в том числе в биоактивных средах, свариваемая сталь и способ ее обработки

Изобретение относится к области металлургии конструкционных сталей и предназначено для изготовления криогенных высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов. Сталь содержит, в мас.%: С - 0,05-0,07, Cr - 18,0-20,0, Ni - 5,0-7,0, Μn - 9,0-11,0, Mo - 1,4-1,8,...
Тип: Изобретение
Номер охранного документа: 0002584315
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.43d8

Способ обработки низколегированных медных сплавов

Изобретение относится к области обработки специальных проводниковых сплавов, в частности к получению низколегированных медных сплавов, и может быть использовано в электротехнике для изготовления электродов сварочных машин, контактных проводов для электрофицированного транспорта, коллекторных...
Тип: Изобретение
Номер охранного документа: 0002585606
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.43ed

Литейная форма для центробежной заливки крупногабаритных фасонных отливок сложной формы из жаропрочных и химически активных сплавов

Изобретение может быть использовано при получении крупногабаритных литых деталей летательных аппаратов и атомной техники, работающих под действием высоких нагрузок. Литейная форма содержит металлический поддон с центрирующим устройством, графитовые закладные элементы и формообразующие...
Тип: Изобретение
Номер охранного документа: 0002585604
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.45a4

Электропривод

Изобретение относится к электротехнике, в частности к электроприводу переменного тока с режимом динамического торможения асинхронного двигателя. При отказе механического тормоза при аварийной остановке применяется электрический тормоз - электропривод переходит в режим регулируемого...
Тип: Изобретение
Номер охранного документа: 0002586630
Дата охранного документа: 10.06.2016
Showing 11-20 of 43 items.
20.02.2014
№216.012.a278

Устройство для нанесения покрытий на малогабаритные изделия

Изобретение относится к области порошковой металлургии и, в частности, к устройствам для нанесения металлопокрытий методом химического осаждения металлов из газовой фазы, преимущественно разложением карбонилов металлов покрытия в условиях термоциклирования покрываемых изделий. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002507307
Дата охранного документа: 20.02.2014
10.06.2014
№216.012.cbb2

Функционально-интегрированная ячейка фоточувствительной матрицы

Изобретение относится к области микроэлектроники, а более конкретно к фоточувствительным матрицам приемников оптических, рентгеновских излучений и изображений для применения в фотоаппаратах, видеокамерах, сотовых телефонах, медицинских рентгеновских панелях, а также в универсальных...
Тип: Изобретение
Номер охранного документа: 0002517917
Дата охранного документа: 10.06.2014
27.07.2014
№216.012.e489

Способ изготовления алмазного инструмента на гальванической связке

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении алмазного инструмента на гальванической связке, преимущественно для обработки хрупких неметаллических материалов. На корпусе инструмента закрепляют крупные алмазные зерна первым слоем связки...
Тип: Изобретение
Номер охранного документа: 0002524295
Дата охранного документа: 27.07.2014
27.10.2014
№216.013.034b

Монолитный быстродействующий координатный детектор ионизирующих частиц

Предлагаемое изобретение «Монолитный быстродействующий координатный детектор ионизирующих частиц» относится к полупроводниковым координатным детекторам ионизирующих частиц. Целью изобретения является повышение быстродействия и технологичности координатного детектора, что особенно важно для...
Тип: Изобретение
Номер охранного документа: 0002532241
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.04e1

Детектор быстрых нейтронов

Изобретение относится к полупроводниковым детекторам излучений. Детектор быстрых нейтронов содержит конвертор быстрых нейтронов и поверхностно-барьерный GaAs сенсор, регистрирующий протоны отдачи, при этом сенсор выполнен на подложке арсенида галлия n-типа проводимости, на рабочей поверхности...
Тип: Изобретение
Номер охранного документа: 0002532647
Дата охранного документа: 10.11.2014
27.01.2015
№216.013.21a4

Износостойкий алмазный инструмент

Изобретение относится к области производства алмазных инструментов, в частности к алмазным инструментам, содержащим корпус и алмазные зерна, расположенные на корпусе в один и более слоев и удерживаемые металлическим связующим материалом. Износостойкий алмазный инструмент включает корпус с...
Тип: Изобретение
Номер охранного документа: 0002540060
Дата охранного документа: 27.01.2015
20.04.2015
№216.013.41d0

Алмазный гальванический инструмент с износостойким покрытием

Изобретение относится к алмазным инструментам, на поверхности корпуса которых методом электрохимического осаждения нанесен металлический связующий материал, содержащий алмазные зерна. Алмазный гальванический инструмент с износостойким покрытием содержит корпус с закрепленными на нем при помощи...
Тип: Изобретение
Номер охранного документа: 0002548346
Дата охранного документа: 20.04.2015
27.07.2015
№216.013.65cb

Запирающая прокладка для многопуансонного устройства высокого давления и высоких температур

Изобретение относится к области изготовления синтетических алмазов с использованием многопуансонных устройств высокого давления и касается запирающей прокладки для многопуансонных устройств высокого давления и высоких температур. Прокладка размещена между пуансонами многопуансонного устройства...
Тип: Изобретение
Номер охранного документа: 0002557612
Дата охранного документа: 27.07.2015
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.05.2016
№216.015.3cdc

Биполярная ячейка координатного фотоприемника - детектора излучений

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Изобретение обеспечивает повышение эффективности регистрации оптических и глубоко проникающих излучений и повышение быстродействия детектора излучений. Биполярная ячейка координатного фотоприемника -...
Тип: Изобретение
Номер охранного документа: 0002583857
Дата охранного документа: 10.05.2016
+ добавить свой РИД