×
29.06.2020
220.018.2ccb

Результат интеллектуальной деятельности: ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ ДЛЯ АКТИВНЫХ RC-ФИЛЬТРОВ, РАБОТАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОТОКА НЕЙТРОНОВ И НИЗКИХ ТЕМПЕРАТУР

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники и микроэлектроники. Технический результат заключается в создании операционного усилителя с парафазным выходом только на полевых транзисторах с управляющим p-n переходом, обеспечивая высокую радиационную стойкость и устойчивую работу при криогенных температурах при экстремально малом уровне шумов. Устройство содержит входной дифференциальный каскад, шину источника питания, первую и вторую группы противофазных входов устройства, первый и второй токовые выходы входного дифференциального каскада, первый и второй противофазные выходы устройства, первый и второй резисторы отрицательной обратной связи, первый и второй выходные полевые транзисторы с объединенными затворами, токостабилизирующий резистор, второй токостабилизирующий резистор, первый источник опорного тока, буферный усилитель, второй источник опорного тока, второй буферный усилитель, первый вспомогательный полевой транзистор, третий источник опорного тока, первый, второй и третий дополнительные полевые транзисторы, дополнительный токостабилизирующий двухполюсник. 1 з.п. ф-лы, 10 ил.

Предлагаемое изобретение относится к области радиотехники и микроэлектроники и может быть использовано в аналоговых микросхемах и аналого-цифровых интерфейсах датчиков, работающих в тяжелых условиях эксплуатации.

Операционные усилители (ОУ) с парафазным выходом [1-26] относятся к числу перспективных активных элементов современной микроэлектроники. На их основе реализуется широкий класс аналоговых интерфейсов, в т.ч. для АЦП преобразователей, имеющих дифференциальный вход и дифференциальный выход. Такое схемотехническое решение ОУ имеет ряд известных преимуществ в сравнении с традиционными ОУ без парафазного выхода [26].

Ближайшим прототипом (фиг. 1) заявляемого устройства является операционный усилитель по патенту US 6.937.100, fig. 4, fig. 5, 2005г. Он содержит (фиг. 1) входной дифференциальный каскад 1, общая истоковая цепь которого согласована с первой 2 шиной источника питания, первую 3 и вторую 4 группы противофазных входов устройства, первый 5 и второй 6 токовые выходы входного дифференциального каскада 1, первый 7 и второй 8 противофазные выходы устройства, между которыми включены последовательно соединенные первый 9 и второй 10 резисторы отрицательной обратной связи, первый 11 и второй 12 выходные полевые транзисторы с объединенными затворами, причем исток первого 11 выходного полевого транзистора связан со второй 13 шиной источника питания через первый 14 токостабилизирующий резистор, а исток второго 12 выходного полевого транзистора связан со второй 13 шиной источника питания через второй 15 токостабилизирующий резистор, первый 16 источник опорного тока, связанный со стоком первого 11 выходного полевого транзистора и входом первого 17 буферного усилителя, выход которого связан с первым 7 выходом устройства, второй 18 источник опорного тока, связанный со стоком второго 12 выходного полевого транзистора и входом второго 19 буферного усилителя, выход которого связан со вторым 8 выходом устройства, первый 20 вспомогательный полевой транзистор, исток которого связан со первой 2 шиной источника питания через третий 21 источник опорного тока, сток согласован со второй 13 шиной источника питания, а затвор соединен с общим узлом последовательно соединенных первого 9 и второго 10 резисторов отрицательной обратной связи, второй 22 вспомогательный полевой транзистор.

Существенный недостаток известного ОУ состоит в том, что при реализации его схемы на полевых транзисторах с управляющим p-n переходом (JFET), обеспечивающих экстремально низкий уровень шумов, он не работоспособен при низких температурах и воздействии повышенных уровней проникающей радиации, а также не обеспечивает повышенный коэффициент усиления по напряжению. Это не позволяет использовать ОУ-прототип в задачах проектирования активных RC-фильтров с малым уровнем шумов для тяжелых условий эксплуатации.

