×
29.06.2020
220.018.2ca4

Результат интеллектуальной деятельности: Способ получения терефталевой кислоты из отходов полиэтилентерефталата

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения терефталевой кислоты (ТФК) из отходов полиэтилентерефталата (ПЭТФ) (например, использованных бутылок разных цветов для напитков) и может быть использовано как для получения ТФК, так и для утилизации отходов ПЭТФ. Способ получения ТФК включает измельчение отходов ПЭТФ, выдержку их в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температуре 130-190°С в течение 5-24 ч, обработку раствором гидроксида натрия с образованием динатриевой соли ТФК и осаждение ТФК одноосновной минеральной кислотой с последующими фильтрацией, промывкой и сушкой. Преимуществами изобретения являются получение терефталевой кислоты из отходов полиэтилентерефталата без использования токсичных веществ, а также возможность использования его для утилизации отходов ПЭТФ без их предварительного деления по цветовой гамме. 6 ил.

Изобретение относится к способу получения терефталевой кислоты (ТФК) из отходов полиэтилентерефталата (ПЭТФ) (например, использованных бутылок разных цветов для напитков). Заявляемый способ включает измельчение отходов ПЭТФ, выдержку их в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температуре 130-190°С в течение 5-24 ч, обработку раствором гидроксида натрия с образованием динатриевой соли ТФК и осаждение ТФК одноосновной минеральной кислотой с последующими фильтрацией, промывкой и сушкой.

Известен способ получения ТФК омылением ПЭТФ, который используется при изготовлении пластиковых бутылок для напитков, благодаря чему он легкодоступен. Процесс омыления проводят путем нагревания тонких кусочков ПЭТФ со щелочами. Существует возможность провести омыление при комнатной температуре, для чего берут слабый раствор гидрооксида натрия в 75%-ном растворе метанола. Продолжительность реакции примерно 1 месяц. Для быстроты процесса предложено использовать раствор гидроксида натрия в этиленгликоле, нагретом до кипения (195-200°С). [A.Oku, L.-C. Hu, Е. Yamada. J. Appl. Polim. Sci. 1997. 63.595]. Недостатками способа являются длительность процесса и использование токсичных веществ: метанола - третий класс опасности по ГОСТ 12.1.007-76 и этиленгликоля - третий класс опасности [ГОСТ 12.1.005-88].

Известен также способ химической реутилизации отработанного ПЭТФ, особенно неклассифицируемой крошки от использованных бутылок из-под напитков, с целью деполимеризации ПЭТФ и получения ТФК и этиленгликоля [патент РФ №2263658, опубл. 10.11.2005, Бюл. №10]. Способ состоит из следующих этапов: отделения полиэтилентерефталатного компонента исходного сырья путем его перевода в хрупкую форму при помощи процессов кристаллизации, помола и последующего просеивания; непрерывного двухступенчатого гидролиза ПЭТФ, проводимого на первой ступени путем инжекции водяного пара в расплав полимера, а на второй ступени - путем осуществления реакции гидролиза продуктов первой ступени с гидроокисью аммония, после чего осуществляют осаждение ТФК из водного раствора продуктов гидролиза второй ступени неорганической кислотой и отделение ее фильтрацией. После этого извлекают этиленгликоль ректификацией раствора продуктов гидролиза второй ступени неорганической кислотой и отделение ТФК фильтрацией. Недостатком этого изобретения является то, что в конечных продуктах присутствует токсичное вещество, а именно этиленгликоль.

Наиболее близким по технической сущности является способ получения ТФК, описанный в патенте РФ №2616299, опубл. 14.04.2017 в Бюл. №11. Это изобретение относится к способу щелочного гидролиза измельченных отходов ПЭТФ с выделением ТФК. Способ включает обработку отходов ПЭТФ гидроксидом натрия в среде флотореагента при нагревании с образованием динатриевой соли ТФК, осаждением ТФК концентрированной соляной кислотой с последующими фильтрацией, промывкой и сушкой ТФК. Недостатком этого изобретения является использование флотореагента - оксаль Т-92, который представляет собой горючую легко воспламеняющуюся жидкость, обладает явно негативным воздействием на центральную нервную систему и накапливается в органах и тканях [ТУ 2452-029-05766801-94, ГОСТ 12.1.007-76].