Основная задача предлагаемого изобретения состоит в создании операционного усилителя с парафазным выходом на полевых JFET транзисторах, который демонстрирует высокую радиационную стойкость, устойчивую работу при криогенных температурах при экстремально малом уровне шумов, а также обеспечивает повышенный коэффициент усиления по напряжению.

Поставленная задача достигается тем, что в ОУ фиг.1, содержащем входной дифференциальный каскад 1, общая истоковая цепь которого согласована с первой 2 шиной источника питания, первую 3 и вторую 4 группы противофазных входов устройства, первый 5 и второй 6 токовые выходы входного дифференциального каскада 1, первый 7 и второй 8 противофазные выходы устройства, между которыми включены последовательно соединенные первый 9 и второй 10 резисторы отрицательной обратной связи, первый 11 и второй 12 выходные полевые транзисторы с объединенными затворами, причем исток первого 11 выходного полевого транзистора связан со второй 13 шиной источника питания через первый 14 токостабилизирующий резистор, а исток второго 12 выходного полевого транзистора связан со второй 13 шиной источника питания через второй 15 токостабилизирующий резистор, первый 16 источник опорного тока, связанный со стоком первого 11 выходного полевого транзистора и входом первого 17 буферного усилителя, выход которого связан с первым 7 выходом устройства, второй 18 источник опорного тока, связанный со стоком второго 12 выходного полевого транзистора и входом второго 19 буферного усилителя, выход которого связан со вторым 8 выходом устройства, первый 20 вспомогательный полевой транзистор, исток которого связан со первой 2 шиной источника питания через третий 21 источник опорного тока, сток согласован со второй 13 шиной источника питания, а затвор соединен с общим узлом последовательно соединенных первого 9 и второго 10 резисторов отрицательной обратной связи, второй 22 вспомогательный полевой транзистор, предусмотрены новые элементы и связи – в схему введены первый 23, второй 24 и третий 25 дополнительные полевые транзисторы, причем исток первого 23 дополнительного полевого транзистора соединен с первым 5 токовым выходом входного дифференциального каскада 1, исток второго 24 дополнительного полевого транзистора соединен со вторым 6 токовым выходом входного дифференциального каскада 1, сток первого 23 дополнительного полевого транзистора соединен с истоком первого 11 выходного полевого транзистора, сток второго 24 дополнительного полевого транзистора соединен с истоком второго 12 выходного полевого транзистора, между истоками первого 23 и второго 24 дополнительных полевых транзисторов включены последовательно соединенные первый 26 и второй 27 дополнительные резисторы, общий узел которых связан с истоком третьего 25 дополнительного полевого транзистора, затвор которого согласован со второй 13 шиной источника питания, а сток подключен к первой 2 шине источника питания, затворы первого 11 и второго 12 выходных полевых транзисторов подключены ко второй 13 шине источника питания, затвор второго 22 вспомогательного полевого транзистора соединен с истоком первого 20 вспомогательного полевого транзистора, его сток связан со второй 13 шиной источника питания, а исток соединен с объединенными затворами первого 23 и второго 24 дополнительных полевых транзисторов и через дополнительный токостабилизирующий двухполюсник 28 связан с первой 2 шиной источника питания, причем в качестве всех упомянутых выше полевых транзисторов используются полевые транзисторы с управляющим p-n переходом.

На чертеже фиг. 1 показана схема ОУ - прототипа.

На чертеже фиг. 2 приведена схема заявляемого устройства в соответствии с п. 1 формулы изобретения, а на чертеже фиг. 3 – в соответствии с п. 2 формулы изобретения.

На чертеже фиг. 4 представлена схема заявляемого ОУ фиг. 3 в среде LTspice на моделях СJFET транзисторов АО «Интеграл» (г. Минск) при t=27oC, I1=200 мкА, I2÷I5=100 мкА.