Целью изобретения является получение терефталевой кислоты из отходов полиэтилентерефталата без использования токсичных веществ.

Технический результат достигается тем, что способ получения терефталевой кислоты из отходов полиэтилентерефталата включает измельчение, обработку гидроксидом натрия с образованием динатриевой соли терефталевой кислоты, осаждение терефталевой кислоты одноосновной минеральной кислотой с последующими фильтрацией, промывкой и сушкой, и отличается тем, что вначале измельченные отходы полиэтилентерефталата выдерживают в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температуре 130-190°С в течение 5-24 ч, а затем растворяют в растворе гидроксида натрия с концентрацией 0,5-1,0 моль/л.

Сущность изобретения поясняется чертежами, где показано следующее.

На фиг. 1 - ИК-спектр динатриевой соли ТФК C8H4O4Na2 [4].

На фиг. 2 - ИК-спектры осадков, полученных в результате упаривания растворов, образовавшихся при растворении в 0.5 моль/л растворе NaOH образца ПЭТФ зеленого цвета, выдержанных в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температуре 130°С при разных временах выдержки, где приняты следующие обозначения:

1 - время выдержки 5 ч,

2 - время выдержки 10 ч,

3 - время выдержки 24 ч.

На фиг. 3 - ИК-спектры осадков, полученных в результате упаривания растворов, образовавшихся при растворении в 0.5 моль/л NaOH образцов ПЭТФ зеленого цвета, выдержанных в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, в течение 5 ч при разных температурах, где приняты следующие обозначения:

4 - температура 130°С,

5 - температура 150°С,

6 - температура 170°С,

7 - температура 190°С.

На фиг. 4 - ИК-спектры осадков, полученных в результате упаривания растворов, образовавшихся при растворении в 0.5 моль/л NaOH образцов ПЭТФ, выдержанных в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температуре 190°С в течение 24 ч, где приняты следующие обозначения:

8 - цвет образца ПЭТФ зеленый,

9 - цвет образца ПЭТФ коричневый,

10 - цвет образца ПЭТФ голубой.

На фиг. 5 - ИК-спектры образцов ТФК, полученных в результате добавления 12 моль/л HNO3 и 24%-ного раствора HCl к раствору, образовавшемуся при растворении в 0.5 моль/л NaOH образцов ПЭТФ зеленого цвета, выдержанных в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температуре 190°С в течение 24 ч, а также ИК-спектр ТФК, приведенный в базе данных NIST [4], где приняты следующие обозначения:

11 - добавление 12 моль/л HNO3 к раствору, образовавшемуся при растворении в 0.5 моль/л NaOH образцов ПЭТФ зеленого цвета, выдержанных в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температуре 190°С в течение 24 ч.

12 - добавление 24%-ного раствора HCl к раствору, образовавшемуся при растворении в 0.5 моль/л NaOH образцов ПЭТФ зеленого цвета, выдержанных в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температуре 190°С в течение 24 ч.

13 - ИК-спектр ТФК, приведенный в базе данных NIST [4].

На фиг. 6 - Порошковые дифрактограммы образцов ТФК, полученных при добавлении раствора 12 моль/л HNO3 и 24%-ного раствора HCl к раствору, образовавшемуся при растворении в 0.5 моль/л NaOH образцов ПЭТФ зеленого цвета, выдержанных в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температуре 190°С в течение 24 ч, а также порошковая рентгенограмма ТФК, приведенная в базе данных JCPDS [5], где приняты следующие обозначения:

14 - добавление 12 моль/л HNO3 к раствору, образовавшемуся при растворении в 0.5 моль/л NaOH образцов ПЭТФ зеленого цвета, выдержанных в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температуре 190°С в течение 24 ч.

15 - добавление 24%-ного раствора HCl к раствору, образовавшемуся при растворении в 0.5 моль/л NaOH образцов ПЭТФ зеленого цвета, выдержанных в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температуре 190°С в течение 24 ч.

16 - порошковая рентгенограмма ТФК, приведенная в базе данных JCPDS [5].