На чертеже фиг. 5 приведены амплитудно-частотные характеристики (АЧХ) коэффициентов усиления по напряжению ОУ фиг. 4 со 100% отрицательной обратной связью (ООС) и без ООС при t=27oC.

На чертеже фиг. 6 показана схема заявляемого ОУ фиг. 3 в среде LTspice на моделях СJFET транзисторов АО «Интеграл» (г. Минск) при t=-197oC, I1=200 мкА, I2÷I5=100 мкА.

На чертеже фиг. 7 представлены амплитудно-частотные характеристики коэффициентов усиления по напряжению ОУ фиг. 6 со 100% ООС и без ООС при t=-197oC.

На чертеже фиг. 8 приведены амплитудно-частотные характеристики коэффициента усиления по напряжению ОУ фиг. 4 при воздействии потока нейтронов со 100% ООС и без ООС для t=27oC.

На чертеже фиг.9 показана схема для моделирования свойств фильтра низких частот на макромодели CJFet ОУ фиг.4 в среде LTspice при воздействии потока нейтронов, t=27oC, R1R6=5 кОм, R7R8=1 кОм, С1=С4= (1591e-12)/2 Ф, С2=С3= 159.1e-12 Ф.

На чертеже фиг.10 представлены амплитудно-частотные характеристики коэффициента усиления по напряжению ФНЧ фиг.9 при воздействии потока нейтронов и t=27oC.

Операционный усилитель с парафазным выходом для активных RC фильтров, работающих в условиях воздействия потока нейтронов и низких температур (фиг. 2) содержит входной дифференциальный каскад 1, общая истоковая цепь которого согласована с первой 2 шиной источника питания, первую 3 и вторую 4 группы противофазных входов устройства, первый 5 и второй 6 токовые выходы входного дифференциального каскада 1, первый 7 и второй 8 противофазные выходы устройства, между которыми включены последовательно соединенные первый 9 и второй 10 резисторы отрицательной обратной связи, первый 11 и второй 12 выходные полевые транзисторы с объединенными затворами, причем исток первого 11 выходного полевого транзистора связан со второй 13 шиной источника питания через первый 14 токостабилизирующий резистор, а исток второго 12 выходного полевого транзистора связан со второй 13 шиной источника питания через второй 15 токостабилизирующий резистор, первый 16 источник опорного тока, связанный со стоком первого 11 выходного полевого транзистора и входом первого 17 буферного усилителя, выход которого связан с первым 7 выходом устройства, второй 18 источник опорного тока, связанный со стоком второго 12 выходного полевого транзистора и входом второго 19 буферного усилителя, выход которого связан со вторым 8 выходом устройства, первый 20 вспомогательный полевой транзистор, исток которого связан со первой 2 шиной источника питания через третий 21 источник опорного тока, сток согласован со второй 13 шиной источника питания, а затвор соединен с общим узлом последовательно соединенных первого 9 и второго 10 резисторов отрицательной обратной связи, второй 22 вспомогательный полевой транзистор. В схему введены первый 23, второй 24 и третий 25 дополнительные полевые транзисторы, причем исток первого 23 дополнительного полевого транзистора соединен с первым 5 токовым выходом входного дифференциального каскада 1, исток второго 24 дополнительного полевого транзистора соединен со вторым 6 токовым выходом входного дифференциального каскада 1, сток первого 23 дополнительного полевого транзистора соединен с истоком первого 11 выходного полевого транзистора, сток второго 24 дополнительного полевого транзистора соединен с истоком второго 12 выходного полевого транзистора, между истоками первого 23 и второго 24 дополнительных полевых транзисторов включены последовательно соединенные первый 26 и второй 27 дополнительные резисторы, общий узел которых связан с истоком третьего 25 дополнительного полевого транзистора, затвор которого согласован со второй 13 шиной источника питания, а сток подключен к первой 2 шине источника питания, затворы первого 11 и второго 12 выходных полевых транзисторов подключены ко второй 13 шине источника питания, затвор второго 22 вспомогательного полевого транзистора соединен с истоком первого 20 вспомогательного полевого транзистора, его сток связан со второй 13 шиной источника питания, а исток соединен с объединенными затворами первого 23 и второго 24 дополнительных полевых транзисторов и через дополнительный токостабилизирующий двухполюсник 28 связан с первой 2 шиной источника питания, причем в качестве всех упомянутых выше полевых транзисторов используются полевые транзисторы с управляющим p-n переходом.

Входной дифференциальный каскад 1 в схеме фиг. 2 выполнен по многоканальной схеме, включающей несколько идентичных дифференциальных каскадов на транзисторах 29 и 30 (29.1, 29.2, …, 30.1, 30.2, …), а также источники опорного тока 31. Коррекция АЧХ в схеме фиг. 2 обеспечивается конденсаторами 32 и 33.

На чертеже фиг. 3, в соответствии с п. 2 формулы изобретения, первый 11 выходной полевой транзистор выполнен в виде первого каскодного составного транзистора на первом 34 и втором 35 вспомогательных полевых транзисторах, а второй 12 выходной полевой транзистор выполнен в виде второго каскодного составного транзистора на третьем 36 и четвертом 37 вспомогательных полевых транзисторах.

Рассмотрим работу заявляемого ОУ фиг. 2.

Основная проблема построения операционных усилителей с парафазным выходом для активных RC-фильтров, работающих в тяжелых условий эксплуатации, в т.ч. и заявляемой схемы фиг. 2, состоит в организации отрицательной обратной связи по выходному синфазному сигналу Uсф, присутствующему на первом 7 и втором 8 выходах устройства. Как правило, Uсф выделяется с помощью первого 9 и второго 10 резисторов отрицательной обратной связи (фиг. 2).

Особенность заявляемой схемы ОУ фиг. 2 состоит в использовании для введения отрицательной обратной связи по синфазному сигналу каскодного усилителя на первом 23 и втором24 дополнительных полевых транзисторах. Если Uсф здесь увеличивается, то это приводит к увеличению напряжения на затворах и, как следствие, напряжения на истоках первого 23 и второго 24 дополнительных полевых транзисторов. Учитывая, что потенциал на затворе третьего 25 дополнительного полевого транзистора имеет фиксированное знечение, это приводит к увеличению токов через первый 26 и второй 27 дополнительные резисторы, увеличению токов стока первого 23 и второго 24 дополнительных полевых транзисторов и уменьшению токов стока первого 11 и второго 12 выходных полевых транзисторов. Как следствие, выходное синфазное напряжение на первом 7 и втором 8 выходах уменьшится. Данная обратная связь работает в широком диапазоне частот, температур и воздействии радиации, обеспечивая стабилизацию заданного уровня выходного синфазного напряжения ОУ.

Заявляемая схема фиг. 2 обладает также достаточно важным качеством - ее входной каскад 1 может включать несколько параллельно включенных элементарных дифференциальных каскадов, т.е. иметь несколько независимых друг от другах входов (Вх.1.1, Вх.1.N, Вх.2.1, Вх.2.N, …). Данное качество является основным требованием при построения на базе архитектуры фиг. 2 так называемых мультидифференциальных операционных усилителей [27]. Этот класс ОУ, в отличие от классических ОУ с двумя входами [26], позволяет по-другому решать задачи усиления и преобразования сигналов датчиков, в т.ч. и ARCФ фильтрации сигналов датчиков.