Способ осуществляется следующим образом. Вначале процесса измельченные отходы ПЭТФ выдерживают в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температуре 130-190°С в течение 5-24 ч, а затем осуществляют обработку раствором 0,5-1,0 моль/л гидроксида натрия с образованием динатриевой соли ТФК и осаждение ТФК одноосновной минеральной кислотой с последующими фильтрацией, промывкой и сушкой. В результате выдержки в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температурах 130-190°С все частицы отходов ПЭТФ разных цветов меняют свой цвет на белый, теряют прозрачность и становятся очень хрупкими. При обработке этих продуктов растворами NaOH с концентрацией 0,5-1,0 моль/л образуются желтые растворы динатриевой соли ТФК, что подтверждается ИК-спектрами осадков, полученных в результате упаривания полученных растворов, и сравнением их с ИК-спектром динатриевой соли ТФК, приведенным в базе данных NIST [4] (см. фиг. 1-4). Далее проводят осаждение ТФК одноосновной минеральной кислотой с последующими фильтрацией, промывкой и сушкой. Образование ТФК из растворов динатриевой соли ТФК путем добавления одноосновных кислот может быть представлено реакцией:

C8H4O4Na2+2НА→C8H4O4H2+2NaA,

где А - NO3-, Cl-.

Для образовавшихся осадков также были получены ИК спектры и порошковые дифрактограммы (см. фиг. 5 и 6). Их сравнение с ИК-спектром и порошковой дифрактограммой ТФК, приведенными в базах данных NIST и JCPDS [4, 5], подтверждает получение ТФК заявляемым способом.

Преимуществом предлагаемого способа является получение терефталевой кислоты из отходов полиэтилентерефталата без использования токсичных веществ, а также возможность использования его для утилизации отходов ПЭТФ без их предварительного деления по цветовой гамме.

Литература

1. A.Oku, L.-C. Hu, Е. Yamada. J. Appl. Polim. Sci. 1997. 63.595.

2. Патент РФ №2263658, опубл. 10.11.2005 в Бюл. №10.

3. Патент РФ №2616299, опубл. 14.04.2017 в Бюл. №11.

4. База данных NIST Standard Reference Database Number 69 // http://webbok.nist. Gov/ chemistry/.

5. JCPDS - Inter. Centre for Diffraction Data. PDF 00-031-1916, ТФК.

Способ получения терефталевой кислоты из отходов полиэтилентерефталата, включающий измельчение, обработку гидроксидом натрия с образованием динатриевой соли терефталевой кислоты, осаждение терефталевой кислоты одноосновной минеральной кислотой с последующими фильтрацией, промывкой и сушкой, отличающийся тем, что вначале измельченные отходы полиэтилентерефталата выдерживают в нитрирующей атмосфере, полученной в результате испарения 12 моль/л азотной кислоты, при температуре 130-190°С в течение 5-24 ч, а затем растворяют в растворе гидроксида натрия с концентрацией 0,5-1,0 моль/л.
Способ получения терефталевой кислоты из отходов полиэтилентерефталата
Способ получения терефталевой кислоты из отходов полиэтилентерефталата
Способ получения терефталевой кислоты из отходов полиэтилентерефталата
Способ получения терефталевой кислоты из отходов полиэтилентерефталата
Источник поступления информации: Роспатент

Showing 1-3 of 3 items.
06.12.2019
№219.017.ea1a

Двухслойный суперконденсатор

Изобретение относится к области электротехники, а именно к двухслойному электрохимическому суперконденсатору на основе ионных жидкостей. Согласно изобретению в двухслойном суперконденсаторе, содержащем электроды из активированного углерода, электролит выполнен из смеси фреона и ионной жидкости,...
Тип: Изобретение
Номер охранного документа: 0002707962
Дата охранного документа: 03.12.2019
17.02.2020
№220.018.03a0

Способ получения упорядоченного массива углеродных нанотрубок при использовании молекул-координаторов, развития в полученных супрамолекулярных структурах вторичной пористости и материал, полученный этим способом

Изобретение может быть использовано в адсорбционной технике для аккумулирования газов, а также в материаловедении и электронике. Сначала производят насыщение материнского объема углеродных нанотрубок молекулами-координаторами: углеводородами нормального, ароматического, нафтенового,...
Тип: Изобретение
Номер охранного документа: 0002714350
Дата охранного документа: 14.02.2020
07.06.2020
№220.018.24bd

Пьезорезонансный сенсор микроконцентрации веществ

Изобретение относится к аналитическому приборостроению, в частности к области измерения микроконцентрации тех или иных веществ в газах или жидкостях. Пьезорезонансный сенсор микроконцентрации веществ содержит пьезоэлемент, в котором возбуждены стоячие волны механических колебаний вдоль длины...
Тип: Изобретение
Номер охранного документа: 0002722975
Дата охранного документа: 05.06.2020
Showing 1-8 of 8 items.
20.04.2013
№216.012.35e2

Способ получения сорбента для улавливания летучих форм радиоактивного йода

Изобретение относится к производству сорбентов для улавливания летучих форм радиоактивного йода и может быть использовано при изготовлении сорбентов для предотвращения радиоактивного выброса в окружающую среду при эксплуатационных режимах работы и при авариях на атомных электростанциях (АЭС), а...
Тип: Изобретение
Номер охранного документа: 0002479347
Дата охранного документа: 20.04.2013
27.10.2013
№216.012.7b3f

Способ извлечения радионуклида co из жидких радиоактивных отходов аэс

Изобретение относится к технологии обращения с жидкими радиоактивными отходами (ЖРО) атомных электростанций (АЭС) и может быть использовано в процессе переработки трапных вод и кубового остатка ЖРО АЭС для удаления радионуклида Со с концентрированием его в твердой фазе. Способ извлечения...
Тип: Изобретение
Номер охранного документа: 0002497213
Дата охранного документа: 27.10.2013
20.09.2014
№216.012.f488

Способ переработки маслосодержащих жидких радиоактивных отходов

Изобретение относится к области охраны окружающей среды, в частности к процессам переработки маслосодержащих жидких радиоактивных отходов методом биодеструкции, и может быть использовано на атомных электростанциях и специализированных предприятиях, кондиционирующих радиоактивные отходы низкой и...
Тип: Изобретение
Номер охранного документа: 0002528433
Дата охранного документа: 20.09.2014
29.05.2018
№218.016.541e

Сорбент для непрерывной очистки трансформаторных масел

Изобретение относится к области энергетики и может быть использовано в непрерывно действующих термосифонных и адсорбционных фильтрах очистки эксплуатационных масел силовых трансформаторов и очистки партий масла, предназначенных к хранению. Повышение эффективности непрерывной очистки...
Тип: Изобретение
Номер охранного документа: 0002654047
Дата охранного документа: 16.05.2018
04.04.2019
№219.016.fc0a

Сорбент для улавливания летучих форм радиоактивного иода на основе силикагеля

Изобретение относится к производству сорбентов для улавливания летучих форм радиоактивного иода и предназначено для предотвращения выброса этого радионуклида в окружающую среду при эксплуатационных режимах работы атомных электростанций (АЭС), а также при авариях на АЭС. Помимо этого данный...
Тип: Изобретение
Номер охранного документа: 0002346347
Дата охранного документа: 10.02.2009
19.04.2019
№219.017.2e5a

Композитный материал для локализации молекулярной формы радиоактивного йода

Изобретение относится к производству композитных материалов для локализации молекулярной формы радиоактивного йода в водных растворах и может быть использовано для снижения концентрации молекулярной формы радиоактивного йода в водных теплоносителях атомных электростанций (АЭС) и технологических...
Тип: Изобретение
Номер охранного документа: 0002395858
Дата охранного документа: 27.07.2010
03.07.2019
№219.017.a4ab

Сорбент для улавливания летучих форм радиоактивного иода на основе силикагеля

Изобретение относится к производству сорбентов для улавливания летучих форм радиоактивного иода и предназначено для предотвращения выброса этого радионуклида в окружающую среду при эксплуатационных режимах работы атомных электростанций (АЭС), а также при авариях на АЭС. Помимо этого сорбент...
Тип: Изобретение
Номер охранного документа: 0002346346
Дата охранного документа: 10.02.2009
03.07.2019
№219.017.a4b1

Устройство для очистки радиоактивной парогазовой смеси из межоболочечного пространства

Изобретение относится к области атомной энергетики, а именно к локализующим системам безопасности на АЭС с двумя защитными оболочками, и может быть использовано в устройствах поддержания разрежения в межоболочечном пространстве в случае отказа вентиляционных систем, требующих электроэнергию для...
Тип: Изобретение
Номер охранного документа: 0002383068
Дата охранного документа: 27.02.2010
+ добавить свой РИД