Для повышения разомкнутого коэффициента усиления ОУ в схеме фиг. 3 предусмотрено выполнение первого 11 и второго 12 выходных полевых транзисторов по каскодным структурам на первом 34 и втором 35 вспомогательных полевых транзисторах, а также на третьем 36 и четвертом 37 вспомогательных полевых транзисторах. Как показывает моделирование (фиг. 8), это позволяет обеспечить в заявляемом ОУ разомкнутый коэффициент усиления более 100 дБ в широком диапазоне температур и радиационных воздействий, что достаточно важно для применения предлагаемого ОУ в активных RC-фильтрах при тяжелых условиях эксплуатации (фиг. 10).

Замечательная особенность предлагаемого ОУ состоит также в том, что он выполнен на JFET транзисторах, которые обеспечивают работу ОУ и аналоговых устройств на его основе, например, ARC фильтров, при криогенных температурах (фиг. 7) и воздействии потока нейтронов (фиг. 8) [53]. Для рассмотренного схемотехнического решения ОУ разработана макромодель с учетом воздействия потока нейтронов (Fn) и низких температур, которая была исследована в структуре фильтра нижних частот (ФНЧ) с дифференциальным входом и дифференциальным выходом при воздействии потока нейтронов (фиг. 10). Графики фиг. 10 показывают, что ФНЧ на основе рассматриваемого ОУ работоспособен при Fn<1015 n/сm2. При более высоких значениях Fn схема ФНЧ фиг. 9 не работает (фиг. 10).

Таким образом, предлагаемое устройство, предназначенное для проектирования ARC фильтров, работающих в тяжелых условиях эксплуатации, имеет существенные преимущества в сравнении с ОУ-прототипом.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 6.937.100, 2005 г.

2. Патент US 6.956.434, fig.1, 2005 г.

3. Патент US 7.894.727, fig.3, 2011 г.

4. Патент US 5.880.634, fig.4,fig.7B, 1999 г.

5. Патент US 5.146.179, fig.2, 1992 г.

6. Патент US 6.624.697, fig.1, 2003 г.

7. Патент US 6.356.152, fig.4, 2002 г.

8. Патент US 6.329.849, fig.8, 2001 г.

9. Патент US 5.376.899, fig.1, 1994 г.

10. Патент US 6.750.715, fig.4, 2004 г.

11. Патент US 5.604.464, fig.2, 1997 г.

12. Патент US 5.847.607, fig.8, 1998 г.

13. Патент US 5.406.220, fig.2, 1995 г.

14. Патент US 6.628.168, fig.2, 2003 г.

15. Патент US 4.714.895, fig.1, 1997 г.

16. Патент EP 0 632 581, fig.3, 1995 г.

17. Патент US 4.697.152, fig.2,1987 г.

18. Патент US 5.212.455, 1993 г.

19. Патент US 6.804.305, fig.1, 2004 г.

20. Патент US 4.600.893, fig. 4, 1986 г.

21. Патент US 4.151.483, fig. 4, 1979 г.

22. Патент US 4.151.484, fig. 4, 1979 г.

23. Патент US 4.406.990, fig. 3, 1983 г.

24. Патент US 5.963.085, 1999 г.

25. Патент US 8.350.622, 2013 г.

26. I.M. Filanovsky, V.V. Ivanov, “Operational Amplifier Speed and Accuracy Improvement: Analog Circuit Design with Structural Methodology,” Kluwer Academic Publishers, New York, Boston, Dordrecht, London, 2004, 194 p.

27. Прокопенко Н.Н., Дворников О.В., Будяков П.С. Основные свойства, параметры и базовые схемы включения мультидифференциальных операционных усилителей с высокоимпедансным узлом // Электронная техника. Серия 2. Полупроводниковые приборы. Выпуск 2 (233), 2014 г. С. 53-64

28. O. V. Dvornikov, V. L. Dziatlau, N. N. Prokopenko, K. O. Petrosiants, N. V. Kozhukhov and V. A. Tchekhovski, "The accounting of the simultaneous exposure of the low temperatures and the penetrating radiation at the circuit simulation of the BiJFET analog interfaces of the sensors," 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, 2017, pp. 1-6. DOI: 10.1109/SIBCON.2017.7998507.


ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ ДЛЯ АКТИВНЫХ RC-ФИЛЬТРОВ, РАБОТАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОТОКА НЕЙТРОНОВ И НИЗКИХ ТЕМПЕРАТУР
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ ДЛЯ АКТИВНЫХ RC-ФИЛЬТРОВ, РАБОТАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОТОКА НЕЙТРОНОВ И НИЗКИХ ТЕМПЕРАТУР
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ ДЛЯ АКТИВНЫХ RC-ФИЛЬТРОВ, РАБОТАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОТОКА НЕЙТРОНОВ И НИЗКИХ ТЕМПЕРАТУР
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ ДЛЯ АКТИВНЫХ RC-ФИЛЬТРОВ, РАБОТАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОТОКА НЕЙТРОНОВ И НИЗКИХ ТЕМПЕРАТУР
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ ДЛЯ АКТИВНЫХ RC-ФИЛЬТРОВ, РАБОТАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОТОКА НЕЙТРОНОВ И НИЗКИХ ТЕМПЕРАТУР
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ ДЛЯ АКТИВНЫХ RC-ФИЛЬТРОВ, РАБОТАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОТОКА НЕЙТРОНОВ И НИЗКИХ ТЕМПЕРАТУР
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ ДЛЯ АКТИВНЫХ RC-ФИЛЬТРОВ, РАБОТАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОТОКА НЕЙТРОНОВ И НИЗКИХ ТЕМПЕРАТУР
ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ ДЛЯ АКТИВНЫХ RC-ФИЛЬТРОВ, РАБОТАЮЩИХ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПОТОКА НЕЙТРОНОВ И НИЗКИХ ТЕМПЕРАТУР
Источник поступления информации: Роспатент

Showing 181-186 of 186 items.
20.04.2023
№223.018.4ac4

Способ электрохимического окисления спиртов в нитрилы

Изобретение относится к способу электрохимического окисления спиртов в нитрилы. Предлагаемый способ включает предварительное приготовление реакционной смеси, состоящей из окисляемого спирта, водного раствора гидрокарбоната натрия, органического растворителя, в качестве которого используют...
Тип: Изобретение
Номер охранного документа: 0002778929
Дата охранного документа: 29.08.2022
21.05.2023
№223.018.6b20

Комплексная добавка в бетонную смесь

Изобретение относится к строительству подземных бетонных и железобетонных сооружений. Технический результат заключается в повышении прочности бетона в начальные сроки его твердения и водонепроницаемости при наборе проектной прочности. Комплексная добавка в бетонную смесь содержит...
Тип: Изобретение
Номер охранного документа: 0002795636
Дата охранного документа: 05.05.2023
26.05.2023
№223.018.7026

Устройство для проведения инструментального индентирования с возможностью экспериментального наблюдения области контакта индентора с поверхностью образца в реальном времени

Изобретение относится к устройствам определения упругих свойств материалов путем вдавливания микро- или наноиндентора в поверхность образца на заданную глубину либо под действием заданной силы. Устройство содержит точечный источник рентгеновского излучения, вращающийся гониометрический столик с...
Тип: Изобретение
Номер охранного документа: 0002796200
Дата охранного документа: 17.05.2023
17.06.2023
№223.018.7e36

Способ измерения области контакта индентора с поверхностью образца

Изобретение относится к области определения механических свойств материалов посредством инструментального индентирования. Сущность: образец устанавливается жестко на держатель устройства 3D визуализации деформационного состояния поверхности материала в области упругих деформаций. Индентор...
Тип: Изобретение
Номер охранного документа: 0002771063
Дата охранного документа: 25.04.2022
17.06.2023
№223.018.8182

Термостойкое силиконовое покрытие с поверхностной рельефной структурой

Изобретение относится к легкой промышленности, а именно к материалам и изделиям с термостойким покрытием, обеспечивающим защиту от механического и термического воздействия. Предложено термостойкое силиконовое покрытие толщиной 2,0 мм на поверхности материалов и деталей швейных изделий с...
Тип: Изобретение
Номер охранного документа: 0002756454
Дата охранного документа: 30.09.2021
19.06.2023
№223.018.81f3

Быстродействующий операционный усилитель с дифференцирующими цепями коррекции в мостовом входном дифференциальном каскаде

Изобретение относится к области радиотехники и может быть использовано в различных аналоговых и аналого-цифровых интерфейсах для обработки сигналов датчиков физических величин. Технический результат: повышение предельных значений максимальной скорости нарастания выходного напряжения без...
Тип: Изобретение
Номер охранного документа: 0002797168
Дата охранного документа: 31.05.2023
Showing 211-216 of 216 items.
14.05.2023
№223.018.5643

Дифференциальный операционный усилитель на полевых транзисторах с управляющим p-n переходом

Изобретение относится к области радиотехники. Технический результат: создание для различных JFET техпроцессов работоспособного операционного усилителя, который обеспечивает малые значения систематической составляющей напряжения смещения нуля (U), а также повышенный коэффициент усиления (К) по...
Тип: Изобретение
Номер охранного документа: 0002739577
Дата охранного документа: 28.12.2020
16.05.2023
№223.018.6148

Операционный усилитель с «плавающим» входным дифференциальным каскадом на комплементарных полевых транзисторах с управляющим p-n переходом

Предполагаемое изобретение относится к области радиотехники. Технический результат: создание радиационно-стойкого и низкотемпературного JFet операционного усилителя. Для этого предложен операционный усилитель с «плавающим» входным дифференциальным каскадом на комплементарных полевых...
Тип: Изобретение
Номер охранного документа: 0002741055
Дата охранного документа: 22.01.2021
16.05.2023
№223.018.6176

Радиационно-стойкий и низкотемпературный операционный усилитель на комплементарных полевых транзисторах

Изобретение относится к области радиотехники и аналоговой микроэлектроники. Технический результат: малые значения систематической составляющей напряжения смещения нуля (U), а также повышенные коэффициент усиления (К) по напряжению и коэффициент ослабления входных синфазных сигналов (К)....
Тип: Изобретение
Номер охранного документа: 0002741056
Дата охранного документа: 22.01.2021
05.06.2023
№223.018.779c

Биполярно-полевой арсенид-галлиевый буферный усилитель

Изобретение относится к области микроэлектроники. Технический результат - обеспечение малого статического тока потребления и обеспечение в относительно низкоомной нагрузке токов двух направлений. Для этого предложен усилитель, который содержит вход (1) и выход (2) устройства, к которому...
Тип: Изобретение
Номер охранного документа: 0002796638
Дата охранного документа: 29.05.2023
16.06.2023
№223.018.7d2a

Дифференциальный каскад на комплементарных полевых транзисторах с повышенной температурной стабильностью статического режима

Изобретение относится к области радиотехники. Технический результат: высокая стабильность статического режима входных транзисторов при воздействии отрицательных температур. Для этого предложен дифференциальный каскад на комплементарных полевых транзисторах, в котором третий (10) и четвертый...
Тип: Изобретение
Номер охранного документа: 0002746888
Дата охранного документа: 21.04.2021
19.06.2023
№223.018.81f3

Быстродействующий операционный усилитель с дифференцирующими цепями коррекции в мостовом входном дифференциальном каскаде

Изобретение относится к области радиотехники и может быть использовано в различных аналоговых и аналого-цифровых интерфейсах для обработки сигналов датчиков физических величин. Технический результат: повышение предельных значений максимальной скорости нарастания выходного напряжения без...
Тип: Изобретение
Номер охранного документа: 0002797168
Дата охранного документа: 31.05.2023
+ добавить свой РИД